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Lecture - 35 

Introduction to Quantization 
 

During the next couple of lectures, we will study quantization, one of the simplest and 

most general ideas in lossy compression. In many lossy compression applications, it is 

required to represent each source output using one of a small number of code words. The 

number of possible distinct source output values is generally much larger than the 

number of code words used to represent them. This process of representing a large 

possibly infinite set of values with a much smaller set is called quantization. The device 

which achieves this quantization is called quantizer. 
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Consider a source that generates number between minus 5 and plus 5, a simple 

quantization scheme would be to represent each output of the source with the integer 

value closest to it. For example, if the source output is minus 2.4251, we would represent 

it as minus 2 and if the source output is 4.2452, we would represent it as 4. This 

approach reduces the size of the alphabet required to represent the source output. The 

infinite number of values between minus 5 and plus 5 are represented with a set that 

contains only 11 values minus 5 minus 4 minus 3 minus 2 minus 1. 



At the same time, we have also forever lost the original value. If you have told that the 

reconstruction value is 2, we cannot tell whether source output was 1.92 or 2.2 or 2.14 or 

any other infinite set of values. In other words, we have lost some information; this loss 

of information is the reason for the use of the word lossy in many lossy compression 

schemes. The set of inputs and outputs of a quantizer can be scalars or vectors.  

If they are scalars, we call the quantizer as scalar quantizer and if they are vectors, we 

call the quantizers vector quantizers. Let us begin our study with scalar quantizers, 

though the process of quantization is very simple, however the design of the quantizer 

will have significant impact on the amount of compression that can be obtained and the 

loss incurred in a lossy compression scheme. Let us examine the issues related to the 

design of the quantizers in little more depth. 
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In practice, the quantizer consists of two mappings an encoder mapping and a decoder 

mapping. 
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The task of an encoder is to divide the range of values that the source generates into a 

number of intervals. Each interval is represented by a distinct code word; the encoder 

represents all the source outputs that fall into a particular interval by the code word 

representing that interval. Now, if there could be many possible infinitely many distinct 

sample values that can fall in any given interval the encoder mapping is irreversible. 

Knowing the code only tells us the interval to which the sample value belongs. It does 

not tell which of many values in the interval the actual sample value is; when the sample 

value comes from an analog source the encoder is called an analog to digital converter. 

Now, the task of a decoder is to generate a reconstruction value because a code word 

represents the entire interval and there is no way of knowing which value in the interval 

was actually generated by the source. The decoder generates a value that in some sense 

best represents all the values in the interval. Now, to do this, we can use the information 

about the distribution of the input in the interval to obtain a representative value. For 

time being, let us simply use the midpoint of the interval as the represented value 

generated by the decoder. So, if the reconstruction is analog, the decoder is often referred 

to as digital to analog converter decoder.  
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Mapping corresponding to the three bit Encoder discussed earlier is shown here for the 

input code word 0, 0, 0 the output reconstructed value is minus 3.5 and for the input code 

word 1, 0, 0, the output of the decoder is 0.5. So, construction of the intervals, the 

location etceteras can be viewed as part of the design of an encoder selection of 

reconstruction value is part of a design of a decoder. However, the fidelity or accuracy of 

the reconstruction depends on both the intervals and the reconstruction values. We call 

this encoder decoder pair as a quantizer.  
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In summary, to specify a quantizer, we need to know how to divide the input range into 

intervals, then assign code words to these intervals and finally, find representation or 

output values for these intervals. We need to do all these for satisfying distortion and rate 

criteria.  
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Now, distortion is defined as the average squared difference between the quantizer input 

and output. We call this mean squared quantization error. In short as m s q e and this is 

denoted by sigma squared q. 
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Similarly, the rate of the quantizer is the average number of bits required to represent a 

single quantizer output.  
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Now, our goal should be to get the lowest distortion for a given rate or the lowest rate for 

a given distortion. Now, this quantizer design problem can be posed in precise terms as 

follows. 

(Refer Slide Time: 11:51) 

 

Let us take an input model by a random variable X with probability density function that 

is P D F given by p subscript capital X. Now, the design problem is to quantize the 



source with L intervals that is we have to specify L plus 1 end point for the intervals and 

representative to value for each of the intervals. Now, the end points of the intervals are 

known as boundaries while the representative values are known as reconstruction levels.  
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So, let us denote the decision boundaries of y b j, j goes from 0 to l the reconstruction 

levels by y j, j is equal to 1 to L and the quantization operation by Q then Q x is equal to 

y j if and only if x lies in the interval specified as follows. Now, the mean square 

quantization error is given by integral of minus infinity to plus infinity x minus Q x 

squared P D F of the random variable x. This can be rewritten as follows: summation 

over L intervals with quantization error for a particular interval given by the integral the 

difference between the quantizer input x and output y is equal to Q x is referred to as the 

quantization error. It is also known as quantization distortion or more popularly known 

as quantization noise. 
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So, the quantization process can be modeled as an additive noise process as shown here. 

