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Discussion on Error Free Communication over Noisy Channel 
 

Over a next couple of lectures, we will study Shannon’s second theorem, which is the most 

important result in our study in information theory and coding without getting loss into the 

rigorous mathematical proof for the same. We will try to appreciate the importance of this 

theorem in the framework of a binary symmetric channel. In all modes of communication, the 

communication is not error free. We may be able to improve the accuracy in the transmission 

of digital signals by reducing the error probability. But it appears that as long as a channel 

noise exists, the communication be error free.  
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For example, it can be shown that in all digital communication system, the error probability 

that is P E varies as exponential minus a constant k times E b. E b is the energy per bit. By 

increasing E b, we can reduce the probability of error to any desired level. Now, the signal 

power which is indicated by S is equal to E b times R b where R b is the bit rate. Hence, 

increasing E b means either increasing the signal power S for a given bit rate or decreasing 

the bit rate R b for a given signal power S or both. Now, because of physical limitations or 

signal power S, it cannot be increased beyond a certain limit. Hence, to reduce P E further, 

we must reduce R b. What this implies that to reduce P E, we have to make R b tend to 0. 



 
 
Thus, the price to be paid for reducing P E is a reduction in the transmission rate R b.  So, P E 

tends to 0 only if R b tends to 0. Hence, it appears that in the presence of channel noise, it is 

impossible to achieve error free communication. Thus, that was thought by communication 

engineers until the publications of Shannon’s classical paper.  
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In 1948, Shannon published his classical paper titled mathematical theory of communication 

in bell system technical journal in 2 parts, in July 1948 and October 1948. The gist of 

Shannon’s paper is that the presence of random disturbances in a channel does not by itself 

set any limit on transmission accuracy. But instead, it sets a limit on the information rate for 

which arbitrarily small error probability can be achieved.  
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We have studied that message of source S with entropy given by H S. It can be coded by 

using an average of H S binary digits per message. This encoding has 0 redundancy. Hence, 

if we were to transmit this encoded message over a noisy channel, some of the information 

will be received in error. There is absolutely no possibility of error free communication over 

a noisy channel where messages are coded with 0 redundancy. The use of redundancy in 

general helped to combat noise. 

This can be seen from a simple example of a single parity check code. In this coding scheme, 

an extra binary digit is added to each code word to ensure that the number of 1’s in the 

resulting code; 1’s code words are always either even or odd. Now, if a single error occurs in 

the received code word, then the parity is violated. The receiver requests for retransmission. 

This is a rather simple example to demonstrate the utility of redundancy. More complex 

coding procedures can be adopted to correct n digits error. These are discussed in later. Now, 

the addition of an extra digit increases average word length to H S plus 1 giving the code 

efficiency eta equal to H S divided by H S plus 1. 

Code efficiency is defined as the entropy of the source divided by the average length of the 

code. The redundancy in this case is 1 minus eta. This is equal to 1 by H S plus 1. Thus, the 

addition of an extra check digit increases redundancy. But it also helps combat noise. So, 

immunity against channel noise can be increased by increasing the redundancy. Shannon has 

shown that it is possible to achieve error free communication by adding sufficient 



 
 
redundancy. For example, if you have a binary symmetric channel with an error probability P 

e. 
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Then, for error free communication over this channel, messages from a source with entropy H 

S must be coded by binary codes with a word length of at least H S divided by C S. C S is the 

channel capacity for a single usage of a binary symmetric channel. It is equal to 1 minus P e 

log 1 by P e plus 1 minus P e log 1 by 1 minus P e. Now, the efficiency of this code can never 

be greater than C S. So, if a certain binary channel has C S equal to 0.4, what it implies? It 

implies that a code that can achieve error free communication must have at least 2.5 times H 

S binary digits per message. It is 2 and 1 half times as many digits as required for coding 

without redundancy. This means that there are 1.5 times H S redundant digits per message.  
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Thus, on the average for every 2.5 binary digits transmitted, 1.5 digits are redundant or check 

digits giving a redundancy of 1 minus C S equal to 0.6. As discussed in the beginning of this 

lecture, P E, the error probability of binary signalling varies as exponential minus k times E 

b. Hence, to make P E tend to 0, either the signal power should tend to infinity or R b should 

tend to 0. Now, because signal power must be finite, P E tends to 0 only if R b tends to 0. But 

