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Up till now, we discussed the lossless or low loss transmission lines. We studied the 

characteristics of lossless transmission lines and also saw various applications of lossless 

transmission lines. In practice, however as the frequency increases, the loss increases and the 

line becomes lossy. Today, we will see briefly the characteristic of a lossy line, of course if 

the line is very lossy then, it is not very efficient medium for transferring power from one 

point to another.  

 

So, when we say a line is lossy in practice, it is not very lossy but it is moderately lossy. So 

fisrt we will see very briefly if the line was very lossy, how the characteristic impedance and 

the propagation constant of a transmission line will change and then, we will go to the 

moderately lossy transmission lines. So, if I consider a very lossy line which we can define 

when the resistance is much much greater than the inductive reactance and the conductance is 

much much greater than the capacitive reactance. We can call that line as a very lossy line 

compare to what we are define for a low loss transmission line where the reactance’s, they 

are much larger compare to the resistance component. 

 

So for a very lossy line, we can say that if R is much much greater than omega L and G is 

much much greater than omega C, we can call this line a very lossy line. For this line than the 

characteristic impedance, Z 0 will be square root of R plus j omega L divided by G plus j 

omega C and now, R is much much greater than omega L, G is much much greater than 

omega C. So this is approximately square root of R by G which is a real. Similarly, the 

propagation constant gamma, gamma which is square root of R plus j omega L into G plus j 

omega C that is approximately equal to square root of R into G, again is a real part. 

 

So first into note here is that if the line is very lossy then the characteristic impedance is real 

but the propagation constant also is real. Of course, when the line was lossless the 

characteristic impedance was real. So the realness of characteristic impedance does not tell 



you whether line is lossy or line is lossless. In both the extreme cases, when the loss is very 

small or the when the loss is very large the characteristic impedance turns out to be L.  

 

So looking at the characteristic impedance, we will not be able to judge whether line is a very 

lossy line or the line is a lossless line. However, if I look at the propagation constant for a 

lossless line in the propagation constant gamma was purely imaginary, the alpha was equal to 

0 and we had gamma equal to j beta.  However, for a very lossy line the gamma becomes the 

real quantity that means it has only alpha and beta is equal to 0, what that means is now there 

is no phase variation in space, for whatever voltage or current variation we have on this line 

and if there is no phase variation on the transmission line then it does not represent the way of 

phenomenon. 
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So essentially in this case, when the line is very lossy this structure is not even representing a 

medium which is carrying voltage or current waves. So we have a voltage and current 

variation on this structure but these variation does not represent the way of phenomena.  So 

you have a voltage which varies now, exponentially with the attenuation constant which is 

given by square root of RG and there is no phase variation, so there is no travelling way 

which is set up on this structure. So obviously, we are not interested in this phenomena we 

are investigating the way of phenomena on transmission line. 

 



So we are essentially considering the case where this condition is not really prevalent, what 

we have is R and G, they are comparable to these 2 quantities. So R is comparable to omega 

L, G is comparable to omega C and that line then we can call as the moderately lossy line. 

Even in that case however that standing way of characteristic on transmission line change and 

we will see, how the standing way of patterns will get modified if there was a significance 

loss on transmission line. So what we have now considering that just the waves are there on 

transmission line and gamma is a general complex quantity.  

 

So alpha is not negligible compare to beta, so we have in general the propagation constant 

gamma which is alpha plus j beta. So the traveling way exponentially decase with a 

attenuation constant alpha and it has a phase constant which is beta. Once I get this, I can go 

back to my original voltage equation which I derived for a general line and then, ask in this 

condition, how the standing waves will get modified on the transmission line. So if I write 

down now the voltage on the transmission line which is again V plus e to the power gamma 

into l plus V minus e to the power minus gamma into l and if I substitute for gamma alpha 

plus j beta this is V plus e to the power alpha l, e to the power j beta l plus V minus e to the 

power minus alpha l, e to the power minus j beta l.  
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So if I look at the first from here, it is telling me that as I move towards the generator, this 

way which is the forward travelling wave, the wave going towards the load away from the 



generator exponentially goes towards the generator while in other words, as I move away 

from the generator, this wave exponentially decase. Similarly, this wave exponentially decase 

towards the generator or exponentially grows towards the load. Depending upon the value of 

V minus or and V plus are the ratio of V minus and V plus which is related to a reflection 

coefficient at the load, you may have a certain amplitude of the reflected wave compare to the 

incident wave at the load point then, the 2 way of travelling in the opposite directions grow or 

decade exponentially as we move towards the generator. 

