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Lecture - 32 

Definition and Properties of Rate-Distortion Functions 
 

In the previous class, we provided a qualitative definition for the rate distortion function 

as the lowest rate at which the output of a source can be encoded, while keeping the 

distortion less than or equal to some specified distortion level. We also investigated the 

rate and distortion for two different lossy compression schemes. In example one, we 

found that the rate was equal to the entropy of the reconstruction alphabet. However, this 

was the result of the fact that the conditional probabilities for that particular source 

encoder took on only two values 0 and 1. Now, this need not be the case always, let us 

take another example to illustrate this concept in a better way. 
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So, we consider example three which is the same as example one, where the source 

output consists of four bit words. The source encoder drops the least significant bit of 

this four bit word to generate three bit word. The source decoder multiplies the output 

from the source encoder by 2 to generate the reconstruction alphabet given here. So, for 

this example the source and the reconstruction alphabet is the same as it was in example 

one. Now, we use the distortion measure based on the square error difference and we 



also assume that the distortion level is given to be D equal to 225. The problem is to 

design a lossy compression scheme that satisfies the distortion constrain.  
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So, one such compression scheme that satisfies the distortion constrain would be to 

randomly map the input to any of the output that is conditional probability of y j given x 

i is equal to 1 by 8 for i equal to 0, 1, 2 up to 15 and j equal to 0, 2 up to 14. We can see 

that this conditional probability assignment satisfies the distortion constrain, as each of 

the eight reconstruction value is equally likely we get a entropy for the reconstructional 

alphabet, that is H Y is equal to 3 bits. However, for such a glossy compression scheme 

we are not transmitting any information. So, we could exactly get the same results by 

transmitting 0 bits and randomly picking y at the receiver. What this example illustrates 

is that, the entropy of the reconstruction that is H Y cannot be the measure of the rate.  
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Now, let us look now let us look at average mutual information that is I X; Y which is 

given is H X minus entropy of X given Y or this can be rewritten as entropy of Y minus 

conditional entropy of Y given X. Now, this can be rewritten as double summation over i 

j, probability of x i, conditional probability of y j given x i and log of conditional 

probability y j given x i over probability of y j where probability of y j is equal to 

summation over i of conditional probability y j given x i multiplied by probability of x i 

summed over i.  

So, this mutual information is a measure of correlation between the random variable X 

and Y. Now, in the rate distortion theory, the source that is P x i is given, so that the 

average mutual information will be regarded as the function of the conditional 

probabilities y j given x i. So, we can write the average mutual information as a function 

of condition probabilities. 
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Now, Shannon in his 1959 paper on source coding has found the relationship between 

the minimum rate and the distortion and this is stated as follows. The rate distortion 

function is equal to minimum of average mutual information. This minimum is over the 

conditional probabilities, where this conditional probability belongs to the set given by 

all those conditional probabilities which satisfies the distortion criteria. 
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The paper by Shannon is stated here, coding theorems for a discrete source with a 

fidelity criterion it had appeared in I R E international convention records volume 7 part 



4 in 1959. Now, we will not go into the proof of this relationship, however we can at 

least convince our self that defining the rate as a mutual information gives sensible 

answers when used for the example discussed. 
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So, if we consider example one, which we had discussed in the previous class. We 

calculated the average mutual information to be 3 bits which is what we said the rate 

was. In fact notice that whenever the conditional probabilities are constrained to be of the 

form given equal to 1 for some j equal to j i is equal to 0, otherwise. Then conditional 

entropy H of Y given X is equal to 0 and in this case mutual information is equal to 

entropy of Y which had been a measure of rate. 
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In example three, the average mutual information is 0 bits, which accords with our 

intuitive feeling with what the rate should be. Again whenever conditional entropy H of 

Y give X is equal to H of Y that is the knowledge of the source gives us no knowledge of 

the reconstruction. Then mutual information is equal to 0 which seems entirely 

reasonable.  

We should not have to transmit any bits when we are not sending any information. At 

least for the examples discussed here, it seems that the average mutual information 

represents the rate. However, based on our earlier study we can say that the average 

mutual information between the source output and the reconstruction is the measure of 

the information conveyed by the reconstruction about the source. 
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So, the natural question is why are we then looking for compression schemes that 

minimize this value? Now, to understand this we have to remember that the process of 

finding the performance of the optimum compression scheme had two parts. 
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In the first part we specified the desired distortion. so the entire set of conditional 

probabilities over which the average mutual information is minimized satisfies the 

distortion constraint. Therefore, we can leave the question of distortion or fidelity, aside 

and concentrate on minimizing the rate. So, this provides some kind of qualitative 



justification for the rate distortion formula. Finally, how do we find the rate distortion 

