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Lecture - 30 

Channel Capacity of A Band Limited Continuous Channel 
 

In the last class, we showed that a mutual information between input and output of a 

continuous channel. That is the information transmission over a continuous channel is 

related to the relative entropy of the input and equivocation of the input, with respect to 

output, which is uncertainty about the input after we have observed the output.  
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This relationship can be noted as follows. Mutual information between the input x and 

the output y is equal to entropy of the input less, the uncertainty about the input after we 

have observed the output. Now, we can define the channel capacity C s as the maximum 

amount of information on the average per sample or per value transmitted. So, C s is 

equal to maximum of the mutual information I x semicolon y. 

For a given channel the mutual information is a function of the input probability density 

p x alone. This can be shown as follows joint probability density p x y is equal to 

probability density p x multiplied by conditional probability density. Now, base rule says 

probability of x, probability distribution p x given y over probability distribution p x is 

equal to conditional probability distribution p of y given x over probability density p y, 



which can be rewritten as p d f y given x p d f p y is integral joint probability density 

function p x y over d x. 
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And this can be rewritten as p d f p y given x divided by the integral p d f p x multiplied 

by conditional p d f p of y given x d x. Now, we know that mutual information by 

definition is given as follows. Double integral of joint p d f p x y I x semicolon y integral 

over x and y which can be rewritten as double integration p x y log p x given y over p x d 

x d y. Now, if we substitute equation number three and equation number four into 

equation number five, we get the result for mutual information as follows. 
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p d f p x multiplied by conditional p d f p y given x log of the quantity in the bracket 

conditional p d f p y given x over integral p x p y given x d x d x d y. Now, the 

conditional probability density p y given x is characteristic of a given channel. Hence, 

for a given channel mutual information I x semi colon y is a function of the input p d f p 

x alone. Thus, we can define the channel capacity per sample as C s is equal to maximum 

of mutual information over all input probability density p x.  

Now, if the channel allows the transmission of k values per second then C the channel 

capacity per second is given by C is equal to k times C s. Just as in the case of discreet 

variables the mutual information is symmetrical with respect to X and Y. Similarly, we 

can show that mutual information is symmetrical with respect to X and Y for continuous 

random variables too this can be seen by rewriting equation five as follows. 
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Joint p d f p x y log of joint p d f p x y divided by p d f p x multiplied by p d f p y 

integrated over x and y. Now, this equation clearly shows that the mutual information is 

symmetrical with respect to X and Y. Hence, we can write I X semicolon Y is equal to I 

mutual information between Y and X. Now, from equation one it follows that I X 

semicolon Y is equal to entropy of X minus equivocation of X given Y is equal to by this 

relationship entropy of Y less equivocation of Y with respect to X. Now, we proceed to 

calculate the capacity of a band limited additive white Gaussian noise channel.  
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So, the channel capacity c is by definition the maximum rate of information transmission 

over a channel, the mutual information I X semicolon Y is given by equation eight as 

entropy of Y minus uncertainty of Y given X. Now, the channel capacity c is the 

maximum value of the mutual information per second. So, let us first find the maximum 

value of I X semicolon Y per sample. 

We shall find here the capacity of a channel, which is band limited to b hertz and this 

channel is disturbed by white Gaussian noise of power spectral density given by N by 2. 

We assume, that this noise disturbs a channel in an additive fashion, in addition we shall 

constrain the signal power that is the mean value of the signal to capital S. Since, the 

disturbance is assumed to be additive the received signal y t is given by y t is equal to the 

input signal x t plus the additive noise on the channel given by n t.  

Now, because the channel is band limited to b hertz both the signal x t and the noise n t 

are band limited to b hertz. Obviously y t is also band limited to b hertz. Now, all this 

signals can therefore, be completely specified by samples taken at the uniform rate of 2 b 

samples per second. So, let us find the maximum information that can be transmitted per 

sample. 
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Let x n y represent samples of x t n t and y t respectively. Now, the information IX 

semicolon Y transmitted per sample is given by equation nine, which is rewritten here as 

I X semicolon Y is equal to H Y minus H of Y given X. We shall now find h of y given 



x. Now by definition, H of Y given X is equal to double integral over minus infinity to 

plus infinity of joint p d f p x y log of 1 by conditional p d f p of y given x integrated 

over x and y which can be rewritten as follows.  

