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We are discussing applications of transmission lines. We saw the application of transmission line 

or measuring the unknown impedance at higher frequencies. As pointed out a higher frequency 

the measurement of phase is not very reliable. So one you would like to estimate the phase 

indirectly, without doing the direct measurement of the phase, say as we saw by using 

transmission lines just by measuring the magnitudes of the voltages on transmission lines, we 

can find the voltage standing waves, their parameters and from that we can indirectly estimate 

the phase of the unknown impedance. The another application which we have investigating, e is 

the transmission line as circuits elements. 
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We saw that if you take a section of a transmission line which is either open circuit or short 

circuit then, these sections of transmission lines can be use as a reactive element in the higher 

frequency circuits. So last time we saw the characteristics of the short circuit and open circuit 



section of transmission lines and you also saw that these sections, if the length is multiples of 

lambda by 4 then these section can be used as a resonance circuit in the higher frequencies. So 

essentially by taking a length of a transmission line which is either lambda by 4 or lambda by 2, 

we can realize a parallel or serial resonant circuit. We saw that the if the input impedance of this 

line is close to 0 then the circuit behave like a series resonant circuit, if the input impedance of 

the line is close to infinity then the line behaves like a parallel resonance circuit and once the 

circuit behave like a resonant circuit than the natural question to ask is what is the quality factor 

of the resonant circuit  and that is the thing essentially we are investigating now, let if I consider 

this section of a transmission line as a resonance circuit then what is the quality factor of this 

resonance circuit. 

 

(Refer Slide Time 02:18)  

 

 
 

As mentioned earlier, there whenever we talk about resonant circuit the quality factor is related 

to the losses in the resonant circuit. However, up till now we have consider the line to be 

lossless. So by definition for a lossless line the quality factor is always infinitive. Now since we 

are investigating the quality factor no matter, how small the loss is in the transmission line. We 

have to account for that loss then and then only we will be able to get the correct answer for the 

quality factor.  



So we investigate now, the input impedance of the transmission line, when the length is 

multiples of lambda by 4 and from there then we find out the quality factor of the resonance 

sections of transmission line have been said that let us consider, now a specific case that the 

length of the line is lambda by 4 either the line can be open circuited or short circuited. So the 

length which you call last time is LSC which is the length of a short circuited line, this length is 

now lambda by 4. Similarly, LOC is also lambda by 4, so since the length is lambda by 4 and as 

you have seen then the impedance, normalize impedance inverse itself every distance of lambda 

by 4. This open circuit will appear like a short circuit in the line, the short circuit will appear like 

a open circuit of the distance of lambda by 4.  

 

So this line, if the length is lambda by 4, will appear like a parallel resonance circuit whereas this 

if the length is lambda by 4, will appear like a series resonance circuit because the impedance 

will be very close to 0. So now you specifically we just consider the sections of transmission line 

which are having length of lambda by 4 and find out this input impedance and then, go to the 

calculation of the quality factor. In general, since we are considering loss now, the input 

impedance of the open or short circuited line has to be written in the total propagation constant 

gamma and not only the phase constant. 

 

So if you go back to your original impedance relationship, if you have derive as substitute z 

equal to either 0 or infinity depending upon whether a short circuit or open circuit, I get the input 

impedance. So this is the input impedance for a line of length L, when the line has loss. So let us 

call for a open circuit deadline, let us say this is denoted by Zoc. So that is equal to Z 0 cot 

hyperbolic of gamma L and for Z sc the short circuited line that will be z 0 tan hyperbolic of 

gamma l, where if you remember gamma is equal to alpha plus j beta, the line is low offline.  

 

So alpha is much much smaller than Beta, as we have consider earlier. When the line is Loc, the 

propagation cot and now is alpha plus j beta and it is not only j beta is still assume that the 

characteristic impedance that this line is almost real. So, although we have set now the 

propagation constant is complex it is not purely imaginary, the z 0 be still consider to be almost 

here. So now, what again we are saying is consider any of these cases, the open circuit line or a 

short circuit line and under the assumption that alpha is much much less than beta right and the 



length is either multiples of lambda by 4 or any arbitrary length find out under these 

approximation, what will be the input impedance. We know if you consider a short circuit line 

and if the length is lambda by 4, if you appeal ideal like open circuit.  