We have a quantizer input and quantization noise gets added to it to give the quantizer 

output, this is additive noise model of a quantizer. 
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Now, if we use fixed length binary code words to represent the quantizer output, then the 

size of the output alphabet immediately specifies the rate. So, if the number of quantizer 

outputs is L, then the rate is given by r is equal to the next largest integer of log to the 

base 2 of L. So, if L is equal to 16, then R is equal to 4.  



(Refer Slide Time: 18:53) 

 

Therefore, the quantizer design problem can be posed as follows: given an input P D F 

and the number of levels l in the quantizer. The problem is to determine the decision 

boundaries that is b j and the reconstruction levels that is y j, so as to minimize the mean 

square quatization error given by the following expression. Now, however if we are 

allowed to use the variable length codes such as Hoffmann codes or arithmetic codes 

along with the size of the alphabet. The selection of the decision boundaries will also 

affect the rate of the quantizer. However, if we are allowed to use variable length codes 

such as Hoffmann code or arithmetic code along with the size of the alphabet, the 

selection of the decision boundaries will also affect the rate of the quantizer. 
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For example, let us look at the code word assignment for L equal to 8 quantizer. 

According to this, code word assignment if the output y 5 occurs, we used two bits to 

encode it while if output y 2 occurs we need four bits to encode it. Now, the average rate 

will depend on how often we have to encode y 5 versus how often we have to encode y 

2. This implies that the average rate will depend on the probability of occurrence of the 

outputs. 
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So if l j denotes the length of the code word corresponding to the output y j and 

probability y j is the probability of occurrence of y j then the rate is given by. However, 

the probabilities p y j depend on the decision boundaries b j for example, the probability 

of y j occurring is given by therefore; the rate is a function of the decision boundaries 

and is given by the expression. 
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.So, what follows from the discussions and this equation that for a given source input the 

partitions, we select and the representation for these partitions will determine the 

distortion incurred during the quantization process. 
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The partitions we select and the binary codes for the partitions will determine the rate for 

the quantizer. Thus, the problem of finding the optimum partition codes and 

representation levels are all linked. In light of this information we can restate our 

problem statement as follows. 
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Given a distortion constraint determine the decision boundaries reconstruction levels, 

and binary codes that minimize the rate given by this expression, while satisfying the 

above distortion constraint or the same problem can be posed as follows. 
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Given a rate constraint, determine the decision boundaries reconstruction levels and 

binary codes that minimize the distortion given by this expression while satisfying the 

above rate distortion constraint. Now, these problem statements of quantizer design 

while more general than our initial statement is also substantially more complex. 

However, in practical applications, there are situations in which we can simplify the 

problem we often use fixed length code words to encode the quantizer output. In this 

case, the rate is simply the number of bits used to encode each output and we can use our 

initial statement of the quantizer design problem. So, let us begin our study of quantizer 

design problem by looking at the simpler version, then move over to tackle more 

complex version.  
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So, the simplest type of quantizer is the uniform quantizer, all intervals in uniform 

quantizers are of the same size except possibly of the two outer intervals. So, a uniform 

quantizer has the following properties, the decision boundaries are spaced evenly the 

reconstruction level are also spaced evenly with the same spacing as the decision 

boundaries in the inner intervals. They are the midpoints of the intervals; this constant 

spacing is usually referred to as the step size and is denoted by delta.  

(Refer Slide Time: 27:51) 

 



Now, the mapping for the quantizer, for the three bit encoder pair discussed earlier can 

be represented by the input output map shown here. This is a example of a uniform 

quantizer with delta equal to 1. It does not have 0 has one of its representation level, such 

a quantizer is called a midrise quantizer and alternative uniform quantizer could be the 1 

shown here this is called a midtread quantizer, usually we use a midrise quantizer. 
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If number of construction levels that is L is equal to even then we use a mid tread 

quantizer. If number of reconstruction level is odd, now for our discussion, we will 

assume midrise quantizer. We will assume that the input P D F is symmetric around the 

origin and we also assume that the quantizer is also symmetric, this will simplify our 

discussions. Now, given all these assumptions, the design of a uniform quantizer consists 

of finding the step size delta, that minimizes the distortion for a given input process and 

number of decision levels L. So, we start our study of quantizer design with the simplest 

of all cases.  
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Let us consider design of a L level uniform quantizer for an input that has uniform 

probability density function in the interval minus X max to plus X max.  
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Now, this implies that we need to divide the input range minus X max to plus X max into 

L equally sized intervals and in this case the step sized delta is given by 2 X max upon l. 

