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In the last class, we studied that the occupancy factor by transmitted message is 2 to the 

power negative of the term beta minus alpha times T. 
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And this can be made as small as possible simply by increasing T. In the limit as T tends 

to infinity, the occupancy factor tends to 0. This will make the error probability P E go to 

0 and we have the possibility of error free communication. One important question 

however remains unanswered. 
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The question is what must be the rate reduction ratio that is alpha by beta in order to 

achieve error free communication?  
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To answer this question we observe that increasing T increases the length of the 

transmitted sequence, which is given by beta times capital T digits. Now, if P E denotes 

the digit error probability then it can be seen from the relative frequency definition or the 

law of large numbers that as T tends to infinity the total number of digits in error in a 

sequence of beta times T digits is exactly beta times T error probability. Hence, the 



received sequences will be at a hamming distance of beta times T P E from the 

transmitted sequence.  

Therefore, for error free communication we must leave all the vertices unoccupied within 

spheres of radius given by beta times T P E drawn around each of the 2 raise to alpha T 

occupied vertices. In short we must be able to pack 2 raise to alpha times T non 

overlapping spheres, each of radius beta times T P E into the hamming space of beta T 

dimensions. This means that for a given beta alpha cannot be increased beyond some 

limit without causing overlap in the spheres and the consequent failure of the scheme.  

Shannon’s theorem states that for this scheme to be successful alpha by beta ratio must 

be less than some constant and that constant is denoted by channel capacity C S, which is 

a function of the channel noise and the signal power. So, Shannon’s theorem says that 

alpha by beta should be less than C S which is the channel capacity. It must be 

remembered that such perfect error free communication is not practical. In this system, 

we accumulate the information digits for T seconds before encoding them and because T 

tends to infinity for error free communication we must wait until eternity before we start 

encoding.  

Hence, there will be an infinite delay at the transmitter and an additional delay of the 

same amount at the receiver. Second, the equipment needed for the storage encoding and 

decoding of the sequence of infinite digits would be monstrous. Needless to say that in 

practice the dream of error free communication cannot be achieved. Then the question is, 

what is the use of Shannon’s theorem? First, it indicates the upper limit on the rate of 

error free communication that can be achieved on a channel.  

This result in itself is monumental. Second, it indicates the way to reduce the error 

probability with only a small reduction in the rate of transmission of information digits. 

We can therefore, seek or compromise between error free communication with infinite 

delay and virtually error free communication with a finite delay. Next, let us investigate 

the problem of error free communication over a binary symmetric channel. We have seen 

that channel capacity is the property of a physical channel over which the information is 

transmitted. We have also shown that over a noisy channel C S bits of information can be 

transmitted per channel. 
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So, if we consider a binary channel what this means is that for each binary digit or 

symbol transmitted the received information is C S bits where C S is less than equal to 1 

for a binary symmetric channel. Thus, to transmit one bit of information over a binary 

symmetric channel we need to transmit at least 1 by C S binary digits. This scheme gives 

us a code efficiency that is C S and redundancy as 1 minus C S. When a transmission of 

information is implied it means error free communication because mutual information 

was defined as the transmitted information minus the loss of information caused by the 

channel noise.  

The problem with this derivation is that it is based on a speculative definition of 

information. The problem with this derivation is that it is based on a speculative 

definition of information. That is information associated with the occurrence of a 

particular E is given by I equal to log of 1 by probability of occurrence of that event. And 

based on this definition we defined the information lost during the transmission over the 

channel.  

Now, we really have no direct proof that the information lost over the channel will 

obliges in this way. Hence, the only way to ensure that this whole speculative structure is 

sound is to verify it. So, if we can show that C S bits of error free information can be 

transmitted per symbol over a channel then the verification will be complete. Here we 

shall verify the results for a binary symmetric channel.  
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Let us consider a binary source. This source emits messages at the rate of alpha digits per 

second. We accumulate these information digits over T seconds to give a total of alpha T 

digits. Now, because alpha T digits form 2 raise to alpha T possible combinations, our 

problem now, is to transmit one of this 2 raise to alpha T super messages every T 

seconds. These super messages are transmitted by a code word of length beta times T 

digits where beta is greater than alpha to ensure redundancy. Now, because beta times T 

digits can form 2 raised to beta times T distinct patterns which are the vertices of a beta 

times T dimensional hypercube and we have only 2 raised to alpha times T super 

messages.  

We are utilizing only a 2 raised to minus beta minus alpha times T fraction of the 

vertices. The remaining vertices are deliberately unused in order to combat noise. Now, 

if you let T tend to infinity the fraction of the vertices used approaches 0 and because 

there are beta times T digits in each transmitted sequence the number of digits received 

in error will be exactly beta times T multiplied by digit error probability which is given 

by P E when T tends to infinity. We now construct hamming spheres of radius beta times 

T P E around each of the 2 raise to alpha T vertices which are used for the messages. 

