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Lecture – 17 

Vector Calculus 
 

In the last lecture we studied the basics of vectors, we defined the basic operations on vector 

like cross and dot product and then we saw the differential operations on vector.  

 

(Refer Slide Time: 01:38)   

 
 

So we introduce this differential parameters which is vector operator called del which is defined 

as this and by using this operator then we defined three operations on vectors the del of f where 

f is a scalar of quantity and del of f gives you what is called gradient of the scalar quantity f so 

this is del of f is a vector quantity and physically we saw it tells you the maximum rate of 

change of this function f in the three dimensional space.  

1 
 



(Refer Slide Time: 02:21)  

 
 

Then we defined for the vector fields the operations which was the operation del dot f and this 

quantity we call the divergence of vector f, this quantity is a scalar quantity. Thirdly, we had 

defined the vector operations (Refer Slide Time: 02:33) which was the cross operation and we 

called that as the curl of vector f so del cross f is given as the determinant of the matrix. 

 

In this lecture today we will try to get a physical feel for this operation: the divergence and the 

curl operations and we define then the basic theorems which are used in the vector operation. So 

just to get a feel for the dot product; essentially if to you consider the vector field like a fluid 

consider a small box or small volume and ask how much is the net flow of fluid from that box 

per unit volume that quantity is nothing but the divergence of vector.  
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So if you imagine the vector field something like a fluid then the net flow which is coming out 

of the volume per unit volume will be essentially represented by the this which is the divergence 

of the vectors. Similarly when we look at the curl of the vector as the name suggests it is 

something curling or there is some rotation involved here.   

 

If you consider the vector field and keep an object in treat the vector field like let us say again 

like a fluid flow or some surface of a river and try to keep some object on the surface of a river 

because of the differential flow of the layers of the water there will be some kind of a rotational 

effect which will be created on the surface of the river that is the effect which is captured by this 

operator what is called the curl operator. 

 

So if you define net rotation created on an object per unit area of the object then that quantity 

essentially is the curl of that vector. So just to get a little better feel let us ask what kind of fields 

would give me divergence and what kind of field will give me the curl.  

 

So if I draw let us say a vector field which is given by that again we are writing the arrows 

which are representing the vectors, so if I consider a vector field like this; if I consider the 

magnitude of the vector here here here (Refer Slide Time: 5:15) they are same, it is here here 

3 
 



here is same, here here here is same but if move in this direction this value this value is same 

but this value is different, this value different and so on. 

 

Now imagine if I keep a small area here then depending upon the value of the vector it will 

create some kind of a shear on this object so this vector will try to rotate the object this way 

whereas this vector will try to rotate the object in the anti-clockwise direction so there is a net 

rotation effect which is created on this object. So if I have a vector field something like this then 

I will have a rotation created and this vector field will have a curl in this region. If I consider a 

field which is like that (Refer Slide Time: 6:14) that means now the field magnitude is changing  

in this direction so here certain value of the vector the vector increases, increases and so on. 

 

If I consider now a small volume in this region and if I treat this vector like a fluid it will 

represent... the fluid which is going inside is having the value which is this whereas the field 

which is coming out of this will be having a magnitude which is much larger so then it will be 

give me a net flow of fluid it form this volume if I keep some volume at this point. 

 

So, if I have field something like this then it will have a divergence; if I have something like this 

then it will have a curl. So whenever we have some kind of a flux coming out of a volume then 

the concept of divergence is the correct concept it can capture that effect of something oozing 

out of that volume or getting inside that volume. 

 

If I have a physical phenomena where some rotational kind of effects are involved then the 

phenomena which can captured that effect is a curl. 
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So divergence curl essentially are the mathematical operations which capture this phenomena. 

So you will see later on when we go to the general analysis electric and magnetic fields. 

Essentially the concept of physics are mathematically captured by the curl and divergence 

operations. Another operation which is defined in terms of the del or this differential operator is 

what is called Laplacian operator. 

