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Lecture - 37 

Compounded Quantization 
 

We have looked into the design and performance of both uniform and non uniform P D F 

optimized quantizer that is Lloyd max quantizer. In the case of uniform quantizer, we 

have seen that the decision boundaries, or the boundary values and the reconstruction 

levels are equally spaced. The size of the quantization interval is the same. However, in 

the case of non uniform P D F optimized quantizer that is Lloyd max quantizer, both the 

decision boundaries and the reconstruction levels are unequally spaced. The quantization 

interval is smaller in those regions that have more probability.  

Mass implementation of a non uniform P D F optimized quantizer is much more difficult 

than a uniform quantizer, but mean square quantization error is lesser in the case of a non 

uniform P D F optimized quantizer compared to uniform quantizer. There is another 

approach to achieve the similar beneficial region of lesser mean squared quantization 

error of a non-uniform quantizer.  

Instead of making the quantization interval small, we could make the region in which the 

input lies with high probability large. We could expand or stretch the region in which the 

input lands with high probability in proportion to the probability with which the input 

lands in the high probability region. This is the main idea behind compounded 

quantization. The compounded quantization can be represented by the following block 

diagram. 
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First the input is mapped through a compressor function. The compressor function task is 

to expand or stretch the high probability regions closed to the origin, and compress the 

low probability regions away from the origin. The net effect of this is that regions which 

are close to the origin in the input to the compressor occupy a greater fraction of the total 

region in the output of the compressor.  

Now, the output of the compressor is uniformly quantized. The quantized value is 

transformed via an expander function, which is the inverse of the compressor function. 

The net effect of this whole process is the same as using a non-uniform quantizer. This is 

known as compounded quantization. Now, before we look into the mathematics of 

compounded quantization, let us try to get the feel of this process with the help of a 

simple example.  



(Refer Slide Time: 05:06) 

 

Let us assume a source whose output can be modeled as a random variable. This random 

variable takes values in the interval minus 4 to plus 4. Let us assume that this random 

variable has non uniform P D F with higher probability mass near the origin than away 

from it. Let us use an 8 level midrise quantizer of the form shown in the figure here. 
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So, this is the quantizer input output mapping for a midrise quantizer. Quantization step 

size is 1 and reconstruction levels are the mid points of this interval. 
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So, first let us try to flatten out the non uniform P D F using the following compressor 

and expander, which together is known as compander. 
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The compressor function is shown here graphically and mathematically. It is c x is equal 

to 2 x if x lies between minus 1 and plus 1. It is equal to 2 x by 3 plus 4 by 3 if x is 

greater than 1. It is equal to 2 x by 3 minus 4 by 3 if x is less than minus 1. It is this. So, 

this is the compressor function or compressor mapping and the expander mapping. 
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The expander function is shown here in terms of c inverse x. The characteristic can be 

written as c inverse x is equal to x by 2, if x lies between minus 2 and plus 2 that is this 

region. It is equal to 3 x by 2 minus 2, if x is greater than 2 that is this line. Finally, it is 

equal to 3 x by 2 plus 2, if x is less than minus 2 that is this line. So, between compressor 

and the expander, we have the uniform quantizer and that is shown here. We have the 

range in minus 4 plus 4 with 8 levels. 
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So, we denote minus 4 minus 3 minus 2 and so on as boundary values and 3.5, 2.5, 1.5 as 

the reconstruction levels. Now, let us study how this compressor and expander functions 

affect the quantization error, both near and far from the origin. So, let us say we have 

input as 0.9. Now, if we directly quantize this without the compander, the output of the 

uniform quantizer would be 0.5 because 0.9 lies between 0 and 1. The error in this case 

would be 0.4. Now, if the same input was passed through a compander, then let us see 

the output. So, it is 0.9 when it passes through the compander characteristic. 

We just discussed the output would be 1.8. The output of the compressor will be fed to 

the uniform quantizer whose output will be 1.5. So, the apparent error is 0.3. Finally, the 

quantized value passes through the expander to give the value 0.75. In this case, the error 

is difference between 0.9 and 0.75 that is 0.15. So, we see that without compander, the 

error is 0.4, whereas with the compander the error is 0.15. Similarly, if we take minus 

0.8, this would be quantized to minus 0.5 without the compander. So, the absolute error 

would be 0.3. Now, if we pass this through a compander, the output would be minus 1.6, 

which when uniformly quantized will give the value of minus 1.5.  