When any message is transmitted the received message will be on the hamming sphere 

surrounding the vertex corresponding to that message. 
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We use the following decision rule. If a received sequence falls inside or on a sphere 

surrounding message m i, then the decision is m i is transmitted. Now, if T tends to 

infinity the decision will be without error if all the 2 raise to alpha T spheres are non 

overlapping. Now, of all the possible sequences of beta times T digits the number of 

sequences that differ from given sequence by exactly j digits is given by beta T j, this 

combination.  
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Hence, capital K which denotes the total number of sequences that differ from a given 

sequence by less than or equal to beta times T P E digits is K is equal to summation over 

j is equal to 0 to beta T P E. Now, if we use an inequality which is often used in 

information theory, the inequality is less than equal to 2 to the power beta T entropy 

function which is function of error probability where error probability is less than 0.5. 

Using this inequality what it implies that K is less than equal to 2 to the power beta T 

entropy function with entropy function given as P E log of 1 by P E plus 1 minus P E log 

to the base 2 1 minus… 
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Now, from the 2 raise to beta times T possible vertices we chose 2 raise to alpha T 

vertices to be assigned to the super messages. How shall we select this vertices is the 

next question. So, let us look at the decision procedure. From the decision procedure it is 

clear that if you assign a particular vertex to a super message then none of the other 

vertices lying within a sphere of radius of beta T P E can be assigned to another super 

message.  

Thus, when we choose a vertex for a message say m 1 the corresponding K vertices 

become ineligible for consideration. Then from the remaining 2 raise to beta T minus K 

vertices we choose another vertex for m 2. We proceed in this way until all the 2 raise to 

beta T vertices are exhausted. Now, this is a rather tedious procedure. So, let us see what 

happens if we choose the required 2 raised to alpha T vertices randomly from the 2 raise 



to beta T vertices. Now, if we adopt this procedure then there is a danger that we may 

select more than 1 vertex lying within a distance beta T P E. If however alpha by beta is 

sufficiently small the probability of making such a choice is extremely small as T tends 

to infinity. Let us look at this in a little more detail. 
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Now, the probability of choosing any particular vertex S 1 as one of the 2 raise to alpha 

T vertices from 2 raise to beta T vertices is given by 2 raise to alpha T divided by 2 raise 

to beta T which is equal to 2 raise to minus beta minus alpha T. Now, remembering that 

K vertices lies within a distance of beta times T P E digits from the vertex S 1, the 

probability that we may choose another vertex S 2 that is within the distance beta times T 

P E from the vertex S 1 is given by the expression P that is this probability is equal to K 

times 2 minus beta minus alpha T. Now, we have shown earlier that K is less than equal 

to twice beta T entropy function. Therefore, from this equation it follows that probability 

of choosing another vertex S 2 that is within the distance beta T P E from S 1 is less than 

equal to 2 to the power minus beta times 1 minus entropy function minus alpha 

multiplied by T.  
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If you look at this expression as T tends to infinity this probability tends to 0 if the 

following condition is satisfied beta times 1 minus entropy function is greater than alpha. 

That is if alpha by beta is less than 1 minus entropy. Now, 1 minus entropy function is 

the channel capacity C S for a binary symmetric channel. Therefore, we conclude that 

this probability of choosing another vertex S 2 that is within the distance of beta T P E 

from S 1 will tend to 0 if alpha by beta is less than channel capacity C S.  

Hence, the probability of choosing two sequences randomly within a distance of beta T P 

E approaches 0 as T tends to infinity, provided alpha by beta is less than C S. And in this 

case we have error free communication. We can choose alpha by beta is equal to C S 

minus epsilon where epsilon is arbitrarily small. So, we have verified the Shannon 

second theorem of a error free communication for a binary symmetric channel. So, far in 

our study the sources and channels considered in our discussion of information theoretic 

concepts have involved and symbols of random variables that are discrete in amplitude.  

Next, we will extend some of these concepts to continuous random variables and random 

vectors. The motivation for doing so is to pave the way for the description of channel 

capacity in terms of the band width of the channel, channel noise and signal power. 

Having developed concepts of information transmission for discrete case we are now 

ready to tackle the more realistic case of a continuous source and channel. We will begin 

with the measure of information for a source that emits continuous signal. The material 



may seem heavy going at first, but we will then make reasonable assumptions about 

transmission of continuous signals to express the channel capacity in terms of band width 

and signal to noise ratio. 
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This result is known as Hartley Shannon law. This result leads us to the definition of an 

ideal communication system which serves as a standard for system comparison and a 

guide to design improved communication systems. A continuous information source 

produces a time varying signal denoted by x t, we will treat the set of possible signals as 

an ensemble of wave forms generated by some random process which is assumed to be 

ergodic.  