 

This is actually a second-order differential operator and this is denoted by del square which is 

equivalent to del dot del. So if I treat the del like a vector then the dot product of this del vector 

is the operator del square. So this operator the Laplacian operator is a scalar operator and 

therefore this is... if I take a dot product of the del operator (Refer Slide Time: 9:00) and if I 

treat this like a vector I will get the dot product of del with itself so this will become d2 by dx 

square so this is d2 by dx square plus d2 by dy square plus d2 by dz square.  
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So the Laplacian operator is a second-order differential operator and this operator is a scalar 

operator. If I operate this on a scalar quantity the Laplacian operator will be del dot del of the 

scalar quantity. So, for a scalar function f function f the del square operator del square of f will 

be equal to del dot del of f. Since we have defined this quantity del of f as the gradient of the 

scalar function f and this dot represents the dot product or the divergence the Laplacian of the 

scalar quantity is nothing but a divergence of the gradient of the scalar function.  So this 

Laplacian operator in this case is divergence of gradient of the scalar function. 
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The del square operator however is not restricted to the scalar function only. The del square 

operator can operate also on the vector. And if I follow the same thing as you have done here 

that del dot del and if I put a vector in front of it I will get del dot del of the vector f capital f but 

that will not have any meaning because you know it defines the operation del of the vector 

quantity. When the del operates on a vector quantity it can operate either a divergence or the 

curl. So in this case when you operate this one on the vector quantity we directly take this and 

operate this directly on the vector quantities. 

  

So, when you have a Laplacian of a vector f then del square of f where f is a vector quantity that 

is equal. Operating this (Refer Slide Time: 12:13) on all the three components of vectors so 

essentially you take the second derivative d2 by dx square of the entire vector which is three 

components; you take second derivative with respect to to y of the entire vector and you take 

second derivative with respect to z for the entire vector. 

 

So in this case although the del square operator is a scalar quantity that operator is a scalar 

operator when it operates on a vector you get a quantity which will be a vector quantity. So, 

when del square operates on the scalar quantity you get a scalar function. When you operate this 
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this on a vector quantity you get a vector quantity. So in this case you will get d2 by dx square f 

plus d2 by dy square f plus d2 by dz square f.  

 

What it means is if I expand f in its components f x f y f z you have d2 by dx square for all the 

three components, d2 by dy square for all three components and d2 by dz square for all the three 

components. So if I expand this and if I say the f is f of x into x plus f of y y plus f of z z and I 

can substitute into this so del square of f will be equal to d2 by dx square into f of x x plus f of y 

y plus f of z z plus d2 by dy square same thing plus and so on. Then I can combine the next 

component in all the components. So, that will give the d2 f x by d x square d2 f x by dy square 

d2 f x by dz square that will be the ex-component of this vector. So this will be d2 f x by dx 

square plus d2 f x by dy square plus d2 f x by dz square that will be the ex-component plus 

similarly for y component and so on. 

 

(Refer Slide Time: 15:28) 

 
  

So essentially I take this Laplacian operator which is operating on each of the components. So 

this is I can say this is equivalent to saying this this is del square of f x into x plus del square f y 

into y plus del square f z into z. 
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So if I take each of the components of the vector make the scalar Laplacian operation on each of 

the components and write the final vector that will be the quantity which will be del square f 

where f is the vector quantity. So later on when we do the analysis of the vector fields we will 

see this operation will be needed for solving the electromagnetic problems.  

 

(Refer Slide Time: 16:25) 

 
 

These are the differential operators and then you have to do the operations which are the 

integration of the vector fields so we require certain operations which we can do in the 

integration kind of operation. So if I have a vector field there is a possibility that I can take the 

integral of this vector field in a plane along a contour or along a line so if possible I have certain 

vector fields and I can take the integration around a path a contour. If possible I can take the 

integration of this vector on a surface which could be a closed surface or open surface so I can 

have something like that is a surface; I will require the vector field which is something like this, 

here again vector field could be like that so I will require the integration of this vector along this 

path, I may get the integration of this vector on this surface or I can take the integration over the 

volume if is the surface is a closed surface. 