Now, if we assume that the reconstruction level is the midpoint of the boundaries, then 

for this assumption the distortion becomes we assume L is even and since the P D F of 

the input is uniform, we can write 1 by 2 X max. The j th interval is given by these 



boundaries, now if we evaluate this integral we find that the mean squared quantization 

error is equal to delta squared by 12. Now, this same result can be more easily obtained 

as follows the quantization error. 
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Q is given by x minus Q x and if we plot this quantization error for a uniform midrise 

quantizer for l equal to 8 with input in the interval minus X max to X max and uniform P 

D F, we get the following plot therefore. The quantization error lies in the interval minus 

delta by 2 to plus delta by 2. Now, as the input is of uniform P D F it is not difficult to 

show that the quantization error q is also uniform over this interval. 



(Refer Slide Time: 34:36) 

 

Thus, the he mean square quantization error is nothing but the second moment of the 

random variable with uniform P D F in the interval minus delta by 2 to plus delta by 2. If 

we assume this, we get mean squared quantization error as 1 by delta, which is the P D F 

of uniform random variable q integrated over minus delta by 2 to plus delta by 2 of q 

squared d q.  

This is equal to delta squared by 12 let us also calculate the signal to quantization noise 

ratio which will simply denote as signal to noise ratio this is actually signal to 

quantization noise ratio, but for simplicity we will denote it as S N R q. Now, the signal 

variance that is sigma squared x for a uniform random variable X which takes on values 

in interval minus X max to plus X max can be shown two equal as X max upon and we 

also know that delta is equal to twice x max upon L. Now, for the case where we have 

used a fix line codes with each code word be being made of m bits. 
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The number of code words or the number of reconstruction level l is equal to 2 raised to 

m. So, given this we can calculate signal to noise ratio, which is to repeat again signal to 

quantization noise ratio in d B that is in decibels is equal to 10 log to the base 10 of 

signal variance divide by quantization noise variance this can be rewritten as 10 log 10. 

Signal variance is equal to twice X max squared divide by 12 and quantization noise 

variance is equal to sigma squared by 12.  

This can be rewritten as delta is equal to twice X max upon l. So, this can be simplified 

as and further simplified which is equal to 6.02 m dB. Now, what this equation says that 

for every additional bit in the quantizer, we get an increase in the signal to noise ratio of 

approximately 6 d B. Now, this is a well known result and is often used to get an 

indication of the maximum gain available, if we increase the rate. 
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Now, let us solve a few simple examples based on this concept. Let us say That the 

maximum acceptable quantization error in the sample amplitude is 0.5 percent of peak 

amplitude. Let us assume that the quantization samples are binary coded and it is desired 

that we determine the length of a code word for a fixed length code. Now, the solution to 

this problem is as follows, so we assume that the quantizer is uniform. So, maximum 

quantization error in terms of step size delta is delta by 2. Now, we also know that delta 

is equal to 2 X max by l for a uniform quantizer, therefore delta by 2 is equal to X max 

by l and this is equal to 0.5 percent of the peak amplitude that is 0.5 x max upon hundred 

which implies that L is equal to 200 now assuming. 
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Fixed length code and binary coding implies that L must be power of 2, hence the next 

higher value of L that is the power of 2 is L is equal to 256 and therefore, m is equal to 

log to the base 2 of 256 is equal to 8 bits per sample. So, this is the desired solution and 

the signal to noise ratio that is quantization noise in terms of dB is equal to 6.02 

multiplied by 8 is equal to 48.16 dB.  
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Assuming that the input P D F is uniform let us take another example, let us determine 

the step size that is delta, given we want uniform quantization and the input has uniform 



P D F with variance equal to 1 and let us assume that l is equal to 4. Now, solution is as 

follows if the input range is minus X max to plus X max and if the input is uniform P D 

F then its variance is 2 X max square 12 which is equal to X max squared by 3 and this is 

equal to 1. Therefore, it implies x max is equal to 1.732.  
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Therefore, for L equal to 4, we get the step sized delta equal to twice X max by L is 

equal to 0.866. Again signal to noise ratio that is quantization noise in dB for this case is 

equal to 6.02 multiplied by 4 is equal to 24.08. Now, it is important to remember that we 

derived the signal to noise ratio that is quantization noise db equal to 6.02 m under 

certain assumptions about the input. If this assumptions are not true, then this result will 

also not hold, now quite often the sources we deal with does not have a uniform P D F 

and we still want to have the simplicity of a uniform quantizer.  

In this cases even if the input are bounded then simply by dividing the input range by the 

number of reconstruction level will not provide a very good quantizer design. This 

approach will become practically impossible when we model the sources that have 

unbounded P D F such as Gaussian P D F. Now, in the next class we will examine design 

of uniform quantizer for non-uniform sources. 