Integral of p d f p x multiplied by integral over minus infinity to plus infinity of 

conditional p d f p y given x log of 1 by p y given x over d y. Now, because y is equal to 

x plus n, what it implies that for a given x y is equal to n plus a constant x. Hence, the 

distribution of y when x has a given value is identical to that of n except for a translation 

by a constant x.  
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So, if p d f of noise sample n is denoted by then conditional p d f p y given x is equal to p 

d f p subscript n y minus x. Using this relationship we can rewrite the integral minus 

infinity to infinity of p y given x log of 1 by p y given x d y is equal to integral minus 

infinity to plus infinity of p y minus x log of p n y minus x integrate over y. Now, letting 

y minus x is equal to z, we have minus infinity to infinity of p of y given x log of 1 by p 

y given x over y equals as p z log of 1 by p conditional p d f of noise. Now, the right 

hand side is the entropy of the noise sample n and this is given by H of n. 
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Hence, H of Y given X is equal to H of n multiplied by minus infinity to plus infinity 

integration of p x and this is equal to H N. In deriving equation twelve we made no 

assumptions about the noise, hence equation twelve is very general and applies to all 

types of noise. The only condition is that the noise disturbs the channel in an additive 

manner. Thus, we can write the mutual information between X and Y as H of Y minus H 

of N bits per sample. 

We have assumed that the mean square value of the signal x t is constrained to have a 

value capital S and the mean square value of the noise is denoted by N subscript small n. 

Now, we shall assume that the signal x t and the noise n t are independent. In such a case 

the mean square value of Y will be the sum of the mean square value of X and N. Hence, 

mean square value of Y is equal to S plus N subscript small n. Now, for a given noise 

that is H N is given I X semicolon y that is the mutual information is maximum, when H 

Y is maximum.  
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Now, we have also seen that for the given mean square value of Y which is indicated 

here H Y will be maximum, if Y is Gaussian and the maximum entropy h max Y is given 

by half log of 2 pi e multiplied by S plus N n, this relationship we have derived earlier. 

Now, because Y is equal to X plus N and N is Gaussian Y will be Gaussian only if X is 

Gaussian. Now, as the mean square value of x is s this implies that the p d f of x is equal 

to 1 by root of 2 pi s multiplied by exponential e raise to minus x squared by 2 S and the 

maximum value of the mutual information is given as follows. H max Y minus H N is 

equal to half log 2 pi e S plus N n minus entropy of the noise.  
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Now, for a white Gaussian noise with mean square value of N subscript n the entropy of 

the noise is given by H of noise is equal to half log 2 pi e N subscript n, where noise 

power N subscript n is equal to bandwidth multiplied by twice the power spectral 

density. Therefore, channel capacity C s per sample is equal to half log S plus N n over 

N subscript n is equal to half log 1 plus signal to noise ratio. 

Now, the channel capacity per second will be the maximum information that can be 

transmitted per second equation fifteen represents, the maximum information transmitted 

per sample. Now, if all the samples are statistically independent the total information 

transmitted per second will be two B times C s. If the samples are not independent then 

the total information will be less than this quantity because the channel capacity is C 

represents the maximum possible information transmitted per second.  
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We get channel capacity as C is equal to twice B multiplied by C s, which is half log of 1 

plus signal to noise ratio, which is simplified to C is equal to B times log of 1 plus signal 

to noise ratio, this is bit per second. Now, the samples of a band limited Gaussian signal 

are independent if and only if the signal power spectral density is uniform. Obviously, it 

would transmit information at the maximum rate given by equation sixteen. The power 

spectral density of signal y t must be uniform. Now, the power spectral density of y is 

given by S y is equal to power spectral density of input plus power spectral density of 

noise assuming signal and noise are independent because power spectral density of noise 



is y denoted by N by 2 the power spectral density of x t must also be uniform. Thus, the 

maximum rate of transmission that is C given in terms of bits per second is attained 

when the input signal x t is also a white Gaussian signal.  
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So, to recapitulate when the channel noise is additive white and Gaussian with the mean 

square value given by N subscript small n, which is equal to twice the power spectral 

density multiplied by the bandwidth. Then the channel capacity C of a band limited 

channel under the constrain of given signal power S is given by C is equal to b times log 

of 1 plus signal to noise ratio. B is the channel bandit in hertz and this maximum rate is 

realized only if the input signal is a white Gaussian signal.  