 

So now when we do the integration if the integration is done along this path we call this as the 

contour integration; if I take the integration over a surface we call that as surface integration and 
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since surface is a two dimensional thing essentially we will have a double integral of the surface 

integration; the contour integration is a single integration and if I go to a volume integration 

then it will be a triple integral in the three dimensional space.  

 

Then we have an important theorem which connects the line integral to the surface integral and 

surface integral to the volume integral. So if I have a volume here I will have integration over 

the volume, so I have here line integral, I have surface integral and I have volume integral and 

invariably we need to change from one integration to another; we may have to convert from the 

line integral to the surface integral or from surface integral to the volume integral. It should be 

kept in mind, however, that the integral is a scalar quantity. So when we do the line integration 

the final answer will be a scalar quantity, when we do the surface integration the final answer 

will be a scalar quantity.  

 

(Refer Slide Time: 19:42) 

 
 

So now we can define the surface integration and the volume integration and the line integration 

that is if I take some vector A some vector field and say denote it by A is my vector field then 

the line integration around a path of contour some contour c is integral A dot dℓ where dℓ is the 

segment along the length. So this quantity is dℓ and this is the direction of segment; if I am 

integrating along the contour like this so dℓ is a vector quantity because it has a length and it has 
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a direction. If the contour is closed contour then I will have the integral which will be a closed 

integral. So here this is open integral, open contour. If the contour is closed then integral will be 

denoted by this: A dot dℓ this is closed contour. 

 

(Refer Slide Time: 21:12) 

 
 

So, at every location essentially what we are doing is we have this vector A, we find out the dot 

product of A and dℓ at every location, you add up that along the contour and that is this line 

integral. So this is the line integral (Refer Slide Time: 21:39). We can do the similar operation 

for the surface integration.  

 

So let us say we have some surface like this and there is an infinitesimal area on this which is 

given by da, this is the direction of the area (Refer Slide Time: 22:04) this is the unit vector in 

the direction perpendicular to that infinitesimally small area and the vector field is again A so I 

can define the surface integration; again the surface may be closed, it may be open so here this 

vector and the area which is electrical quantity so this is infinitesimally small area and the 

direction of the area is the direction which is perpendicular to this area so da vector area is the 

infinitesimally small area and then multiplied by the unit vector which is in the direction 

perpendicular to this area. So, if I take the dot product of these two A and da and if I sum up 

over the entire surface, that gives me what is called the surface integral. 
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So we have here now surface integral. So, if I have a surface which is an open surface then I 

have this double integral A dot da this is for open surface and A dot da for the closed surface. 

So the integration now is a double integration because we are talking about a surface and if you 

write the integration like this then it represents the open surface, if you write loop around the 

integration then that represents integration around the closed surface. Again you can note here 

we are taking a dot product of the vector A and the area at that location. So this quantity is a 

scalar quantity (Refer Slide Time: 24:29) so this integration is going to be a scalar quantity.  

 

Now, direction of the normal which we take for A if it is a closed surface then the direction of 

normal generally is taken as the outward’s normal from that volume that direction is taken as 

the positive unite direction. However, if you consider a surface which is an open surface then of 

course there is no preference for defining the unit normal so we can define the unit normal in 

either direction. 

 

If I consider a surface like this the unit normal can be defined as this way what can be defined 

either this way. If I am having a surface which is a closed surface like this then the normal 

which is coming out from this surface that normal is taken as the positive direction. So, while 

defining the unit normal for the surface there is no specific notation. However, later on when we 

will try to connect the contours to the surface for an open surface that time we will follow again 

the convention of the right hand rule and then we will specifically choose the direction for the 

unit normal for the surface in the contour.  

 

So in this case let us say we can define if your volume was closed, surface was closed then we 

define the unit normal coming outwards if the surface is open then any direction can be taken as 

the direction of the unit normal. 

 

The third possibility we said is the volume integral. So since we are now defining this quantity 

over the volume we have some function which is a scalar quantity which is filling this volume. 

