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Lecture - 39 

Vector Quantization 
 

We have studied different schemes for quantization. In all these schemes, the source 

outputs are quantized individually, that is they are treated as scalar values. And therefore, 

all this schemes fall under the category of what is known as scalar quantization. Earlier 

during our study on source encoding we had shown that by grouping the source outputs 

in blocks, and encoding them as a single block we could design efficient encoder in the 

sense that the rate of the encoder approach, the lower bound provided by the entropy of 

the source. Now, in a similar fashion we can extend this strategy to the case of 

quantization.  

We can group the source output together and then quantize them, in a single block by 

doing. So, the performance of such a block quantizer will be better than the performance 

of a scalar quantizer, in the sense that given the rate the distortion obtained from such a 

block quantizer would be lesser than the distortion obtained from the equivalent scalar 

quantizer or given the distortion the rate for such a block quantizer will be lower than 

that obtained from the equivalent scalar quantizer. Now, this technique of block 

quantization is popularly known as vector quantization the figure here depicts. 
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The operation of a vector quantizer, a vector quantizer is composed of two operations the 

first is the encoder and the second is the decoder. The first step in vector quantization is 

to group the source output into blocks of vectors. For example, we can treat k 

consecutive samples of speech as the components of an k dimensional vector, this vector 

of source outputs form the input to the vector quantizer, at both the encoder and decoder 

of the vector quantizer, we have a set of k dimensional vectors. This set is called the code 

book of the vector quantizer, and the vectors in this code book are named as code vectors 

or code words.  

And this code words of code vectors are selected to be representative of the vectors, we 

generate from the source output, each code vector or code word is assigned a binary 

index. The next step in vector quantization is performed by the search engine, the task of 

the search engine is to take an input vector, and compare it to each code vector in order 

to find the code vector, which is closest to the input vector. In this case the closeness is 

found by evaluating the Euclidean distance between the input vector, and each code 

vector or code word of the code book.  

The elements of this code word are the quantized values of the source input. Once, the 

closest code word is found the index of that code word is sent through a channel, the 

channel could be a computer storage or a communication channel and so on. When the 

encoder receives the index of the code word and because the decoder has the exactly 



code book as that exists in the encoder, it replaces the index with the associated code 

word.  

In a vector quantizer the encoder has to perform of considerable amount of computation 

in order to find the closest code word to the vector of source outputs, but the decoder is 

very simple in the form of a table lookup. Therefore, vector quantization is a very 

attractive encoding scheme for applications, in which the resources available for 

decoding are considerably less than the resources available for encoding.  

Now, there are two important issues related to vector quantization and this are how is the 

code book designed and how does the search engine work. Before we make an attempt to 

answer this question let us briefly discuss, the terminologies associated with vector 

quantization. As usual the amount of compression will be described in terms of the rate. 
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And this rate is measured in bits per sample, let us assume that we have a code book of 

size N, which implies that there are N code vectors of code words. Let their input vector 

be of dimension k, let us also assume fixed rate binary coding. Now, in order to inform 

the decoder of which code word was selected, we need to use log to the base 2 of N, 

the symbol denotes the rounding off to the next largest integer. 



So, for example if the code book contains 512 code words, we need 9 bits to specify 

which of the 512 code words has been selected at the encoder. The number of bits per 

input vector of k dimension is therefore, log 2 N bits.  
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Now, since each code word contains the reconstruction values for k source output 

samples, the number of bits per sample would be log 2 N by k, therefore the rate for an n 

k dimensional vector quantizer with a code book of size n is given by this expression. 

Now, as stated earlier too the measure of closeness, which we will use is the Euclidean 

distance. So, we compute the Euclidean distance between the input vector and the code 

vector.  

So, when we say that a code book C containing the N code words c j, the input vector x 

is closest to code word c i we mean that Euclidean distance between x and c i is less than 

equal to the Euclidean distance between x and c j, for all c i belonging to the code book 

c, where x is the input vector of dimension k. And norm is defined as summation x n 

square where n equal to 1 to k.  