And by definition ergodic process means that time averages and ensemble averages are 

the same. We will also assume that the process has a finite band width meaning that the 

signal x t is completely characterized in terms of periodic sample values. Thus, at any 

sampling instance the collection of possible sample values constitutes a continuous 

random variable denoted by capital X and described by its probability density function p 

x.  
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Now, we have seen that for a discrete random variable X which takes on the values x 1, x 

2 up to x n with probabilities P x 1, P x 2, P x n. The entropy H X was defined as 

summation of P x i log 1 by P x i, i equal to 1 to n. Now, we can extend the definition of 

entropy to continuous random variable by using the integral instead of discrete 

summation in equation number one. So, if we do that we can define the entropy of a 

continuous random variable as integral minus infinity to plus infinity of p d f, p x log of 

1 by p x.  

We shall see that equation two is indeed the meaningful definition of entropy for a 

continuous random variable. However, we cannot accept this definition unless we show 

that it also has a meaningful interpretation in terms of uncertainty. Our random variable 

X takes a value in the range n delta x, n plus 1 delta x with probability p of n delta x 

multiplied by delta x in the limit as delta x tends to 0. Now, the error in the 

approximation will vanish in the limit as delta x tends to 0.  
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So, using this simplification for a continuous random variable we can define the entropy 

for the continuous random variable X as H X is equal to limit of delta x tending to 0 

summation of probability of n delta x delta x log of 1 by p n delta x multiplied by delta x. 

This is the summation over n and this can be simplified as limit of delta x tending to 0. 

We can break up this summation in two parts as follows, log of minus summation over n, 

p n delta x delta x log of delta x.  

Now, as delta x tends to 0 this summation can be approximated by the integral which 

gives the following expression p x log of 1 by p x d x minus limit delta x tending to 0 log 

delta x integral of probability distribution function from minus infinity to plus infinity. 

And this can be further simplified as… So finally, we get the expression for entropy for a 

continuous random variable which is indicated by equation number three. So, in the limit 

as delta x extends to 0 log of delta x will tend to minus infinity.  

So, it appears that the entropy of a continuous random variable is infinite. Now, this is 

quite true. The magnitude of uncertainty associated with a continuous random variable is 

infinite. This fact is also apparent intuitively. Continuous random variable assumes an 

uncountable infinite number of values and hence the uncertainty is on the order of 

infinity. So, does this mean that there is no meaningful definition of entropy for a 

continuous random variable. On the contrary we will see that the first term in the 



equation number three serves as a meaningful measure of the entropy that is average 

information for a continuous random variable x. Now, this may be argued as follows. 
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We can consider integral p x log 1 by p x as a relative entropy with minus log delta x 

serving as a datum or a reference. Now, the information transmitted over the channel is 

actually the difference between the two terms entropy of X and entropy of X given Y. 

Now, obviously if we have our common datum for both H X and H of X given Y then 

the difference H X minus H of X given Y will have the same difference as the difference 

between the relative entropys.  
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So, we are therefore justified in considering the first term in equation three as the relative 

entropy of X or sometimes it is also known as differential entropy of X. We must 

however remember that this is relative entropy and not absolute entropy. Failure to 

realize this crucial point generates many apparent fallacies. Let us try to take an example 

to understand this.  
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In particular consider the two information signals x t and y t. A signal amplitude X 

associated with the signal x t is a random variable uniformly distributed in the range 



minus 1 to plus 1. This signal x t is passed through an amplifier of gain 2 to obtain the 

signal y t. Therefore, the output of this process which is a continuous random variable y 

is also uniformly distributed in the range minus 2 to plus 2. So, we have probability 

distribution function for the random variable x given by half when mod x is less than 1 

and 0 otherwise. And probability distribution function for y is given as one-fourth when 

mod y is less than 2 and is equal to 0 otherwise.  

Now, using this pdf’s we can calculate the relative entropy’s of x and y as follows. 

Entropy of y is equal to 2 bits. Now, the entropy of the random variable y is twice that of 

x. This result may come as a surprise since a knowledge of x uniquely det ermines y and 

vice versa because y is equal to twice of x. Hence, the average uncertainty of x and y 

should be identical. Amplification by itself can neither add or subtract information. So, 

the question is why there is H of Y as twice as large, why there is H of Y is twice as 

large as H X. This becomes clear when we remember that H X and H Y are differential 

entropy’s. And they will be equal only if the datum or references for both the random 

variable x and y are equal. 
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Now, the reference entropy R 1 for random variable X is minus log delta x and reference 

entropy for random variable Y is minus log delta y in the limit. So, R 1 is equal to limit 

delta x tending to 0 minus log delta x and R 2 is equal to limit delta y tending to 0 minus 

log delta y. Therefore, the difference R 1 minus R 2 is equal to limit delta x delta y 



tending to 0 of log delta y by delta x, which is equal to log of d y by d x is equal to log of 

2 is equal to 1 bit.  

Thus, R 1 the reference entropy of x is higher than the reference entropy R 2 for y by 1 

bit. Hence, if x and y have equal absolute entropy’s the differential or relative entropy’s 

must differ by 1 bit. Now, we have seen that the entropy for a discrete random variable is 

maximum, when all the outcomes have equal probabilities. The next question is, is it 

possible to derive such relationship for a continuous random variable? We will 

investigate this in the next class. 