See if I integrate the total scalar quantity over this volume that gives me the volume integral. So 

I have some volume here and I have some scalar quantity filling this volume which is given by 

f. if I take an infinitesimally small volume in this that volume let us say is given by dv where v 
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is the volume then integration over this will be a triple integration so we have here volume 

integral which is triple integral; this function f dv. 

 

(Refer Slide Time: 27:24) 

 
 

So, essentially when we try to now relate the different integrations: the line integration to the 

surface integration to the volume integration essentially the vector fields first are operated by 

the operator del and then there is the relationship between these del operated fields in the 

integration domain. So there are two important theorems which essentially relate this and they 

are called divergence theorem and the Stokes’ theorem. So we have an important theorem what 

is called a divergence theorem which converts a surface integral for a vector field to a volume 

integral.  

 

So if I have a vector field A vector field A then the divergence theorem states that for a closed 

surface the integral A dot da that is equal to the volume integral of divergence of A. So if I 

consider a surface it has a total surface area let us say is given by s and the total volume of this 

which is v. If I take a surface integral of the vector A on the total surface S then that is equal to 

the volume integral of the divergence of A over this volume. 
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So if you are having a vector and if you know the surface integral of this vector the surface 

integral can be converted into a volume integral by operating this vector A with a del operator 

with a dot product that means it makes a divergence of vector A and take the volume integral of 

that that is same and the surface integral of the vector A. This theorem is called the divergence 

theorem. So whenever we have a need to convert from volume integral to surface integral or 

vice versa this theorem comes very handy.  

 

Another theorem which is again an important theorem and that converts the surface integral into 

the line integral and that theorem is called the Stokes’ theorem. 

 

If I have an open surface now something like this I have a contour of this surface so this is the 

contour c and I have this surface so I have some surface area s. So the surface is open and the 

boundary of this surface is the contour c. Now I can have the unit area here and that is the 

direction of let us say n which is the unit vector for the area, then I have this contour for which I 

have to define the direction of ℓ; when I can do integration I will require ℓ so essentially first 

you have to say how should I define this ℓ with respect to n and the convention is that if I again 

follow the right hand rule if my contour goes like this then will be like this so the n will be 
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coming inward. If I take contour which will be like this (Refer Slide Time: 32:16) then the n 

will be going outwards. 

 

(Refer Slide Time: 32:24) 

 
 

So, if I take the direction of the contour like this that means the dℓ vector if I define that way so 

if I take the contour positive direction like this then the direction of the unit vector for the 

surface will be like that. If I change the direction of the contour integration in the opposite 

direction the normal direction of the surface integral will be inwards. So, for this then we can 

write the contour is a closed contour in this case so the stokes theorem states that over this 

contour c the line integral of this vector A you have a vector field again here which is A that is 

equal to the surface integral and in this case it is open surface curl of A dot d. 

 

So the line integral of this vector a on this contour is equal to the surface integral of the curl of 

this vector A. So this theorem can be used now for converting the line integral to surface 

integral and vice versa. So again summarizing this (Refer Slide Time: 34:04) if I have a closed 

surface then the surface integral and the volume integral can be related by the divergence 

theorem and if I have an open surface then the line integral and the surface integral can be 

related to the Stokes’ theorem. So, later on for solving the problem of electromagnetics 

especially when we write the Maxwell’s equation for the integral and differential form these 
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two theorems become very important, become very handy in converting from the differential to 

the integral form.  

 

Having understood these basics of the vectors now we can go to the basic quantities of the 

electromagnetics which we are going to make use of in further analysis that is the quantity like 

electric and magnetic fields when the origin of the entire electromagnetic phenomena is the 

basic charge. See if I consider charge you know from our basic Coulomb’s law this charge has 

the effect around it so if I put another charge in the vicinity of that it experiences a force. This 

effect is measured by a quantity what is called the electric field.  

 

So, if I take a charge and go into the vicinity of that I experience a force which is characterized 

by a quantity called electrical field. However, if I keep this charge in motion then it constitutes a 

current because current is nothing but the rate of change of charge so if the charge starts moving 

you have a sustained flow of charges that simply gives you current and then we have the 

magnetic fields. So the same charge well it is static stationary it gives you the electric field and 

when it starts moving then it gives you current and that gives you the magnetic field. 