 

So at every point now if I look at the super position of the waves first of all if there was 

certain ratio of V minus and V plus amplitude in the lossless case, this ratio was same at 

every point on line. However that is not true now because the amplitude of this wave is 

exponentially changing with e to the power minus alpha l, amplitude of this term is changing 

with e to the power plus alpha l. So ratio of the amplitude of deflected in incident wave now 

become a function of location and the transmission line. So let us say, if I draw these 

travelling waves on the transmission line, so this is my load, the l is measure towards the 

generator. They having some impedance Z l and from here, I know the reflection coefficient, 

I can calculate at the load point and if I now plot the incident wave, the incident wave of 

exponentially decades as I move towards the load. 

 

So if I plot the magnitude of the incident voltage wave that wave will be exponentially dying 

down like that. So this represents V plus e to the power alpha l depending upon the load 

value, I have a certain reflection coefficient at the load. So the value of the reflected wave 

will let us say be something this at the load point. This now exponentially dies down, as I go 

towards the generator. So this is V minus e to the power minus alpha and then, total voltage 

will be super position of these 2 at every point. So here the voltage will be this plus this in 

case something here and I can add similarly and the phase is changing.  

 

So as I move now on the transmission line towards the generator, the standing wave 

amplitude does not remain constant because this wave is becoming weaker and weaker, 

reflected wave. The incident wave is becoming stronger and stronger towards generator that 

means the reflection coefficient which is the ratio of these 2 is becoming smaller and smaller 

and if that is becoming smaller and smaller, the wave is appearing more and more like a 

travelling wave rather than a standing wave. So, if I look at the standing wave pattern on this 



line, it will it will something like this, it will start like that, like that and then the reflection is 

becoming weaker and weaker, so slowly it will merge with this line.  

 

So, if I hope close to the load I see a standing wave but as I move towards the generator the 

standing wave becomes weaker and weaker and it merges with this line which essentially 

represents a forward travelling wave. So that means even if you are having a very large miss 

match at the load end, as you move towards the generator, the mismatch becomes weaker or 

the matching improves or you see the impedance from this side which is very close to the 

characteristic impedance because you are seeing only the forward travelling wave from the 

generator. So one way of that I wonder that if I have a lossy line irrespective of what is the 

load impedance, I will always see a match from the generator side but this is not a very good 

situation because although we are seeing match from this end, the power which is supplied by 

the generator is not deliver to the load. In that substantial amount of power has been lost in 

the transmission line. 
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So in this case saying that I got a match at the input does not have much meaning because 

now, even if the load is match at the input, the power is not deliver to the load, power is lost 

in the transmission line. But, if you are interested only in getting a match towards the end of 

this line that is towards the generator and I am not too much worried about the efficient of 

power transfer, I simply want the reflection should not come and hit back the generator, may 



be that is a very very good technique. We can introduce deliberately a lossy transmission line 

between a mismatch load and a generator and even if the full power is not transfer to the load 

at least generator does not seen any reflection.  

So its characteristics do not get modify, so many times in practical work a deliberately lossy 

piece of transmission line is introduce. So that even if in experiment, you connect some 

arbitrary loads to this and even if you have very strong reflections at least these reflections 

will not go and damage the generator. So here the purpose suddenly is not maximum power 

transfer. The purpose is to protect the generator from any unwanted reflections coming from 

the load. So in that case definitely a lossy line can be used for avoiding the reflections coming 

back and hitting the generator, nevertheless if you are having now a general transmission line, 

the standing way of or going to go like this.  