When this passes through the expander, it will give minus 0.75. So, the error in this case 

is again less. It is equal to 0.05. Similarly, we could extend this 0.3. This would give to 

0.5. The error is 0.2. When you pass through compressor, it will give 0.6, which will be 

quantized to 0.5. When passed through expander, it will give 0.25. So, the error is 0.05. 

Again, the error here with the compander is less than without the compander. Finally, let 

us take a value of 2.7, which without the compander would be quantized to 2.5. So, the 

absolute error is 0.2. 

This is passed through the compressor. This will give us 3.13, which will be quantized to 

3.5 uniformly. When passed through the expander, it will give back 3.25. In this case, the 

error is 0.55. So, the companded quantizer effectively works like a non-uniform 

quantizer with small quantization intervals in the interval between minus 1 to plus 1 and 

larger quantization intervals outside this interval. So, the next question is what is the 

effective input output mapping for this quantizer?  
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Now, it will be easy to see that when the input lies in the interval between 0 and 0.5, then 

using the compressor, it gets mapped into the interval between 0 and 1. When this output 

of the compressor is passed through a uniform quantizer, it is quantized to output value 

of 0.5. This when it passes through the expander, it gives us the reconstruction level of 

0.25.  

So, effectively the input between the ranges 0 to 0.5 gets mapped to 0.25. Similarly, the 

input between the intervals 0.5 to 1 on passing through the compressor get mapped to the 

region between 1 and 2. This gets quantized to 1.5. The output of the expander is 0.75. 

So, again effectively, the interval between 0.5 and 1 gets mapped to 0.75. So, the 

effective quantizer input output map is shown in the figure here. 
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The values between 0 and 0.5 get mapped to 0.25; between 0.5 and 1 get mapped to 0.75 

and so on. Now, having studied this simple example, let us try to extend this concept to a 

more generic input. For this, let us assume that the source output is bounded by some 

maximum value. Let us call it as x max. Let us also assume that a number of quantization 

levels are high that is we deal with high rate quantizers. Now, with these assumptions, let 

us denote the distance between 2 boundaries of a quantizer as delta j. 
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It is equal to b j minus b j minus 1. Now, if we assume that the number of quantization 

levels that is l is high enough, then the size of each quantization interval will be small. 

Therefore, it would be quite reasonable to assume that the P D F of the input that is given 

by p X will be essentially constant in each quantization interval. We can approximate p 

X is equal to p X y j, if x lies in the interval between b j minus 1 and b j. y j is the 

reconstruction level of the interval b j minus 1 b j. Now, we know that mean squared 

quantization error is given by the following expression. Now, this expression can be 

rewritten based on the above assumptions as follows. 
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This comes out of the integral because of the constant. This can be simplified as follows. 

The value for this expression is equal to where delta j is equal to b j minus 1. Now, for 

the companded quantization, if we let c x denote the compressor characteristic for a 

symmetric quantizer and let c dash x denote the derivative of c x with respect to x. Let us 

assume that the number of quantization level that is l is high. Now, given this, any 

general compressor mapping will look as follows. 
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So, within this interval, the compressor characteristics can be approximated by a straight 

line. Therefore, the derivative can be approximated as c dash y j is equal to c of b j minus 

c of b j minus 1 divided by delta j. This is an approximation of the derivative. From this 

figure, we also see that c b j minus c b j minus 1; this difference is the step size of a 

uniform l level quantizer. Therefore, we can write c b j minus c b j minus 1 is equal to 2 

x max by l. This is the step size of a uniform quantizer, where the input is bounded by x 

max. There are L numbers of levels. 
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Therefore, with the given approximation delta j is equal to c b j minus c b j minus 1 

divided by derivative as y j is equal to 2 x max divided by L times c dash y j. Using this 

relationship, we can rewrite the mean square quantization error as follows. 1 by 12 

summation over j equal to 1 to L delta j can be approximated by 2 x max upon L times c 

times y j cube. This essentially comes from this expression, which we saw some time 

back. This can be rearranged as follows and again simplified as x squared max upon 3 L 

squared summation over j equal to 1 to L p x y j delta j is equal to this quantity. Now, if 

we assume that L is high, then delta j will be small. In that case, we can replace this 

summation by integration as follows.  
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The mean squared quantization error expression reduces to this integral is known as 