function? 
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There are two ways to compute the rate distortion function, one approach is basically a 

computational approach, the algorithm is relatively simple, we will have a look at this 

algorithm little later. The other approach is based on finding a lower bound for a average 

mutual information and then show that we can achieve this bound. We will use this 

approach to find the rate distortion functions for two important sources. 
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So, the first important source is a binary source, for which we will calculate the rate 

distortion function as follows. Suppose we have a source alphabet consisting of 0, 1 with 

probability of 0 is equal to small p. Let us assume that the reconstruction alphabet is also 

binary, we assume that the distortion measure is based on the hamming distance that is d 

of x i, y j is equal to x i modulo two addition or exclusive or operation between x i and y 

j. Given this let us find the rate distortion function for this source, the solution to this 

problem follows. 
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Assume without loss of generality that p is less than 1 by 2, so for D that is the specified 

distortion level greater than p an encoding scheme that would satisfy the distortion 

criterion would be not to transmit anything and fix Y equal to 1. So, for D greater than 

equal to p we can say R D is equal to 0. Now, we will find the rate distortion function for 

the distortion range between 0 and less than p. In order to do this let us first find the 

lower bound for the average mutual information. 



(Refer Slide Time: 19:33) 

 

Average mutual information is equal to entropy of the source minus conditional entropy 

of the source given reconstruction, this can be rewritten as entropy of source minus 

conditional entropy of X X O R Y given Y. Now, we have used the fact in writing this 

step, that if we know Y, then knowing X we can obtain X or Y and vice versa as X X O 

R Y X O R Y is equal to X. Now, this can be written as entropy of X minus entropy of X 

or Y, from here to here we use the relationship that the conditional entropy is always less 

than the entropy.  

From this step to this step we use the fact that conditioning always reduce the entropy 

that is because H of X given Y is always less than equal to H of X. Now, H of X is equal 

to minus p log to the base 2 p minus 1 minus p log to the base 2 of 1 minus p and it is 

indicated as H b p. This is a binary entropy function which we had seen earlier and it is 

plotted as shown here. Note that H p b is equal to H b 1 minus p. So, given that H X is 

completely specified by the source probabilities. 
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Our task is now to find the conditional probabilities such that entropy of X X O R Y is 

maximized while the average distortion is less than the specified distortion level. Now, 

entropy H X X O R Y is simply the binary entropy function H b probability of X X O R 

Y is equal 1, where probability of X X O R Y equal to 1 is equal to joint probability of X 

is equal to 1, Y equal to 1 plus joint probability of X is equal to 1 y equal to 0. Therefore 

to maximize this quantity we would like the probability of X X O R Y equal to 1 to be as 

close as possible to half based on this plot. 
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However, the selection of probability of X X O R Y has to also satisfy the distortion 

criterion. The distortion is given by 0 multiplied by probability of X equal to 0, Y equal 

to 0 plus 1 into probability of X equal to 0, Y equal to 1 plus 1 into probability of X is 

equal to 1, Y equal to 0 plus 0 multiplied by the probability of X equal to 1 and Y equal 

to 1. This can be written as probability of X equal to 0, Y equal to 1 plus probability of X 

equal to 1, Y equal to 0. 

Which can be rewritten as probability of Y equal to 1 given X equal to 0 multiplied by 

probability of X equals to 0 plus probability of Y equal to 0 given X is equal to 1 

multiplied by probability of X equal to 1 that is 1 minus p, but this is simply the 

probability that X X O R Y is equal to 1. Therefore, the maximum value the probability 

of X X O R Y equal to 1 can have is D, because average distortion is less than equal to 

D. 
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Now, our assumptions were that D is less than p and p is less than or equal to half which 

means that D is less than half, therefore the probability of X X O R Y equal to 1 is 

closest to half, while being less than or equal to D when X X O R Y is equal to 1 is equal 

to D. Therefore, we get mutual information less or equal to binary function H b p minus 

binary function H b D. Now, we will show that this lower bound is actually the rate 

distortion function and can be achieved by finding joint distribution or conditional 



probability distribution for that given source distribution that meets the distortion 

criterion, and has mutual information equal to the rate distortion function. 
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Now, for specified distortion levels between 0 and p we can achieve the minimum value 

of average mutual information in this relationship by choosing X Y to have the joint 

distribution given by the binary symmetric channel as shown here. Let us assume that the 

probability of Y equal to 0 equal to r and probability of Y equal to 1 is equal to 1 minus 

r. So, we choose the distribution of Y at the input of this channel so the output 

distribution of X is the specified distribution, that is p and 1 minus p. So, if we assume r 

to be the probability of Y equal to 0, then choosing r as follows. So, we get the value of r 

given by this expression, now if D is less than or equal to p and which is less than equal 

to ½, then probability of Y equal to 0 is greater than equal to 0 and probability of Y is 

equal to 0 is also greater than or equal to 0. 