 

So in general then, we can write down now the reflection coefficient. So the reflection 

coefficient now at any location l, gamma of l that will be V minus upon v plus e to the power 

minus 2 alpha l, e to the power minus j 2 beta l and as we have seen earlier at l equal to 0, the 

reflection coefficient is the reflection coefficient at the load end. So V minus upon V plus is 

the reflection coefficient at the load end. So we know V minus upon V plus that is equal to 

gamma l that is equal to z l minus z 0 divided by z l plus z 0. 

 

So the magnitude of reflection coefficient is gamma l, e to the power minus 2 alpha l or more 

gamma l, e to the power minus 2 alpha l and the phase of the reflection coefficient is minus 2 

beta l. So if I go now to the complex plain and ask, as I move towards the generator from the 

load point, what kind of curve will be traced on the complex gamma plane or if I know the 

reflection coefficient at the load end which is this. As I move towards the generator, how the 

reflection coefficient will change, one thing is immediately clear if I substitute for v minus 

upon v plus is gamma l, this reflection coefficient at any location l will be equal to gamma l.  

 

Let me write down this is magnitude of this and the phase of this will write explicitly e to the 

power minus 2 alpha l, e to the power j theta l minus 2 beta l, where theta l is the phase of the 

reflection coefficient at the load l, mode of gamma l is the magnitude of the reflection 

coefficient at the load n. So the total phase at distance l is theta l minus 2 beta l and the 

amplitude of the reflection coefficient at location l is mode gamma l, e to the power minus 2 

alpha l. So as we move towards the generator l is positive. So the amplitude of the reflection 

coefficient goes on systematically reducing.  
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So this one as we have seen earlier in the complex gamma plane, the variation of phase gives 

me a rotation in the gamma plane because the angle is reducing as I am move towards 

generator but that time lossless line, this quantity was constant because this was not there. So 

you should trace a curve which was the circle. However, now since we are having this term 

the radius of this circle is reducing continuously that means this curve now, essentially draw a 

spiral on the reflection coefficient plane.  
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So if I, if I take the switch chart which is the complex gamma plane and let us say initially, 

the point was something here that was a reflection coefficient magnitude. As I move on the 

transmission line towards the generator, I do not get a circle but I will get a curve which we 

look more like that because the radius of this is reducing continuously because of the loss of 

the transmission line. So the point as we move towards the generator comes closer and closer 

to the center of the switch chart and as we have seen earlier, in the point is closer to the 

switch chart. Let represents and impedance closer to the characteristic impedance or better 

match conditions that is what we have seen earlier. As we have, as we move towards the 

generator you get the reduction in the reflection coefficient and therefore the impedance 

appearance is more and more match.  

 

So one think, one can note here is that on a lossy transmission line, the point moves on a 

spiral as we move along the transmission line. The quantity which we have use for measuring 

the contribution of the reflected wave, all the voltage standing wave ratio which was the ratio 

of the maximum voltage to the minimum voltage on transmission line. You will see now that 

this quantity is not a very meaningful quantity because I cannot really uniquely define this 

quantity on the transmission line. If I look at now the standing way of pattern which is this 

pattern on the transmission line, if I get this voltage maximum and this voltage minimum, I 

will get one ratio, if I take this voltage maximum and this voltage minimum, I will get 

another value that means the VSWR is not uniquely define on transmission line. In fact, the 

VSWR is loss a meaning because it is no more a characteristic of the load, it also has become 

a function of the transmission line characteristic as a result now, the VSWR is a function of 

length along the transmission line.  

 

So in case of a moderately lossy line, the VSWR is not a very meaningful parameter, if the 

line was low loss, I can still say one what value I get from this and what value I will get from 

this. I can take may be mean of these 2 quantities and that is the VSWR which is in this 

region of the transmission line. If I was somewhere here I will give another value of VSWR 

and so on. So in general when we are having a moderately lossy transmission line, the VSWR 

does not serve any purpose. So we have to really go to the quantity which is the reflection 

coefficient quantity also you will note that now since, there is a loss and this function is no 

more a sinusoidal function, the separation between the 2 minima is not exactly equal to 

lambda by 2. If I get the minimum point here and if I get the next minimum here, this 

separation is different then half wavelength which we get just from the phase relationship.  