Shannon’s result shows that for a given channel as long as the rate of information digits per 

second to be transmitted is maintained below a certain limit, this limit is known as channel 

capacity. Then, it is possible to achieve error free communication.  
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What it means is that to attain probability of P E tending to 0, it is not necessary to make R b 

tend to 0. So, such a goal of probability tending to 0 can be attained by maintaining the rate 

of information less than C. C is the channel capacity defined per second. We will derive this 

relation later on where C is equal to twice of the channel multiplied by C S. C S is the 

channel capacity per single usage of the channel. So, the question is where is the 

discrepancy? To answer this question, let us investigate carefully the role of redundancy in 

error free communication. Although, we will restrict our discussion here to a binary scheme, 

this discussion is quite general. It can be extended to a binary case. So, consider first the use 

of a binary symmetric channel to transmit reliable messages. 
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As shown in this figure, the input to this channel is alphabet A consisting of letters 0 and 1. 

The output of this channel is alphabet B consisting again of letters 0 and 1. To be even more 

specific, we assume that the probability of error of this binary symmetric channel denoted by 

p is equal to 0.01 means that 99 percent of the binits transmitted are received correctly. Now, 

for many modern data transmission systems, this level of reliability is far from adequate 

probability of error requirements. They are 10 is to minus 6, 10 is to minus 8 or even lower 

are often necessary. In order to increase the reliability of our channel, we may have to repeat 

our messages 0 and 1 several times. For example, suppose we decide to send each message 0 

or 1 3 times. So, one method of viewing this procedure is illustrated in the figure shown here.  



 
 
(Refer Slide Time: 16:35) 

 

The output of this channel under these circumstances is an element of a third extension of a 

binary symmetric channel. So, the output is a binary sequence of length 3. We have used 0 0 

0 and 1 1 1 sequences as message sequences. The probability that no error occurs in the 

transmission of our 3 digits is 1 minus p cube is equal to p bar cube.  
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p bar is by definition 1 minus p. Now, the probability of just one error is given by 3 p p bar 

square. The probability of 2 errors is 3 p squared p bar. Finally, the probability that all 3 

binits are in error will be given by p cube. Now, whenever p is less than half that is when the 

probability that a binit is received correctly is greater than the probability that it is received 



 
 
incorrectly. Then, in this case, it seems reasonable to decide that a message 0 0 or 1 1 was 

transmitted according to the majority vote of the 3 received binits. Now, it is easy easy to 

show that this decision rule is in fact the maximum likelihood decision rule. We will prove 

this later in this class. In any event, such a decision rule leads to a probability of 

interpretating the message in error. 
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It is given by P E equal to the sum of the probability of 3 binit errors that is p cube plus 2 

binit errors that is 3 p squared p bar. Now, for p equal to 0.01 this yields P E equal to 

approximately 3 multiplied by 10 is to minus 4. Thus, we have been able to reduce the 

probability of error from the value of 10 is to minus 2 to 10 is to minus 4. Having gone this 

far, it is not difficult to see how to increase the reliability even further. We may send five 

binits over the channel for each binary message we wish to transmit. This is represented in 

the figure as shown here. We use messages 0 0 0 0 0 to transmit 0 and the sequence 1 1 1 1 1 

to transmit 1.Now, the probability of 0, one, 2, 3, four or five binit errors in transmissions is 

as follows. So, for the probability of 0 error is p bar 5. The probability of five binit error is p 

5.  



 
 
(Refer Slide Time: 22:19) 

 

If you again use a majority rule that is maximum likelihood decision rule to decide whether 0 

0 0 0 0 or 1 1 1 1 1 was transmitted, we obtain a probability of error P E equal to p 5 plus 5 

times p 4 p bar plus 10 p cube p bar square that is the sum of the probabilities of five four or 

3 binit errors. Now, again for p equal to 10 is to minus 2, this probability of error P E is 

approximately equal to 10 is to minus 5.  Now, there is of course no limit to this crude 

method of increasing reliability.  
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In the table shown here, we give the probability of message error when 1, 3, 5, 7, 9, 11 binits 

per message are used in a binary symmetric channel with single binit probability of error of p 



 
 
equal to 10 is to minus 2. The improvement displayed in this table is not achieved without 

penalty the price we pay. For increased message, reliability is increased, redundancy in the 

transmitted binits. In other words, although we may decrease the probability of error from 10 

is to minus 2 to 5 multiplied by 10 is to minus 10 by going from 1 binit per binary message to 