(Refer Slide Time: 32:40) 

 

We can have mutual information equal to H b p minus H b D, therefore for D less than p 

and p less than equal to half. The rate distortion function is equal to binary entropy 

function H b p minus binary entropy function H b D. Finally, if p is greater than half then 

we simply switch the roles of p and 1 minus p. 
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So, putting all this together the rate distortion function for a binary source is binary 

entropy function as function of p, and binary entropy function as the function of 



specified distortion level D for is equal to 0 for D greater than minimum of p 1 minus p. 

Now, this function is illustrated in the figure. 
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So, it is monotonically decreasing function for p equal to 0.5 the maximum value of 

distortion for 0 rate is equal to 0.5 and maximum value of the rate for 0 distortion is 

given by the entropy of the source of p equal to 0.5 which is equal to 1. For p equal to 

0.2 the maximum value of the distortion is 0.2 for the rate equal to 0 and for distortion 

equal to 0 the maximum value of the rate is given by the entropy of the source p equal to 

0.2, so having calculated the rate distortion function for a binary source. Let us proceed 

to calculate the rate distortion function for another important source that is Gaussian 

source. 
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Again we will follow the same approach, we will write down the average mutual 

information for a Gaussian source and show that the lower bound for the mutual 

information is achievable. So, we have a continuous amplitude source that has a 0 mean 

and Gaussian P D F with variance equal to sigma squared. So, we have normal 

distribution that is Gaussian distribution with 0 mean and variance is equal to sigma 

squared. We assume that our distortion measure is again square error measure, so our 

distortion constrain is given by average square error less than equal to some specified 

distortion level D. So, first we calculate the rate distortion function for specified 

distortion level less than sigma squared. 
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Mutual information equal to differential entropy minus conditional entropy of X given Y 

this is equal to differential entropy minus conditional entropy of X minus Y given Y 

which is greater than equal to h of X minus h of X minus Y, from the second step to the 

third step, the reason is the conditioning always reduces entropy. So, in order to 

minimize the right hand side of this equation, we have to maximize the second term, 

subject to the constrain given by mean square error to be less than some specified 

distortion level D. Now, the second term is maximized if X minus Y is Gaussian based 

on our earlier study and the constrain can be satisfied if expectation of X minus Y 

squared is equal to D. 
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Therefore, h of X minus Y is the differential entropy of Gaussian random variable with 

variance D and the lower bound becomes I of X semicolon Y greater than equal to 

halflog 2 pie e sigma squared minus halflog 2 pie e D equal to halflog sigma squared by 

D. Now, this average mutual information can be achieved if Y is 0 mean Gaussian with 

variance sigma squared minus D. 
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Conditional P D F is given as follows, now for D greater than sigma squared if we set Y 

equal to 0, then mutual information between X and Y is equal to 0 and the mean squared 

error is equal to sigma squared, which is less than D.  
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Therefore, to summarize we can say the rate distortion function for the Gaussian source 

can be written as half log sigma squared by D for D less than equal to sigma squared, and 

is equal to 0 for D greater than sigma square. This relationship is illustrated in figure, 

again we see that the rate distortion function is monotonically decreasing function with 

increasing D. 



(Refer Slide Time: 43:24) 

 

Now, we can find out the maximum allowable distortion that is D max as follows, if no 

information is transmitted the best choice with the receiver can make consist of choosing 

the average value, which in this case is equal to 0. Because this has the largest 

probability density and is therefore the most probable transmitted value. The error which 

is now made is x minus 0 squared is equal to x squared and the average error is equal to 

expectation of x squared which is equal to sigma squared. From this it then follows that 

D max which is the minimum distortion for R D equal to 0 is equal to sigma squared. We 

further see that R 0 increases to infinity if D is made smaller and smaller, this is of 

course a mathematical abstraction in practical systems D will be bounded by the smallest 

measurable signal value.  
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So, in conclusion we can say that, like the differential entropy for the Gaussian source, 

the rate distortion function for the Gaussian source also, has the distinction of being 

larger than the rate distortion function for any other source with a continuous distribution 

and the same variance. Now, this result is specially very valuable because for many 

sources it is very difficult to calculate the rate distortion function. In this situation it is 

helpful to have the upper bound on the rate distortion function. Now, it would be also 

nice to have a lower bound on the rate distortion function for a continuous random 

variable. We will investigate this case in the next class, and will also look at the 

computation approach to calculate the rate distortion function. 