(Refer Slide Time: 12:53) 

  

Now it is possible to show theoretically, that for a given rate utilization of vector 

quantization provides a lower distortion, that is mean squared error than scalar 

quantization. Now, without going into the mathematical proof of the statement, let us get 

a feel of the advantages of vector quantization over scalar quantization with the help of 

few examples.  
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So, let us consider example one, where a source generate the height and weight of 

individuals, let us also assume that height is uniformly distributed between 40 and 80 



inches. And weight has uniform P D F between 40 and 240 pounds. Now, we have been 

told that we have total 6 bits to allocate for the quantization of both height and weight of 

an individual. So, let us allocate 3 bits to quantization for height and 3 bits to 

quantization for weight.  
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So, in this case height with the range between 40 to 80 inches and 3 bits of quantization 

will give us 8 intervals with the step size of 5 inches. So, the reconstruction levels are 

indicated here similarly, for weight with the range between 40 to 240 pounds and 3 bits 

of quantization will give us step size of 25 pounds and the reconstruction levels as shown 

here. Now, this is what we get when we quantize height and weight individually, this are 

the individual reconstruction levels. Now, let us examine the same problem in two 

dimensions. Now, this can be visualized by plotting the height values along the x axis 

and the weight values along the y axis, and the two dimensional representations of this 

two quantizers is shown here. 
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It is very critical to realize that in this representation, we are not changing anything in the 

earlier quantization process. The height values are still being quantized to the same 8 

different values and so is the case with weight values. What this figure indicates is that 

we effectively have a quantizer output for a person, who is 78 inches that is 6 feet and 6 

inches tall and weighs 40 pounds.  

As well as a quantization output for a person whose height is 44 inches, but weighs more 

than 200 pounds. Now, in a practical scenario with a very high probability obviously, 

this outputs will never be used and this would be the case for many of the other outputs 

in this representation. So, what would be a reasonable approach in which to use this 

quantizer, the answer to this is provided by a solution shown here. 
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This quantizer has exactly the same number of output points as the quantizer shown 

earlier, the difference between this quantizer and this is that in this case, the output points 

are clustered in the region occupied by the input. Now, using this quantization strategy it 

is no more possible to quantize the height and weight individually, height and weight are 

considered as the coordinate of a point in 2 dimensional space, in order to obtain the 

closest quantizer output point.  

All this points are code vectors of code words of a code book of size N equal to 64 

because there are 64 points out here. Now, how this code book itself is obtained will be 

discussed shortly. Now, let us take another example from image compression 

application, it turns out that vector quantization is a powerful method for lossy 

compression of data such has sounds, or images because a vector representation often 

occupies only small fraction of their vector spaces, we can illustrate this distribution in 

the case of a simple representation of a grey scale image in a 2 D vector space. 
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If we have an image of a particular size and we have the pixels in this image located as 

follows, then we could compose vectors by taking in pairs the values of adjacent pixels. 

So, if we scan from left tom right top to bottom and take pairs, we can form vectors. 

Now, if we assume that the input image has 256 shades of grey then we can visualize the 

vector space as the 0 0 255 255 square in the plane. Now, strictly speaking quantization 

is the process of approximating continuous values with discrete values.  

However, in practice the input values to the quantization process are often also discrete, 

but with much finer resolution then that of the output values. And the example of this is a 

grey scale image under discussion. So, we can take two components of the vector as x y 

coordinates and plot a dot for each vector found in the input image.  
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Now, the figure on my right shows the result of this procedure applied to a grey scale 

version of the famous Lena image, this is a traditional benchmark for image compression 

algorithms. So, if we consider this image and form vectors by taking in pairs the values 

of the adjacent pixels, then this is the plot which we will get. The diagonal line along 

which the density of the input vector is concentrated is the y equal to x line, the reason 

for this clustering is that Lena like most photographic images consist predominantly of 

smooth gradients.  

So, adjacent pixels from a smooth gradient will have similar values, and the 

corresponding dot on the diagram is close to the y equal to x line. The areas on the 

diagram which would represent abrupt, intensity changes from one pixel to the next are 

sparsely populated. Now, if we decide to reduce this image to 2 bits per pixel via a scalar 

quantization, this would mean reducing the pixels to four possible values. Now, if we 

interpret this as vector quantization on the 2 dimensional vector distribution diagram, 

then we get a picture shown here. 
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The big red dots on the figure represent the 16 evenly spaced possible values of pairs of 

pixels. Every pair from the input image would be mapped to one of these dots during the 

quantization. The red lines delimit the zones of influence of they form cells of the 

vectors, all vectors inside a cell would get quantized to the same code word vector. Now, 

it is easy to see why this quantization is very inefficient.  