Bennett integral. This is discovered after W.R. Bennett. This famous result is widely 

used to analyze quantizers. Now, if you observe mean square quantization error, it is 

dependent on P D F of the input to the quantizer. 
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So, let us define c dash x as x max by beta times mode x, where beta is a constant. Now, 

using the Bennett integral and using this relationship, it is easy to show that mean square 

quantization error reduces to the following expression. It is equal to beta square that is a 

constant divide 3 L squared times sigma x squared. This is the variance of the input. 

Therefore, signal to quantization noise ratio in dB will be equal to 10 log sigma x 

squared by sigma q squared is equal to 10 log 3 L squared minus 20 times log beta. This 

expression shows signal to noise quantization ratio is independent of the input media. So, 

this implies that if we use compressor characteristics, which satisfies this relationship, 

then signal to quantization noise ratio will remain constant regardless of the input 

variance. Now, it is important to note that this impressive result is valid as long as 

underlying assumptions used to derive these results are valid. 

For an instant, if input variance is very small, then our assumption that the input P D F 

remains constant over the quantization interval will be no longer valid. If the input 

variance is very large, then our assumption of the input being bounded by x max will be 

no longer valid. So, assuming that these assumptions are valid, we can derive the 

compressor characteristics as follows. 
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We saw that c dash x is equal to x max by beta times mod x. Therefore, this on 

integration results in to compressor characteristic given by c x is equal to x max plus 

alpha times log mod x by x max, where alpha is the constant. Now, for small x, c x 

assumed very large value. Therefore, in a practical situation to avoid this technical 

difficulty, the compressor characteristic is approximated with the function which is linear 

around the origin. It is logarithmic away from the origin. Now, 2 popular companding 

characteristics are as follows.  
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One characteristic is known as mu law companding, because the characteristic is a 

function of a parameter mu. It is given here. This is the inverse characteristic that is the 

expander characteristic where signum x is equal to 1 for x greater than 0 and minus 1 for 

x less than 0.  
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Mu equal to 255 is the value which is used in telephone system in North America and 

Japan, whereas the rest of the world uses a law characteristic for companding. That is 

given as follows. 
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So, this is A law companding, where the function or characteristic is a function of the 

parameter. The typical value for A is equal to 100. For the same A law companding, 

expander characteristic is specified as shown here. Now, let us take few examples to 

understand this concept in a better way. 
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Let us take the first example as follows. Consider a mu equal to 255 compander to be 

used with an 8 level quantizer with the output variation over plus minus 10 volt. For an 

input of say 0.5 volt, it is desired to find the quantization error with and without 

companding. So, let us try to find to provide the solution for this. 
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So, let us first consider without companding and using uniform quantization. So, in this 

case, the step size is given by 2 x max by L. In this case, we have 2 into 10 by 8t level 

quantizer. So, the step size is 2.5 volts. Now, the given 0.5 volt lies between 0 and 2.5 

volt. Therefore, the first reconstruction level for the positive x is 1.25 volt. Therefore, 0.5 

volt will get quantized to 1.25 volt, which implies that the quantization error will be 

equal to 1.25 minus 0.50 is equal to 0.75. Now, let us look at the quantization of 0.5 volt 

with the help of mu law compander.  
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So, with companding, the first step is to pass it through compressor, which is equal to c x 

max log of 1 plus mu times. So, we substitute the given values as this reduces to 4.73. 

So, this is the first step. The next step is to take the output of the compressor and feed it 

to the uniform quantizer. So, next step is uniform quantization. Now, 4.73 lies between 

2.5 and 5. We know that the quantization step size is 2.5. Therefore, 4.73 will get 

quantized to 3.75, which is the reconstruction level for the interval between 2.5 and 5. 