 

The charge gets accelerated also. So if you accelerate the charges then it gives you the electric 

and magnetic fields both. So essentially we are dealing with the quantities here: the charges, 

currents, electric and magnetic fields and try to establish the relationship between these 

quantities. The relationship which we have between these quantities is given by what is called 

Maxwell’s equation.  

 

So essentially now starting with the basics of these quantities we will try to establish the 

relationship between them from the laws of physics and when we write the laws of physics in 

the mathematical form using the vector notation and the vector theorems which you establish 

we get what is called the Maxwell’s equation. So the quantity which we have now is what is 

called first quantity is the electric field E which is nothing but the force experienced by unit 

charge. 
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So if I have some charge here by Coulomb’s law I will experience a force at the location in the 

vicinity of this charge. If I measure this force per unit charge that quantity is what is called the 

electric field at that location. Since here we are talking about the force per unit charge, the 

electric field, the vector quantity so it has the directions and it has the magnitude. The unit of 

electric field is volts per meter. So electric field is given by volts per meter. then we have a 

medium property that if I measure the electric field in let us say vacuum I will get certain force, 

if I measure the same thing if I change the medium parameter to some other direction then the 

force will change so the quantity which does not depend upon the medium parameters is the 

electric displacement vector. 

 

So the electric field is a quantity which is related to a charge which is producing this field. But it 

also is related to the medium parameter which is what is called the permittivity of the medium. 

So we have a medium parameter called permittivity which is denoted by epsilon and it has a 

unit: Farad or meter. So if the medium parameter changes the permittivity of the medium 

changes and because of that the electric field measured at that point changes. the permittivity of 

the vacuumed or the free space is denoted by epsilon 0, so for the free space we have epsilon is 

equal to epsilon 0 and its value is approximately 1 over 36 pi into 10 to the power minus 9 

Farad per meter.  

 

So, in the space which is nothing which is vacuum; even for that the permittivity has a value 

and which is... many times this is also written as 8.86 10 to power of the minus 12 and so on. 

However, it is easy to remember 1 upon 36 pi into 10 to the power minus 9 rather than 

remembering it as 0.8 something. Generally we prefer to write the permittivity of the free space 

as 1 over 36 pi into 10 to the power minus 9 Farad per meter.  

 

Then if you take another media whose permittivity is some epsilon, the ratio of epsilon to the 

epsilon 0 is what is called the dielectric constant or the relative permittivity of the media. So we 

have the dielectric constant epsilon r also called as relative permittivity that is equal to the 

permittivity of the medium divided by the permittivity of the free space that is epsilon 0. Then 

the quantity which is independent of the medium parameters that is what is called the electric 

displacement vector that is the product of electric field and the permittivity of the media. 
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So we have a quantity electric displacement vector denoted by d which is equal to permittivity 

of the media multiplied by the electric. So, when the medium property change the epsilon 

changes but the d remain same; d does not depend upon the medium properties it depends upon 

the actually charge which is creating this field irrespective of which media it is creating this 

field. So d remains same, it does not change from media to media, so the quantity which 

changes is the electric field depending upon what is the permittivity of the medium. 

  

Now this quantity epsilon in a general media can be constant everywhere, can be uniform or it 

can vary as a function of the space in three dimensional space. It can also depend upon the 

direction. What that means is if I measure the permittivity in certain direction it has certain 

value, if I measure the permittivity in some other direction it will have another value, so in 

general this quantity epsilon may be direction dependent, it may be space dependent so if 

epsilon varies as a function of space then we call the medium as a inhomogeneous medium. 

  

So epsilon varies with the space, this gives you the inhomogeneous medium. If epsilon is a 

function of direction, if epsilon is direction dependent then the media is called anisotropic 

media. So if epsilon varies as a function of space we call the medium inhomogeneous, if the 

epsilon is direction dependent then the media is called anisotropic, if the media is not varying as 
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a function of space then we call that medium homogeneous and if epsilon is not varying as a 

function of direction then we call that media as anisotropic media. 