Two of the cells are completely empty and four other cells are very sparsely populated, 

the code book vectors in the 6 adjacent cells to the y equal to x diagonal are shifted away 

from the density maxima in their cells, which means that the average quantization error 

in this cells will be unnecessarily high. Therefore, in other words 6 of the possible of the 

16 possible pairs of pixel values are wasted, 6 more are not used efficiently and only 4 

are ok. 

Now, let us perform an equivalent vector quantization for this example. So, instead of 2 

bits per pixel we will allocate 4 bits per 2 dimensional vector, but now we can take the 

freedom to place the 16 vectors indicated by the red dots of the code book anywhere, in 

the diagram. Now, in order to minimize the mean quantization error we will place all this 

vectors of code vectors inside the dense cloud around the y equal to x diagonal. So, if 

you do that figure here shows how things look vector quantization. As in the earlier 

figure the code book vectors are represented as big red dots, and the red lines delimit the 

zones of influence.  



This partitioning of a vector space into cells around a predetermined set of spatial 

vectors, which are called code vectors or code words, such that for all vectors inside a 

cell, the same spatial vector is closest to them. And this is called a Voronoi diagram and 

the cells are called Voronoi cells, you can see that in the case of vector quantization the 

cells are smaller where it matters the most that is the quantization, introduces small 

errors. And it is in the areas of the vector space where the input vectors are dense. No 

code book vectors are wasted on unpopulated regions, and inside each cell the code book 

vector is optimally spaced with regard to the local input vector density. 

Now, when you go to higher dimensions for example, taking 4 pixels of vectors instead 

of pairs better quantization gets more, and more efficient up to a certain point. Now, the 

question is how to determine the optimal vector size for a given set of input data. Now, 

this is a rather complicated question beyond the scope of this class, but basically to 

answer it you need to study the auto look correlation properties of the data. It suffices to 

say that for the images of the time encountered in practice, 4 is good choice for the 

vector size. For other applications such as voice compression vector of sizes of 40 to 50 

are used.  

Now, both this examples demonstrate that in vector quantization, the statistical structure 

of the source output is exploited by locating the code words in the dense regions of the 

source output. That is where the source outputs are likely to congregate, from this figure 

it is also noted that the quantization regions have changed. The decision boundaries 

between the reconstruction levels can no longer be described as easily as in the case for 

the scalar quantization. However, if we know the distortion measure simply knowing the 

output points gives us sufficient information to implement the quantization process. So, 

in this case instead of defining the quantization rule, in terms of the decision boundaries 

we can define the quantization rules as follows. 
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Q of x is equal to c i if and only if distance between x, and c i is less than distance 

between x and c j for all j not equal to i. And the quantization regions that is what noise 

cells denote by V i can be defined as consisting of all those source output vectors, such 

that distance between x and c i is less than the distance between x and c j, for all j not 

equal to i, when we group the source output in 2 D case as in the example discussed, we 

might be able to obtain a good code book design by plotting a representative set of 

source output points, and then visually locate where the quantizer output point should be. 

However, this approach to code book design breaks down when we design higher 

dimensional letter quantizers. 

For example, design the code book for a 32 dimensional quantizer obviously, a visual 

placement will not work in such a case and we need in a algorithm for locating, where 

the source outputs are clustered. Now, this is a familiar problem in the field of pattern 

recognition and therefore, the most popular approach to designing vector quantizer is a 

clustering procedure known as the k men’s algorithm, which was developed for pattern 

recognition applications.  
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The k men algorithm works as follows. Given a large set of output vectors from the 

source known as the training set, and an initial set of N representative pattern, assign 

each element of the training set to the closest representative pattern, after a element is 

assigned the representative pattern is updated by computing the centroid of the training 

set vectors assigned to it. When this assignment process is complete, we will have N 

group of vectors clustered around each of the output points. Now, let us look into a 

formal mathematical formulation of the vector quantization problem. 
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Vector quantization design problem can be stated as follows. Given a vector source with 

its statistical properties known, given a distortion measure, and given the number of code 

words of code vectors obtain a code book and a partition which result in the smallest 

average distortion. 
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So, let us assume a training sequence consisting of M source vectors as follows. Now, 

this training sequence can be obtained from some large database. For example, if the 

source is a p signal, then the training sequence can be obtained by recording several long 

telephone conversations. For example, if the source is the p signal then the training 