However, just as I mention these are the extreme cases where the loss is very large in practice 

most of the transmission line have a loss which is reasonably small. So we can still make an 

approximation that separation between the 2 minima is almost lambda by 2 and the VSWR is 

more or less same, at least zone wise on the transmission line. One can then ask if I have a 

moderately lossy transmission line, how do I make use of the switch chart, can I make use of 

the switch chart for impedance and other calculations then, it says yes and no. Strictly 

speaking, if you want to do the impedance calculation by using switch chart you have to draw 

the spiral unless, you draw this spiral you will not get the correct variation of the reflection 

coefficient or the impedance variation on the transmission line.  

 

However, if the loss is small we can make this spiral like a circle and apply a correction of a 

every lambda by 2 to the radius of the circle essentially what then we are saying is that 

ideally that amplitude would have reduced for the reflection coefficient which will go 

something like that. This is the mode of gamma at the function of l. So reflection coefficient 

value will reduce as I move towards the generator and this variation essentially was giving 

me the spiral, what we say is let us divide this transmission line is sections of lambda by 2.  

So this is say 0 and this is lambda by 2 this is lambda this is 3 lambda by 2 and so on and let 

us make an approximation this to this curve, a staircase approximation for every lambda by 2.  
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So I say that for this distance reflection coefficient is almost this then this lambda by 2 it 

changes to a value which is this then, 3 lambda by 2 the like that 2 lambda is like that and so 

on. So what we have done is we have now done a staircase approximation to the actual curve 

of the magnitude of the reflection coefficient. So, we are approximating now saying that 

between length 0 and lambda by 2, the reflection coefficient value is this, then after lambda 

by 2 you apply a correction which in the value to this, you change the value to this.  

 

So every lambda by 2 you apply a correction to the magnitude of the reflection coefficient or 

in other words, what we are saying is on the switch chart, let us see you take this point first 

you draw a circle, for 1 lambda by 2. If you move a distance more than lambda by 2 after 1 

lambda by 2 moment, find out what is the change in the magnitude of the reflection 

coefficient make a correction and then, move on the second circle here for next lambda by 2, 

if you have to move further on transmission line I can make a correction to this, draw a next 

circle here and so on. 

 

So every distance of lambda by 2 on transmission line, I make a correction to the magnitude 

of the reflection coefficient and then, assume that for the next distance of lambda by 2, the 

reflection coefficient remains constant, is magnitude remains constant. So this correction, if I 

call these are the correction, let us say this quantity is some delta. This delta will be to this 

quantity delta will be nothing but a reflection coefficient at the location 1 minus e to the 

power minus 2 alpha into lambda by 2. So at any location on transmission line the reflection 

coefficient will be gamma after a distance of lambda by 2 the reflection coefficient would 

change to gamma e to the power minus 2 alpha into lambda by 2. So the difference in 2, these 

2 quantities is nothing but this correction.  

 

So if we are doing calculation on transmission lines which has a length much larger than 

wavelengths, then every lambda by 2 uq of following correction to the magnitude of the 

reflection coefficient and then, essentially solve the problem. As I said earlier, if you want to 

have very accurate analysis then ideally, you have to really draw this spiral on the switch 

chart. Of course, nowadays with the help of the computer, you can even draw this spiral on 

the switch chart and can do the accurate calculation.  

 

However, if you are not using a computing tool then maybe the approximate step which I am 

mention here will be very useful in analyzing the impedance transformation characteristic on 



a lossy line. The analytical calculation of the impedances on a lossy line they are as general 

as we discussed earlier. So those impedance transformation relationship using the hyperbolic 

cosines and sin, they are applicable for the calculation of the impedances on transmission 

line. So, with this minor modification to the analysis, the switch chart can be use for 

moderately lossy transmission lines and as we saw, if the line is very lossy than its losses the 

meaning of transmission because you does not have a wave phenomenon. 
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So that line than represent to only some kind of a resistive network on which the power dies 

down as we move on the transmission line. Now let us move to the important aspect of the 

analysis of transmission line and that is the measurement of characteristic impedance of 

transmission line, up till now we are said data transmission line is there, it has characteristic 

impedance which is given to you a priority and then we proceeded and did the calculations on 

transmission lines. One can ask, if somebody has given you a transmission line, how would 

you first find out, what is the characteristic impedance and what is the propagation constant 

on transmission line.  