 

(Refer Slide Time: 47:57) 

 
 

In this course we deal with the media which are homogeneous and isotropic media. So here we 

consider only homogeneous and isotropic media. What that means is that the dielectric constant 

of the medium or permittivity of the media is neither direction dependent nor it is varying as a 

function of space. In general, however, if the media was an isotropic then this quantity epsilon 

is not a scalar quantity. In fact it becomes a 3 by 3 matrix and D is now equal to this 3 by 3 

matrix epsilon multiplied by this E which is the vector. 

 

So, for anisotropic case the epsilon is a 3 by 3 matrix whereas if I take a medium as isotropic 

then epsilon is a scalar quantity. So, in this course we essentially deal with the media for which 

epsilon or the dielectric constant is a scalar quantity. What that means is that in a homogeneous 

medium if this epsilon is a scalar quantity that D is nothing but a scaled version of E. So if I 

compare D and E they have different magnitude these two vectors but the direction of E and D 

are same that means in anisotropic medium the displacement vector and the electric field they 

are in the same direction. However, if I take the medium which is isotropic that in general this is 
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a 3 by 4 matrix so essentially it rotates this vector E and in general the displacement vector and 

the electric field vector are not in the same direction. 

 

So we say that this is E and this D (Refer Slide Time: 48:11) this is E, this will be the case if the 

medium is isotropic whereas this will be the case if the medium is anisotropic because we said 

that the displacement vector D is given in this case by 3 by 3 matrix so let me just write that as 

epsilon x x epsilon x y epsilon x z epsilon y x epsilon y y epsilon y z epsilon z x epsilon z y 

epsilon z z multiplied by this vector which is Ex Ey Ez. So this is equal to three components of 

the vectors D x D y D z. 

 

(Refer Slide Time: 49:31) 

 
 

So you can see here; if I had a vector whose components are E x E y E z after transforming to 

this matrix which is the permittivity of the anisotropic medium that will give me displacement 

vector which will not have the same direction of the electric field so I will have a situation as 

something like that. Then we have a quantity which is useful which we define and that is the 

electric potential at a point in the field and that is nothing but the negative gradient of the 

potential is the electric field. So the electric field is related to the electric potential; electric 

potential is the scalar quantity V and that is related to the electric field as the electric field is 

minus gradient of the voltage. 
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So if I know the potential at a point then I can take the gradient of that and that gives me the 

electric field at that location. From here the unit which we have got for the electric field 

essentially comes from this definition. But here we have defined the potential which is which is 

like that, the unit for the voltage is volts, the del operator is a differential special differential 

operator so it is d by dx so its units are 1 by length or per meter so that gives me the unit of the 

electric field which is volts per meters.  

 

So this relation for converting or for finding out the electric field from the potential it turns out 

very handy; whenever we find try to find the electric field in a general complex distribution of 

the charges, if you calculate the electric field  at a particular location and if I find the electric 

field because of each component of the charges which are distributed in space you have to carry 

out the vector additions at that point for the electric field so generally it turns out to be easier to 

find out the potential at that point due to all the different charges; I can add those potentials 

because these are scalar quantities and then you find out the gradient of that that gives me the 

electric field. 

So these are the very basic qualities for representing the electrostatic parameters: the electric 

field and the electric potential. When you meet next time then we will try to now establish the 

basic laws which connect the electric displacement and the charges which are responsible for 
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creating the electric displacement. And then subsequently a similar analysis we will carry out 

for the magnetic fields for the magnetic flux densities.  

 

So let us summarize what we did today. Today we saw saw some of the more vector operations,  

we saw two very important theorems for the vector integration what is called divergence and 

Stokes’ theorems which converts the surface integral to volume integral and line integral to 

surface integrals and then we also saw other basic relationships between the displacement vector 

and the electric field and a parameter what is called permittivity of the medium and how it 

changes for isotropic medium to anisotropic medium.   

22 
 