 

Similarly, if you take an open circuited line and take a length lambda by 4, the input impedance 

will be like a short circuit. However, in the presence of the loss that will not be true, so the 

impedance will neither be infinitive nor it will be 0 and that is what we are trying to calculate 

now that if, the loss is present what will be the input impedance of these 2 lines. So let us 

consider these Z sc and substitute for gamma alpha plus j beta, so from here I can get Z sc that is 

equal to X 0 tan hyperbolic of alpha plus j beta into l. I can expand this, so that will be z 0 tan 

hyperbolic alpha l plus j tan beta l divided by 1 plus tan hyperbolic alpha l j tan beta l. So, in 

general for a length of line, the input impedance, the short circuited line, the input impedance 

essentially given by this.  
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Now since alpha is small for a length of lambda by 4 section of transmission line or a length 

which is smaller than lambda by 2, this quantity alpha l is much much smaller than 1. So we 

have alpha l much much smaller than 1, for a low loss line. Once, I get this then I can make an 



approximation that tan hyperbolic alpha l will be approximately equal to alpha l, if I substitute 

that then the input impedance of a short circuited line, Z sc will be approximately equal to alpha l 

plus j tan beta l divided by 1 plus j alpha l tan beta l. 

 

Now, if the line is short circuited and if the length is lambda by 4, this l is equal to lambda by 4. 

So for l equal to lambda by 4, beta l will be 2 phi by lambda into lambda by 4 that is equal to phi 

by 2. If I substitute now, the length of the line equal to lambda by 4, this quantity will be infinity 

this quantity will be infinity. So I can take this tan beta l common, no infinity. So what will I see 

that Z sc will be equal to if I take j tan beta are common, this will be alpha l divided by j tan beta 

l plus 1 divided by 1 upon j tan beta l plus alpha l, substituting now for beta l equal to phi by 2 

that means tan beta l is infinity, this quantity will be 0, this quantity will be 0.  
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So I will get Z sc is approximately equal to 1 upon alpha l. So the input impedance of a short 

circuited line,  if the length is lambda by 4 is a short circuit, this length is lambda by 4, ideally 

for this line it should have appear open circuit at the input, these impedance Z sc. Now I do not 

see open circuit but I see an impedance which is very large because alpha l is very small quantity 

for a low loss line but this impedance is not infinity. So short circuited section of a transmission 



line of length lambda by 4 does not in practice appear open circuit but it has some impedance 

measure at the input terminal which is essentially this. 

 

Similarly, if I done the similar exercise for the Z oc and it did the expansion and all those similar 

things by done then, the input impedance of open circuited line would appear to be alpha l 

multiply by z not anyway here the you have to put z not here. So this quantity should be 

multiplied by z not, this is z not, this is z not. So doing the same exercise for the open circuit 

deadline this is lambda by 4, this is open circuit. so the impedance which we measure here, here 

is now Z oc.  
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So by doing the same exercise as we have done for the short circuit deadline the Z oc will be 

approximately equal to into alpha l. So for a short circuital section of a transmission line, the 

input impedance is z 0 divided by alpha l for a open circuited section of a transmission line, the 

impedance is z 0 multiplied by alpha l. So what we now note here is that the input impedance of 

a resonance section of a transmission line is ideally infinitive or 0 depending upon the resonance 

circuit is a series circuit or a parallel resonance circuit. However, in practice Vc, large impedance 

for a parallel resonant circuit and small impedance for a series resonance circuit, must you get 



this either I can use this information that if I very now the frequency around the resonance 

frequency, how these impedance changes from there I can get the impedance variation at the 

function of frequency or what is called frequency response of your circuit and from where I can 

calculate the quality factor of the circuit.  

 

So quality factor can be calculated in 2 ways, one is from the frequency response of the circuit. 

Secondly, it can be calculated from the basic definition of the quality factor. So let us see what is 

the quality factor by definition. So the quality factor Q is defined 2 phi multiplied by the energy 

stored in the circuit divided by the energy loss per cycle, loss per cycle. If the resonance 

frequency is f not, the energy loss per cycle is there are f not cycle per second. So I can write 

down the same expression for the quality factor as 2 phi into the resonance frequency of the 

circuit multiplied by the energy stored in the circuit divided by the energy loss per second which 

is nothing but the power loss in the circuit. So this is divided by the power loss in circuit. 