Using signal space, this theorem can be verified in a way similar to the clues for the 

verification of the channel capacity of a discreet case, which we had done earlier in the 

course. This channel coding theorem indicated by Shannon’s equation is the maximum 

error free communication rate achievable on an optimum system without any restrictions, 

except for bandwidth restricted to B hertz signal power restricted to capital S. And 

Gaussian white channel noise power given by N subscript small n.  

If we have any other restrictions, this maximum rate will not be achievable. For example, 

if we take a binary channel that is a channel which is restricted to transmit only binary 

signals we will not be able to attain Shannon’s rate even if the channel is optimum. The 



channel capacity formula indicates that the transmitted rate is a monotonically increasing 

function of the signal power S. 

Now, if we use a binary channel however, we can show that increasing the transmitted 

power beyond a certain value buys very little advantage. Hence on a binary channel 

increasing S that is the signal power will not increase the error free communication rate 

beyond some value. This does not mean that the channel capacity formula has failed, it 

simply means that when we have large amount of signal power with a finite bandwidth 

then the binary scheme is not the optimum communication scheme.  

Shannon’s result provide us the upper theoretical limit of error free communication, but 

it does not tell us how to achieve this. Now, let us look at the capacity of the channel in 

the case of infinite bandwidth. Superficially, this Shannon’s equation seems to indicate 

that the channel capacity goes to infinity as the channel bandwidth b goes to infinity.  
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This however is not true, for white noise the noise power is given as follows. Hence, as 

B increases the noise power also increases, now it can be shown that S B tends to infinity 

the channel capacity C approaches a limit as follows. C is given by this relationship 

which we just derived, this can be rewritten as follows, where the noise power is written 

in terms of power spectral density and the bandwidth of the channel.  



Now, what is desired is to calculate the channel capacity when B tends to infinity, which 

is the calculation of this term on the right hand side. Now, this term on the right hand 

side can be rewritten as follows. Now, we can use the relationship that limit of x tending 

into infinity of the value x log to the base 2 of 1 plus 1 by x is equal to log of e to the 

base e which is equal to 1.44.  
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Using this we get the final result for the channel capacity when B tends to infinity as 

given by this expression on the right hand side of the equation number seventeen. And if 

we plot this we get this graphical representation of the channel capacity C with respect to 

bandwidth B for given signal power S, and for the given noise power spectral density N. 

Now, it is evident that a capacity can be made, this relationship is depicted in the figure 

as shown here, where the channel capacity C is plotted against bandwidth B normalise 

for the given signal power S and power spectral density N. It is evident that the capacity 

can be made infinite only by increasing the signal power S to infinity for a given 

optimum system. For finite signal and noise powers the channel capacity will always 

remain finite.  
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Now, based on this idea we will solve a problem as follows, let us assume that we are 

given a television picture, which is composed of approximately 300,000 basic picture 

elements about 600 picture elements in a horizontal line and 500 horizontal lines per 

frame. Each of these elements in a television picture can assume 10 distinguishable 

brightness levels, such as black and shades of grey with equal probability.  

Now, we are required to calculate or estimate the theoretical bandwidth of the additive 

white Gaussian noise channel, if the signal to noise ratio at the receiver is required to be 

at least 50 db. So, the solution to this problem is as follows. First, let us calculate 

information per picture frame, information per picture element that is known as pel is 

equal to log of 10 to the base 2 assuming all the brightness levels are equal probable, 

which gives 3.32 bits per pel.  
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Now, information per picture frame is equal to information per element multiplied by the 

number of pels in a picture frame, which is 300000 and this is equal to 9.96 multiplied by 

10 is to 5 bits. Now, for 30 picture frames per second we need a channel with a capacity 

C equal to 30 multiplied by this quantity which is equal to 2.988 multiply by 10 is to 7 

bits per second. Now, we know that for a additive white Gaussian noise channel capacity 

C is equal to bandwidth multiply by log of 1 plus signal to noise ratio. We have been 

given that signal to noise ratio that is S by N subscript small n is equal to 50 db, which 

corresponds to 100,000. 