sequence can be obtained by recording server long telephone conversations. Now, let us 

assume that M is a sufficiently large so that all the statistical properties of the source are 

captured by the training sequence. Also always assume that the source vectors are k 

dimensional. So, each of the source vector is k dimensional. 
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Let N be the number of code words and let C denote the set consisting of different code 

vectors of code word. So, C represents the code book. Now, each code vector is k 

dimensional given as shown here, and let S n be the encoding region associated with 

code vector C n. And let P be the set consisting of this encoding regions, it denotes the 

partition of the space and in fact S n is the Vornoi cell. 
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Now, if the source vector X m is the encoding region S n the, it is approximation denoted 

by Q X  m is C n mathematically means this. Now, assuming a squared error distortion 



measure the average distortion is given by this expression where the norm has been 

defined is the Euclidian norm. So, given this the design problem can be succinctly, stated 

as follows, given a training sequence and the size of the code book. 

(Refer Slide Time: 38:19) 

 

That is N find the code book that is set C, and the partition P such that average distortion 

is minimized as an example.  
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For 2 dimension case given the green dots in the form of training sequence, and the size 

of the code book that is N, we need to find the code book that is the code vectors of the 



code words denoted by the red asterisks, and the partition P where the boundaries of the 

Vornoi’s cell of this partition are denoted by the blue lines. Now, this code book and 

partition P, which we obtain as a solution to this problem had to satisfy certain optimality 

criteria. 
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So, if C and P are a solution to the stated minimization problem then it must satisfy, the 

following 2 criteria. The first criteria if of nearest neighbor condition given by this 

explanation, what this condition states is that the encoding region S n should consist of 

all vectors that are closer to C n, then any of the code vectors. For those vectors lying on 

the boundary any of the tie breaking procedure will do, the second condition that should 

be satisfied. 
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Is of centroid condition given by this expression, this condition states that the code 

vector C n, should be average of all those training vectors, that are in the encoding region 

S n. Now, in implementation what one should ensure that at least one training vector 

belongs to each encoding region so that the denominator in this equation is never 0. 

Now, having discussed the mathematical formulation of vector quantization design 

problem, let us look at algorithm which provides the solution to this problem. And the 

most popular is the one given by Linde, Buso and Gray.  
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This algorithm appeared I triple E transaction on communication in January 1980 Linde, 

Buso and Gray have first discussed a generic algorithm, which requires evaluation of 

multidimensional integrals to compute the distortions and centroid over odd shaped 

regions in k dimension, where k is dimension of the input vector. Now, generally this 

integrals are extremely difficult to evaluate and therefore, this algorithm is only of 

academic interest. Now, Linde, Buso and Gray in the same paper have discussed another 

algorithm, which is of practical interest for the case where a training set is available and 

this algorithm very much resembles the k men’s algorithm. So, let us discuss this popular 

algorithm, which is known as L B G B Q design algorithm. 
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This algorithm is an iterative algorithm, which alternatively solves the two stated 

optimality criteria. This algorithm requires an initial code book, and this initial code 

book is obtained by the splitting method. In this splitting method an initial code vector is 

set as the average of the entire training sequence, and then this code vector is split into 

two. 
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Now, the iterative algorithm is run with this two vectors as the initial code book and then 

the final two code vectors are splitted into four, and the process is repeated until the 

desired number of code vectors is obtained. Now, the details of the algorithms follow we 

have been given the training sequence. 

(Refer Slide Time: 43:24) 

 

We fix an epsilon which is greater than 0 to be a small number to start with let us assume 

that the code book size is 1. So, we set N equal to 1 and for this code book the only 



optimal code vector which is denoted by C 1 star is obtained by the average of the 

complete training set.  

Now, if the code book size was of one we would have stopped at this point, but this 

would be a very gross approximation of the complete training set. And in this case the 

average distortion would be given by this expression. So, let us assume that the code 

book size required is larger than 1. So, the next step is to obtain a code book and 

partition for code book size 2, and in order to do this we require two initial code vectors, 

and this is obtained by the splitting procedure. 
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And the splitting procedure is indicated here now to start with our N is equal to 1 

therefore, i is equal to 1 and we split the earlier code word that is C 1 start into two initial 

code vectors given by C 1 0 equal to 1 plus epsilon C 1 start and C 2 0 equal to 1 minus 

epsilon C 1 start. For our discussion we will read this quantities as C i 0 C i star or C N 

plus i 0.  