 

So to calculate the quality factor, if I find out what is the energy stored in the section of a 

transmission line. If I calculate what is the power loss in the transmission line then I can find out 

what is the quality factor of that section of a transmission line. Alternatively, as we mention that 

the quality factor is related to the frequency response. So, if I have a plot the variation of current 

or voltage, when a voltage or current sources applied to the input section of a transmission line 

and measure the 3 db bandwidth of the response, the center frequency divided by the 3 db 

bandwidth of the frequency response give you by the quality factor.  

 

So if I have a frequency response of the circuit which is for this is my impedence at the function 

of frequency, I get to a frequency response which will look typically like that depending upon 

whether I am using series or parallel resonance circuit, this will be the voltage response of the 

current response but at resonant frequency I get the maximum response and other deviate from 

the resonant frequency, the response drops. So I can measure the 3 db frequency for this response 

where the amplitude reduces to 1 over root 2 of its maximum value, if I take the amplitude 

response.  

 



So this is um the delta f which is the 3 db bandwidth then, the quality factor for the circuit is 

equal to f naught divided by delta f. So, now the quality factor can be calculated from the 

impedance calculation because the impedance can give me the frequency response. 

Alternatively, take a section of a transmission line find the voltage distribution on the 

transmission line and the current distribution on transmission line, find out what is the energy 

stored, find out what is the power loss any transmission line and use definition to calculate the 

quality factor. Let us go to this first method which is more fundamental method of calculating 

the quality factor for transmission line. 
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So let us say I consider specifically a section of a transmission line which is of lambda by 4 

length and let us say the line is short circuited. So let us take a specific case here, if the line is 

short circuited this length is lambda by 4 and since, I am not talking about the resonance 

frequency, the length cannot be lambda by 4 at all frequencies. So let us say this is having a 

specific frequency lambda 0 by 4, where lambda 0 corresponds to the wavelength of the resonant 

frequency. So this length is lambda 0 by 4, so the resonant frequency of the circuit f 0 is nothing 

but the velocity of the wave divided by the length lambda 0. 

 



Now, we can get the voltage and current expression on the transmission line with the load short 

circuited and when the load is short circuit, the reflection coefficient at the load point is minus 1 

we have seen earlier. So reflection coefficient load gamma l that is z l minus z 0 divided by z l 

plus z 0 and z l is now short circuit, so z l is 0. So that is equal to minus z 0, upon z 0 that is 

equal to minus 1. So the reflection coefficient for short circuit load is minus 1 which is saying 

that the amplitude of reflection coefficient is 1 and it has a phase change of 180 degrees. 
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We will make use of this information later when we go to the application of transmission line for 

the voltage or current stating of transformers. But at this point, once I know the reflection 

coefficient I can write down the voltage and current equation and I can find out, what is the 

variation of the voltage and current on the transmission line. Going to the basic equations of the 

voltage and current, the voltage now on the transmission line can be given as v plus e to the 

power j beta l plus v minus e to the power minus j beta l but for reflection coefficient of minus 1 

at the load, this quantity gamma l is nothing but v minus divided by v plus.  

 

So, if I substitute for v minus is equal to minus v plus the voltage on the line is essentially given 

by this. I can combine this, I can take v plus common, this is e to the power j beta l minus e to 



the power minus j beta l which is nothing but j 2 into sign of beta l. So the voltage on 

transmission line can be j 2 v plus sin of beta l, since there is nothing very special about this 

parameter v plus I can combined 2 v plus to define another quantity which is v 0. So the voltage 

magnitude on the transmission line is magnitude of v 0, some voltage multiplied by sin of beta l. 

Similarly, for the current if I substitute for the reflection coefficient equal to minus 1, the current 

on the transmission line will be given by this which again by combining these 2 terms, I will get 

a v 0 divided by z 0 multiplied by cosine of beta l. 
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So if I plot now this voltages on the line, say this is now, lambda 0 by 4 line, this is short circuit.  

So the voltage is 0 at this point because its variation is the sign of beta l. So at l equal to 0 which 

is said, if the load the voltage is 0 and when I go to a distance of lambda by 4, this quantity beta l 

becomes phi by 2 that is quantity 1. So I see the voltage which is v 0, so I get a voltage variation 

which is a 1 cycle variation from lower point to the input point. So this voltage here is v 0 and 

this is, this point is 0. So this is the variation of magnitude of magnitude of voltage on the 

transmission line. Similarly, if I plot the current the current has a variation which is cosine 

variation.  