Therefore, using this value we get the following equation and from this, we can calculate 

the theoretical estimation of the bandwidth of the additive white Gaussian noise channel 

as b equal to 1.8 megahertz. Having calculated the channel capacity for the case of 

additive white Gaussian noise, let us calculate the channel capacity of a band limited 

channel disturbed by additive coloured Gaussian noise.  
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So, the problem is to show that the channel capacity of a band limited channel disturbed 

by a coloured Gaussian noise under the constraint of a given signal power is given by 

this expression, where B is the channel bandwidth in hertz over the frequency range f 2 

to f 1. S s and S n are the signal and the noise power densities respectively and we have 

to show that this maximum rate of information transmission is attained if the desired 

signal is Gaussian, and its power spectral density satisfies the following condition. The 

solution to this problem is as follows. 
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Consider a narrowband delta f where delta f tends to 0 over the range f 2 f 1. So, that we 

may consider both signal and noise power density to be constant, that is band limited 

white over the interval delta f. In this case the signal and noise power over the band delta 

f is given as follows S delta f is equal to twice f and the noise power over the band delta f 

is equal to. Now, the maximum channel capacity C over this band delta f is given by C 

delta f is equal to delta f log of signal power plus noise power divided by noise power, 

which can be rewritten as delta f log of signal power densities plus noise power density 

divided by noise power density.  
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Now, the capacity of the channel over the entire band f 2 to f 1 is given by the integral C 

is equal to integral from f 1 to f 2 of the quantity log of signal power density plus noise 

power density divide by noise power density integrated over frequency f 1 to f 2. Now, 

we wish to maximize C, where the constraint is that signal power is constant that is twice 

integral of f 1 to f 2 of signal power density is equal to capital S a constant.  
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Now, to solve this problem we use the theorem from the calculus of variation, which we 

had seen earlier given the integral I of the form subject to the following constraints. 

Where lambda 1 lambda 2 up to lambda k are given constants the form of p that 

maximises I with the constraints is given by this equation, where alpha 1 alpha 2 and 

alpha k are adjustable constants called undetermined multipliers.  
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Using this relationship we can get the following equation from this equation, it is not 

very difficult to show that signal power density plus noise power density is equal to 



minus 1 by alpha, which is a constant since alpha is a constant. Thus signal power 

density and noise power densities are related by this relationship. This shows that to 

attain the maximum channel capacity, the signal power density and the noise power 

density must be a constant that is a white.  
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Under this condition we can calculate it the channel capacity as, is equal to and this can 

be simplified as which is equal to B times log of signal power density plus noise power 

density minus integral of the quantity log of noise power density. So, this is the 

relationship which we were seeking. Now, using the results in the earlier problem we can 

show that the worst kind of Gaussian noise is a white Gaussian noise that is constrained 

to a given mean square value. Now, the solution to this problem can be found as follows. 
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Under the best possible condition we have shown from the earlier problems result that C 

is equal to this quantity, where this quantity is a constants. So, the worst case will be 

when this quantity is a maximum. Now, we will show that this quantity is maximum 

when power spectral density of noise is a constant, when the noise is constrained to have 

a certain mean square value.  
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So, the problem is to maximize this quantity under the constraint of given noise power. 

So, again using the theorem from the calculus of variation we get the result as follows 



and from this we get that the power spectral density of the noise is equal to minus 1 

times alpha where alpha is a constant so this term turns out to be a constants.  

Thus we have shown that for a noise with a given power the integral is maximum, when 

the noise is white this shows that the white Gaussian noise is the worst possible kind of 

noise. Now, during the course of our study we have studied source coding theorem for a 

discreet memory less source. According to this theorem average code word length must 

be at least as large as the source entropy for perfect coding that is perfect representation 

of the source. 

However, in many practical situations there are constraints that force the coding to be 

imperfect there by resulting in unavoidable distortions. For example, constraint imposed 

by communication channel may place an upper limit on the permissible code length and 

therefore, average code word length assigned to the information source. As another 

example the information source may have a continuous amplitude as in the case of 

speech. 

And the requirement is to quantise the amplitude of each sample generated by the source 

to permit it’s representation by a code word of finite length as impulse code modulation, 

in such cases the problem is referred to as source coding with fidelity criterion. And the 

branch of information theory that deals with it is called rate distortion theory. In the next 

class, we will begin our study with the rate distortion theory and see how it helps us to 

design efficient lossy compression schemes. 