Now, we have two initial code vectors in this code book therefore, a size of the code 

book has increased to 2. So, N is equal to 2. Now, if the next step is tom obtain the 

optimum code book and partition for the code book size 2, and this is done by moving it 

over to the next step of iteration. So, we first set the average distortion 0 that is initial 

average distortion as the average distortion obtained in the last step. 
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And set the iteration index i equal to 0. Now, there are 6 sub steps in this step and the 

first sub step is given here. Now, this sub step divides the complete training set into 2 

groups using the following strategy. So, in principle it assigns each source output vector 

in the training set to one of the initial code vector, and at the end of this sub step all the 

source output vectors, in the training set are assigned to one of the two initial code 

vectors. The next sub step would be to obtain the updated code vectors that is C 1 1 and 

C 2 1 given by this expression.  
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Next, we set the iteration index to i equal to 1 and this step we calculate the average 

distortion given by D average i using this expression, where we use the updated code 

vectors C 1 1 and C 2 1. Now, it is expected that this average distortion will be less than 

the average distortion, which we got in the earlier iteration and so we calculate the 

difference between the current distortion and the earlier distortion. 

And form this ratio and compare this ratio to some small delta greater than 0. If this 

quantity is greater than delta it implies that we need some more refinements. So, we go 

to step one where we again divide the complete training set into two groups, but this time 

using the updated code vectors C 1 1 and C 2 1 at the end of this sub step, we again get 

the updated code vector C 1 2 C 2 2.  
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And then average distortion at the step number 2 will be given by this expression, where 

we use the updated code vectors C 1 2 and C 2 2, again calculate this ratio. Now, if this 

ratio is less than delta we come out of the loop, which implies that we have obtained the 

optimum code book and partition for the code book size of 2. At this stage we set the 

final average distortion indicated by D average star equal to average distortion at the i th 

interation. That is the one which we had calculated just before existing that is the one 

which we had calculated just before exiting the loop at step number 5.  

And similarly, we set the final code words C n start equal to the calculated or updated 

code vectors, which existed before exiting out of the loop at step number 5. Now, if the 



code book size was 2 we would stop at this, but if the code book size was larger than 2 

then we would go to design an optimum code book. And partition for code book size of 4 

which requires that we have 4 initial code vectors, and to get those 4 initial code vectors. 
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We go this step of splitting, where now your N has become 2. So, for i equal to 1 to 2 we 

have to compute this. So, we get C 1 0 as 1 plus epsilon C 1 star C 3 0 equal to 1 minus 

epsilon C 1 star and C 2 0 equal to 1 plus epsilon C 2 start, and C 4 0 equal to 1 minus 

epsilon C 2 start. So, we have now 4 initial code vectors and using these 4 initial code 

vectors we have to get the optimum code book, and partition for code book size 4 and to 

get that we again move over to the step number 4, that is iteration and once more we go 

through this 6 sub steps under the iteration steps. And this way we repeat steps 3 and 4. 



(Refer Slide Time: 51:33) 

 

Until the desired number of code vectors is obtained.  
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So, as an example for the case of two dimension, finally we will obtain the code book in 

the form code words or code vectors indicated by the red asterisk, and Vornoi regions 

whose boundaries are indicated by the blue lines. So, in summary vector quantization is a 

multidimensional approach to quantization, and from this perspective scalar quantization 

restricts the output points of the quantizer to rectangular regions, but by observing source 

output samples in terms of vectors of some length k, it provides the flexibility to locate 



or to place the output points of the quantizer in appropriate positions in the k dimensional 

space. 

Now, the three important issues which are related to the performance of the vector 

quantizer are code book design, the algorithm used by the search engine to find the 

closest match between the input vector, and the code vector in the code book. And 

finally, the statistical characteristic of the input vector itself. Now, in the literature there 

are many variants of vector quantizer, which have been discussed and which address this 

issues which I just mentioned, and one such reference is shown here. 
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This is a reference by Nasrabadi and King which appeared in i triple E transaction on 

communications, and this reference discuss some of the basics of different variance of 

vector quantization. Now, in the next class we will discuss another block quantization 

technique in which the output source vector is decomposed or transformed into 

components that are then coded according to the individual characteristics. We will 

discuss the issues of quantization and coding of these transformed coefficients. 