 



So it l equal to 0, this quantity is v 0 up on z naught and when l is lambda by 4 that time this 

quantity will be 0. So I will get a current variation which will go like that, so this is mode of v 

plus divided, this length is lambda 0 bar 4. So I know now on the section of the transmission line, 

the voltage and current variation and once, I know the voltage and current variation then I can 

find out what is the capacity when inductive energy stored at different locations on transmission 

lines. So if I take a small section of transmission line, the capacitance of the small section of 

transmission line is c multiplied by the length of the line bl, as we discussed in the very first 

lecture that for a small section of a transmission line, we define the capacitance as the 

capacitance per unit length multiplied by the length of the section of the transmission line.  
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So for a section of the transmission line of length dl, the capacitance is c into dl. So the 

capacitive energy stored in the section of a transmission line is half c into dl into the voltage 

square at their location. Similarly, I can get the inductive energy look it in the infinitive section 

of a transmission line. So once I get that the total energy stored in the transmission line can be 

written as, so this is the total energy stored, let us called that u that will be equal to half c, total 

energy will be the integrated version over the length of the line.  

 



So this is from 0 to lambda 0 bar 4 mod of v into l square into dl plus half l integral 0 to lambda, 

so again it is lambda 0 by 4 mod I of l square into dl, substituting for voltage and current, this is 

sign of beta l this is cos of beta l, this is half into c integral 0 to lambda 0 by 4, mod of v 0, sin 

beta l square dl plus half l integral 0 to lambda 0 by 4, v 0 upon z not cos of beta l square into dl. 

The integrals are very straight forward, you can calculate the value of these integrals and that 

will be equal to 1 upon 4, c v naught square into lambda 0 by 4 plus 1 upon 4, L v naught square 

upon z naught square into lambda 0 by 4. Now since z naught, we know is square root of L upon 

c, the quantity L upon z naught square, this quantity is nothing but c. So, what you find is that 

these 2 terms are equal, what does means is that the energy stored in this resonant circuit is 

equally distributed into the capacity energy and the inductive energy. 
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So this step is represented the energy stored in the inductance of the line, this term shows the 

energy stored in the capacitance of the line and from here, we see these 2 quantities are equal 

that means the energy stored in the inductance and capacitance of line or equal. If I substitute for 

this then the total energy stored will be nothing but twice of this term, what twice of this term 

because these 2 terms are equal. So I get the total energy stored now u that is equal to half into c 

v naught square to lambda divide by 4, lambda 0 divided by 4. This is the total energy stored in 



the transmission line. For calculation of the quality factor now we require, the power loss in the 

transmission line. One way of doing that is again, you go to the primary parameters that the 

resistance and the conductance of transmission line and get the voltage and current on the 

transmission line again integrated to the transmission line, to find out the I square R losses, but 

we can do something different here to get the loss and that is if I take a section of its transmission 

line here, the energy sources is connected to the line here, see if I find out that what is power loss 

at this location, this power loss will be nothing but the power loss in this line because the line is 

short circuited to the other end that means the load is not consuming any power, see by at all that 

any power is supply to this.  

 

This power will be only equal to the loss which are taken place inside the section of this line. So 

without going into the primary constant of transmission line just by calculating the input 

impedance of this line, we can find out what will be the equivalent resistance to be the power is 

supplied and from there we can calculate the loss of power in this section of transmission line. 

Precisely, this is what we do now, so we say that since the line is short circuited though input 

impedance which will seen here will be Z 0 divided by alpha L.  

 

So the input impedance of this line, you are seen earlier this is Z sc is approximately equal to Z 0 

divided by alpha into l, where l is equal to lambda 0 by 4. So, now the power loss in the 

transmission line, say we call it P loss that will be equal to V naught square but that is the 

voltage which you are seeing at the input terminals here. So it is as you I am having a voltage 

source of V naught here which is supplying power to a resistance whose value is this. So, I get 

the power loss which is V naught square divided by the R which is Z naught divided by alpha l.  