 

So as I mention earlier transmission line is characterized by the primary constants lg and c 

but normally for calculations of transmission line, we generally do not estimate this primary 

parameters. The secondary parameters of the characteristic impedance and the complex 

propagation constant are enough and therefore for any unknown line, we would like to 



estimate this secondary constant z 0 and gamma. So the characteristic impedance and the 

complex propagation constant. Let us say now, that I have a technique for measuring the 

input impedance which would be same as what we have discussed earlier for measuring the 

unknown impedances. 

 

So let us say, I have a set up which can measure an unknown impedance at a unknown 

frequency. Let us say, now I want to measure the characteristic impedance of a line which in 

general is a moderately lossy line or low loss line. This measurement now can be done by 

conducting what is called a short circuit and open circuit test of a section of a transmission 

line. So first what we do, we take some length of transmission line. Let us say, I have some 

length of transmission line which is l, length is l. I take one end of a transmission line and 

connect to this set up which measures the impedance. So this is the impedance measurement 

set up.  

 

So if I connect the end of this transmission line to this impedance measurement set up. It can 

measure the input impedance of this line, now what we do we conduct the 2 test, I measure 

the input impedance of this length of line by making the other end of the line short circuit and 

open circuit. So I measure 2 impedances input impedances, one with the open circuit 

condition at the other end of the line and one with the short circuit condition at the other end 

of the line. So I get 2 impedances, let us say let them denote by Z oc and Z sc.  

 

So Z oc is the input impedance measure at the input end of the transmission line when the 

other end was open circuited. As we know, this will be equal to the characteristic impedance 

cot hyperbolic of gamma l. Similarly, the input impedance when the other end of the line is 

short circuited will be given as Z 0 into tan hyperbolic of gamma l. So I got a physical length 

of the line, I can measure these impedances under the short circuit and open circuit 

conditions. 

 

Now it will be immediately clear to you that if I take product of these 2 equations, these 2 

will cancel and I will get a quantity which is Z naught square. So once I conduct the short 

circuit and open circuit test, the calculation of characteristic impedance is straight forward. 

So let us say, I multiplied these 2 and I get now, the characteristic impedance of the line Z 

naught that will be equal to square root of Z oc and Z sc. 
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So the characteristic impedance is geometric mean of the input impedance open circuited and 

input impedance of short circuited line. From the same 2 equations, if I take ratio of these 2, 

the Z 0 will cancel and I may estimate the value of the propagation constant gamma. So let us 

say short take a ratio of this upon cot h gamma l that will be equal to Z sc divided by Z oc 

and cot h gamma l is upon tan h gamma l. So this quantity tan h square gamma l that will be 

Z sc divided by Zoc or tan h gamma l is equal to square root of Z sc by Z oc. 



Now to get the value of gamma, I can first expand the hyperbolic tan and write them in the 

exponential form and then them solves for the value of gamma l. So if I write down explicitly 

that will be so the tan hyperbolic gamma l that is equal to e to the power gamma l minus e to 

the power minus gamma l divided by e to the power gamma l plus e to the power minus 

gamma l that is the quantity which is square root of Z sc upon Z oc. Just for the clarity, let me 

just call this quantity as some complex quantity A. So the tan hyperbolic gamma l which is 

equal to this is quantity and since, in general Z sc and Z oc are complex A is a complex 

quantity. I can invert this relation I can take e to the power minus gamma l common.  