That is the average of these 2 values. The final step is to take this 3.75 and pass it 

through the expander characteristics.  
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It is given as c inverse x is equal to x max by mu times 1 plus mu raise to mod x by x 

max minus 1. So, this is equal to and this can be evaluated as 0.27. So, in this case, the 

quantization error with companding absolute value is equal to 0.50, which is the input 

minus the quantized value 0.27, is equal to 0.23. So, without companding, we have an 

error of 0.75, whereas with companding, we have an error of 0.23. So, this shows an 

advantage of companding. Now, let us look into the performance of mu law companding 

little more in depth. In order to simplify our discussion, we will assume that the input to 

the mu law compander is normalized by x max. So, in this case, we have the input which 

lies in the interval between minus 1 to plus 1.  
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So, if we assume that, then in this case the quantization noise expression that is this 

reduces to where x is a normalized random variable. This x is lies between the interval 

between minus 1 and plus 1. Now, if we assume the symmetry both for input P D F and 

compressor characteristic, then this expression reduce to 2 by 3 L squared. Therefore, 

signal to quantization noise ratio is equal to input variance divided by the quantization 

noise, which is equal to S x divide by sigma q squared is equal to 3 times L squared S x 

by K c. S x is by definition input variance. K c is by definition equal to twice the 

integration of input P D F divided by the squared of c dash x. So, this is the constant 

which is dependent on the compressor characteristic and the input P D F. So, in this case, 

the popular mu law companding for voice telephone employs the following compressor 

characteristic. 
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Therefore, c dash x is equal to mu by log 1 plus mu times 1 by 1 plus mu times mod x. 

The parameter mu is a large number. So, c dash x is much larger than 1, for x much 

smaller than 1 c dash x is less than 1 for mod x approximately equal to 1. Therefore, in 

this case, K c which is equal to twice integral for 0 to 1 of p X c dash x squared is equal 

to twice log squared 1 plus mu by mu squared. It can be very easily shown that this 

expression reduces to K c. 
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K c is equal to log squared 1 plus mu by mu squared 1 plus 2 mu mod x plus mu squared 

S x. Average of mod x is equal to by definition twice S x and S x is input variance which 

is equal to sigma x squared. Now, we need the values for average of mod x and S x to 

test the efficacy of the mu law companding. Now, empirical results have shown that the 

P D F of a voice signal is reasonably modeled by Laplacian P D F of the form equal to 

alpha by 2 e raise to minus alpha times mod x. Alpha is a constant and in this case, S x is 

equal to 2 by alpha squared.  

Average of mod x is equal to 1 by alpha is equal to square root of S x by 2. Now, 

unfortunately, this P D F cannot be normalized for x max less than equal to 1. But the 

probability of mod x being greater than 1 is less than 1 percent if S x is less than 0.1. 

Now, otherwise P D F models feel about the same relationship between mod x and S x, 

which is the critical factor for evaluating K c.  
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So, taking the standard value for mu equal to 255 and mod x average equal to square root 

of S x by 2 gives the value for K c equal to 4.73 multiplied by 10 raise to minus 4 times 1 

plus 361 square root S x plus 65025 S x. Now, numerical evaluation shows that K c is 

less than 1 for S x less than 0.03. But, more significant is the fact that S x by k c stays 

nearly constant over a wide range of S x. So, consequently mu law companding for voice 

signal provides an essential fixed value of signal to quantization noise ratio despite the 

variations of S x, the input variance among the individual talkers.  
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Now, the figure here brings out this desirable feature by plotting signal to quantization 

ratio in dB versus input variance in dB with and without the companding when L is equal 

to 256. From this figure, it is clear that there is a considerable companding improvement 

for S x less than minus 20 dB. So, in a design of a quantizer, there are 3 important issues. 

These are first selection of decision boundaries or boundary values, second selection of 

pre construction levels and third selection of code words. 

In our study so far, we have assumed fixed length coding for a given number of 

quantization levels of a quantizer. Now, if this is the case, selection of code word is not 

an important issue. Therefore, we have only considered the selection of decision 

boundaries and reconstruction levels with consent of minimizing the mean square 

quantization error.  

But, now if we relax this constraint of fixed length coding and deploy variable length 

coding, then the selection of code word becomes an important issue. It will be beneficial 

to design the quantizer, wherein we can incorporate the entropy of the output of the 

quantizer. This will decide the rate of the quantizer. So, in the next class, we will look 

into the entropy constraint quantization. 