 

So this is equal to here v 0 square divided by z naught into alpha into L which is equal to lambda 

0 by 4 in this case, this is lambda 0 by 4. Once, I know the energy stored in the circuit at the 

power loss in the circuit then, I can get in the quality factor Q that is equal to 2 phi into f 0 into 

energy stored in the circuit. So this is half c, V naught square lambda 0 by 4, V 0 square upon Z 

naught alpha into lambda 0 bar 4. 
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So this quantity cancels V 0 square cancels, so essentially we get this equal to 2 phi f 0, z 0 C 

divided by 2 alpha. Now we can do some small manipulation because you know this Z 0 C 

square root divided by C if I write this quantity here Z 0 into C, so Z 0 into C will be square root 

of L upon C into C that is equal to square root of LC and the quantity here 2 phi into f naught is 

nothing but omega. So the numerator now in the quality factor Q is omega square root LC 

divided by 2 alpha, where omega is nothing but 2 phi into the frequency. Now if you were called 

this quantity omega square root LC is nothing but the phase constant of the transmission line 

beta.  

 

So this quality factor Q is beta divided by 2 alpha, same expression you can obtain as I 

mentioned by finding out the frequency response of the section of a transmission lines. So if I 

measure the impedance and measure the variation of the impedance as a function of frequency, I 

can find out the cdb bandwidth of the circuit and then from their using the definition that the 

quality factor is the resonant frequency divide by the 3 db bandwidth, I will get the same 

expression for the quality factor. So now the quality factor is now related to the phase and the 

amplitude constant or the phase and attenuation constant of the transmission line and for a low 

loss line, since beta is much much larger than alpha, this quantity is very large. 
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So for low loss line beta is much much greater than alpha, so Q is much much greater than 1, on 

thus a very useful property that when you go to high frequency, a section of a transmission line 

can really give me a very high quality factor circuit and since, as you mention the quality factor 

is relatively to the 3 db bandwidth higher the quality factor, smaller is the 3 db bandwidth or 

more tune in the circuit is. So the frequency selectivity of a circuit is very good, if the quality 

factor of the circuit is very large.  

 

So for a low loss section of a transmission lines in the quality factor is large and typically, you 

can get of few 100 mega, the quality factor could be as higher as few 100 or 1000, you can really 

get a very good frequency selectivity by the sections of transmission lines used as a resonant 

circuit that is the reason when we go to the high frequencies, the sections of transmission lines  

serve very good purpose for realization of the resonant circuits. So this is one of the very 

important application of transmission line that is in the high frequency circuit. The next 

application of the transmission line is the voltage or current stepping up transformer.  

 

So third application which we have here is voltage or current, step up transformer. Let us again 

consider a quarter wavelength section of a transmission line which is shorted at one end and open 



circuited other. So let us say, I have a line and let me draw little big a picture here. So this is 

short circuited, this end of the line is open circuited and this length is lambda by 4. Let us say, by 

some means, some voltage is induce on some point on this section of transmission line.  

 

So let us say at some location here some voltage is induced, if I consider a voltage source 

connected to this at this location, it will see as if there are 2 sections of transmission line 

connected in parallel, this section and this section. Now since, the standing way of still or not set 

up and just voltage just getting induce inside a transmission line, this voltage does not see any 

other impedance but the characteristic impedance of the line. So as soon as the voltage tries to 

get induce inside this structure is sends 2 traveling waves on both sides of the cannon 

transmission line because it will see as if, the energy supply to the characteristic impedance on 

this 2 transmission line.  

 

So essentially 2 equal amplitude waves or send from this location. This way of travels up to this 

point, when it reaches here, this waves see the short circuit that means you see the reflection 

coefficient of minus 1. So this wave here is reflected completely from here with a reflection 

coefficient of minus 1 that is magnitude is unity and the phase is 180 degrees. So here, I have a 

reflection coefficient  gamma that is equal to minus 1, say it is equal to 1 angle prime. So this 

way which was traveling here right words after reflection undergo the phase change of phi, this 

way now traverse all the way up to open circuit, I am considering only this way, say it wave 

comes here it get reflected from the short circuit point travels all the way up to the open circuit 

point. At the open circuit again the again the reflection coefficient is plus 1, its magnitude is 1 is 

angle is 0.  

 

So again the entire wave from here get reflected with no phase change and it reaches to this 

location. So by the time this wave has travel a round trip from here to here, it has traveled a 

distance of lambda by 2 and has gone in additional phase change of phi because of this reflection 

co-efficient here. Now a distance travel of lambda by 2 corresponds to a phase change of phi plus 

a phase change of phi which is taking place because of the reflection coefficient here. 