 

So this term will become e to the power 2 gamma l and I can invert this from there, I can get 

e to the power 2 gamma l that will be equal to 1 plus upon 1 minus A. Let us write this 

quantity explicitly as the magnitude and phase term. So let us say, it has a magnitude R and it 

has a phase theta. So e to the power 2 gamma l which is e to the power 2 into alpha plus j beta 

l that is equal to R e to the power j theta. 
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So separating out now the phase an amplitude term, here essentially I get alpha is equal to 1 

upon 2 l, ln of R that is equal to 1 upon 2 l ln of 1 plus A upon 1 minus A. So from this 

relation if I take the real part of that e to the power 2 alpha into l, l is the length of the line 

which is now in capital l. So this quantity e to the power 2 alpha into capital l that will be 

equal to R. So now substituting for this R in this, I get the quantity alpha which is given by 



that. This has to be quantity which is magnitude because R is the magnitude of 1 plus A, 1 1 

minus A.  

 

So the attenuation constant can be calculated once you know, this value A which is related to 

the open circuit and the short circuit impedances. So we get the Z sc and Z oc square root of 

the ratio of these 2 will give me this complex quantity A. From this A, I can get this value R 

and from here then substituting into this, I get the attenuation constant of the transmission 

line. Equating the imaginary part or the phase part of the system, we get the propagation 

constant beta that is equal to 1 upon 2 l theta that is the phase of this term. However, now 

when I am equating the phase of this 2 term, there is a ambiguity of  2 parts, multiple of 2 

parts. For the value which we get for phase here is always modular 2 phi that means when I 

calculate the value of beta this could be e to the power j theta plus minus 2 m phi. 

 

So I do not have a unique answer for beta because of this ambiguity of multiples of 2 phi. So 

in general I will get the value of beta which is theta plus minus 2 m phi, where is a integer 

quantity. So if I substitute the value of theta that is from here which is the angle of 1 plus A 

upon 1 minus A then, I can calculate the value of beta but I will have a uncertainty that what 

is the value of m, how many modular 2 phi, how many multiples of 2 phi have to be removed 

from here are added to get the right value of beta.  

 

So from the short circuit and open circuit test, the calculation of attenuation constant is 

straight forward but when I go to the calculation of the phase constant, there is a ambiguity 

because of the phase which is always modular 2 phi. One may say that if I take a length of the 

line l which is less than lambda by 2 then, I know for sure that this m is equal to 0. So I do 

not have multiples of 2 phi then I have a unique value of beta and there is a correct value of 

beta. However, if I take a length of the line which is less than lambda by 2 especially at 

higher frequencies, this length of the line is very small and since attenuation is very small on 

transmission line, the alpha generally is very small.  

 

So for a small length of transmission line, the loss is not very significant as a result when you 

try to calculate the value of alpha, you do not get a very accurate number for alpha because 

over the small length of transmission line which is less than lambda by 2, the line behave 

more or less like lossless line. So the estimation of the attenuation constant become unreliable 

if I take a small length of line which is less than lambda by 2. On the other hand to improve 



the reliability of alpha if I take a long length of the cable, then certainly I have now many 

more periods of the wavelength on this length of the cable or transmission line.  

 

So alpha becomes reliable but then I have to resolve, this modular 2 phi problem in the 

measurement of the phase. So given this set up that we are measuring only the short circuit 

and open circuit impedance, we cannot resolve the ambiguity in the phase measurement or 

we cannot measure in the phase constant of transmission line reliable. So what people 

normally do in practice, they do the measurement of transmission line at 2 frequencies. First 

they do the measurement of the Z oc and Z sc and from there, they get the value of beta 

which is ambiguous with 2 m phi, then we change the frequency slowly. So that I get now 

again the same value of the phase variation and as a result now, the number of cycle which 

we have in the transmission line or just change by 1.  

 

So by changing slowly the frequency on transmission line, if I make sure that now only one 

cycle changes taken place, the m is change from m to m plus 1. I get the value of beta and 

then from here now I can subtract in the 2, I can find out what would be the correct value of 

the propagation constant beta. So by carrying out the multiple frequency observation or 2 

frequency observations of Z oc and Z sc, I can find out the phase constant accurately. So in 

practice whenever we do the measurement of the characteristic impedance that time, we have 

to do the measurement at 2 frequencies and then from there, we can get correct value of the 

estimate of beta. 