 

So this wave which travels a round trip and reaches here has under gone a phase change of 2 phi  



that means the wave which is getting induce at that this location, C is now a phase which is of 

the wave which is reflected, same as the wave which is getting excited. In other words, it is some 

kind of a positive feedback which is going on now. The induce voltage and the voltage which is 

gone on these after round drift, they add up. So the 2 voltages together now start travelling on 

this, when the again come after round trip, it is again in phase.  

 

So the induce voltage again add through this voltage, so the voltage essentially starts growing on 

the transmission line, exactly same thing happens to this wave also. This wave will go like that 

after reflection from here, it will not undergo any phase change but the entire r will be reflected. 

It will travel a distance of lambda by 2, this will against your reflection coefficient of minus 1 

here. So this wave also will have a regenerative process, so this wave will grow in a amplitude, 

this wave will grow in amplitude exactly same wave and the standing wave of this line will grow 

because the 2 waves are equal in amplitude and they are going exactly the same way.  

 

 (Refer Slide Time 43:10)  

 

 
 

So we will develop the fully standing way of this line because of the small induce voltage at this 

location, one way wonder than how for this going of the wave will go on. In fact if there are no 

losses in the transmission line, this growth of the wave will grow up to infinitive. So the voltage 



will go on growing for a infinite amplitudes because that is no controlling parameter on the 

transmission line. 

 

So even if a small voltage is induce on a transmission line was some stay coupling or something 

and if the section of transmission line is resonant then, the voltage which you see on this 

transmission line is now much much larger compare to the induce volt because of this 

regenerative feedback. So this process, now can be use for your advantage that the voltage which 

you measure on transmission line could be much larger compare to the coupling voltage at this 

location or in other words, this resonant section of a line can be use as the voltage stepping of 

transformer. Precisely, this application we are talking about take a voltage source which is a 

small source which is connect to this resonant section of a line and if I measure the voltage on 

the open circuit of the line, this voltage much much larger compare to the coupling voltage on 

the line.  

 

So if there is no loss of the transmission lint ultimately in the steady state, the voltage will reach 

to infinity between the terminals of the line. However, in practice it does not happen because 

when the voltage and current starts going on the transmission line, the ohmic losses also go on 

increasing and when the loss in the line because of the resistance and the conductance becomes 

equal to the energy supplied by the coupling source at that point that is the energy balance now  

and the growth of the standing wave on this section stops. But before this stage reaches the 

voltage as in currents already reach to a substantially large value.  

 

So even in practice, when the losses of the transmission line are small one may generate very 

large voltage is in currents, voltage here and the current here, by a small coupling source 

connected to the section of a transmission line. So this application is the useful application 

whenever, we want to step up the voltages and currents at higher frequencies, one can show that 

the voltage which is going to grow that is related to the quality factor of the transmission line.  

So again the higher quality factor means low losses on transmission line and that will give me 

the higher voltage on the turbulence of the transmission line. The phenomena which can be use 

for your advantage, for steeping up the voltages are current could be harmful also in many cases. 

Consider an application, where a small energy source gets unwillingly coupled to the section of 



transmission line and if the section of transmission line is of resonant length then, the voltages 

which will develop on this line will be much larger which your electronic circuit can handle.  

 

So any small coupling of the energy to a resonant  session of transmission line, may 

unknowingly develop the voltages which will be much larger compare to what a circuit can 

handle and it is possible that your electronic and circuit can get damage because there are very 

large voltages which are developed here. So while doing the design of the high frequency circuit 

you should be kept in mind that no forces get coupled to the sections of transmission line, 

especially if there of resonant length. Otherwise you will unknowingly, you will be developing 

very large voltages at some locations right in the circuit which might be a harmful to the 

electronics which are employed with high frequency. 

 

So the phenomena of stating a voltage as in current could act as a later end, when unknowing 

voltage sources or current source get coupled to the section of whereas in transmission line. 

These are certain applications now which are for designing the higher frequency circuits and as I 

mention earlier, the sections of transmission lines are use for high frequency circuit designs.  

 

So whenever, we have high frequency circuit design especially a micro of frequencies, we rarely 

see the components like capacitances and inductances, what we see are the active devices like 

transistor effects and the reactive components are completely realize by the sections of 

transmission lines. So most of the microwave circuits will appear as some arbitrary sections of 

transmission lines connected here and there across the active devices. So the sections of 

transmission line play a very important role in the design of the higher frequency circuits.                                

 