 

Let us now consider 2 frequencies F 1 and F 2 on which we carry the measurement of Z oc 

and Z sc. Let us say at frequency F 1, I get some value of Z oc and Z sc on from there I get a 

phase constant beta and let us called that quantity as beta 1 that is equal to 1 upon 2 l into 

theta minus 2 plus minus 2 m phi. Let us take the plus sign here. So this is one upon 2 l theta 

plus 2 m phi, now what we do is this slowly change the frequency and we go to a frequency 

where the Z oc and Z sc value again become same. Assuming that the length of the line is 

very large by changing the frequency by a small amount, the attenuation constant alpha does 

not change significantly.  

 

So what we have now essentially saying is, if I increase the frequency by a small amount the 

number of wavelengths which are set up on the length of the transmission line, they are 

change and if they are change by 1 cycle or 1 lambda by 2 then, the loss does not change 



significantly and that is the reason I get the same value of Z oc and Z sc. So another 

frequency f 2, I will get a propagation constant beta 2, the value of all will come same 

because by changing this frequency by small amount, the attenuation constant is not change 

but since your accommodated now, one cycle of the wave on the transmission line, this 

quantity help becomes m plus 1.  
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So the phase constant beta 2 will be theta plus 2 into m plus 1 into phi. From here now, I can 

take different of these 2 quantities and from here this term will cancels out and what I will get 

is beta 2 minus beta 1 that will be equal to phi upon l. Now we know beta 2 and beta 1, they 

are related to the velocity for the wavelength on the transmission line. So this we can write 2 

phi into f 2 divided by velocity minus 2 phi f 1 upon the velocity that is equal to phi upon l 

from here then, we can get the value of the velocity that is equal to 2 l into f 2 minus f 1 and 

the phase constant now beta will be equal to phi into f divided by l into f 2 minus f 1.  

 

So what you have done, you did the measurement at 2 frequencies which are closely space in 

such a way that by changing the frequency from f 1 to f 2, the number of cycles are section of 

the line or increase by 1. Then from there we calculate the value of the velocity on the 

structure and must we get the velocity, then we can find out the value of propagation constant 

because from velocity we can find out the wavelength and that 2 phi by l wavelength gives 

me the phase constant of the transmission line. But one could wonder at this point that why 



are we doing the estimation of the velocity on the transmission line, does not the wave of 

travel with the velocity of light on the transmission line or if you know the value of beta 

cannot you find out what is lambda m from there, we can find out what is the velocity. Infact 

the problem is exactly opposite, the problem is depending upon the structure the velocity of 

the wave changes frequency is the one which is very secret but depending upon the 

propagation characteristic velocity changes or the wavelength changes and therefore the 

phase constant changes. 
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So it is not that we know the wavelength from the velocity and we are trying to find out beta 

in fact, beta is the quantity which is the most unknown quantity. So for a given structure we 

first estimate the value of beta then 2 phi divided by beta gives me a number that we call as a 

wavelength and that wavelength multiplied by frequency that gives me, what is called the 

velocity of the way on this structure. So in practice, the measurement of the attenuation 

constant in the phase constant have to go to these steps but this is the method which you 

mention if the short circuit or open circuit measurement test, this is the most widely use test 

in practice for measuring the characteristic impedance and propagation constant of the line. 

Of course there are certain practical difficulties that whenever we try to put the open circuit 

or short circuit at higher frequencies, it is difficult to put a very good open or short circuit to 

the end of the transmission line. Even if you short the 2 conductors of a transmission line 

there will be always a some conductance at the end, if you leave the 2 end, 2 conductor open 



at the end of the transmission line, there will be a some fringing capacitance at the end of the 

transmission line.  

 

So to very higher frequency realizing and open circuit and short circuit is not the straight 

forward. So people make extra effort to develop this modules, what are called the short 

circuit modules and open circuit modules which can be connected to the end of the line to 

realize a good open or short circuit. As I mention again that getting a ideal open circuit or a 

short circuit is not very easy as we go to higher frequency. So let me summarize what we 

have done today, we discuss very briefly the characteristic of the lossy transmission line. We 

also saw how do we make use of a switch chart, when the line is moderately lossy and we 

also saw a practical method for estimating the characteristic impedance and the complex 

propagation constant of a transmission line.          

 