11 binits per binary message, we also decrease the message rate from 1 message per binit to 1 

by 11 message per binit. In general, the simple repetitive method we have described can lead 

to an exchange of message rate for message reliability. 
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Typically, such an exchange will appear as plotted in the figure shown here. 
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So, the probability of message error decreases with the increase, with the decrease. So, the 

probability of message error decreases with the decrease in the message rate. In any case, 

repetitions cause redundancy, but also improve the probability of error. Now, it will be 

instructive to understand this situation from a graphic point of view. Consider case of 3 

repetitions. We can show all 8 possible sequences of 3 binary digits graphically as the 

vertices of a cube as shown here. 
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This is a 3 dimensional cube in hamming sphere. This is a three dimensional cube in 

hamming space. It is convenient to map binary sequences as shown in this figure and to talk 

in terms of what is called the hamming distance. 
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Hamming distance between any 2 binary sequences of the same length alpha i and beta j is 

defined as the number of places in which alpha i and beta j differ. For example, if alpha i is 

equal to 1 0 1 1 1 1 and beta j is equal to this sequence. Then, hamming distance denoted by 

D between alpha i and beta j is equal to 3 because alpha and beta j differ in 3 places. So, in 

the case of 3 repetitions, we transmit binary 1 by triple 1 1 1 and binary 0 by triple 0.  

The hamming distance between these 2 sequences is 3. Observe that of the 8 possible 

vertices, we are occupying only 2 vertices 0 0 0 and 1 1 1 for transmitted messages at the 

receiver. However, because of channel noise, we are liable to receive any one of the 8 

possible sequences. Now, the majority decision loss rule can be interpreted as a rule that 

decides in the favour of that message 0 0 0 or 1 1 1, which is at the closest hamming distance 

from the received sequence. 
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Let us provide a simple proof for the same we have studied that maximum likelihood 

decision rule minimizes the error probability when all possible inputs are equi probable. 

Now, this rule has a simple interpretation in terms of hamming distance. Let us assume that 

alpha i is the transmitted code word and beta j is any possible output sequence. Obviously, 

alpha i and beta j are of the same length n. We denote the hamming distance between alpha i 

and beta j as d i j. 
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Then, alpha i and beta j differ in exactly d i j places. The probability that beta j will be 

received if alpha i is sent is just the probability that the errors will occur in the d i j places 



 
 
where they differ and that no errors will occur in the n minus d i j remaining places. So, 

probability of b j given alpha i is equal to probability p raise to d i j multiplied by p bar raise 

to n minus d i j for p less than half. The only case of any interest probability of b beta j given 

alpha i decreases with increasing d i j, further beta j is from the transmitted binary sequence. 

It is less likely to be received. The maximum likelihood decision rule selects that code word, 

which maximises probability of beta j given alpha i. Hence, for any received sequence beta j, 

the maximum likelihood rule selects the code word closest to beta j in the hamming distance 

sense. Now, this maximum likelihood decision rule can be summarised in the figure shown 

here. 
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Beta j is the received sequence and alphas are the transmitted sequence. So, in this figure, 

beta j is closest to the code word alpha star where the distance is indicated by small d which 

is the smallest distance compared to all d i j’s.  
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So, returning back to the case under discussion for 3 repetitions sequences 0 0 0, 0 0 1, 0 1 0, 

and 1 0 0 are all within 1 unit of hamming distance from 0 0 0. But they are at least 2 units 

away from triple 1 1 1. Similarly, when any of the sequences 1 1 0, 1 1 1, 0 1 1 or 1 0 1 is 

received, the decision is binary 1. We can now see why the error probability is reduced in this 

scheme of the possible 8 vertices. We have used only 2 vertices for the messages. These are 

separated by 3 hamming units. Now, if we draw a hamming sphere of unitary radius around 

each of these 2 vertices, the 2 hamming spheres are non overlapping. Now, the channel noise 

can cause a distance between the received sequence and the transmitted sequence. As long as 

the distance is equal to or less than 1 unit, we can still detect the message without error. Now, 

in a similar way the case of 5 repetitions can be represented by a hyper cube of 5 dimensions. 
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The transmitted sequences in this case are 0 0 0 0 0 and 1 1 1 1 1. These occupy 2 vertices of 

the hyper cube in 5 dimensions. These are separated by 5 units. Now, if we draw the 

hamming sphere of 2 unit radius around each of these 2 vertices, then these hamming spheres 

would be non overlapping. In this case, even if channel noise causes 2 errors, we can still 

detect the messages correctly. Hence, the reason for the reduction in error probability is that 

we have not used all the vertices for messages. Had we occupied all the available vertices for 

messages as is the case without redundancy or repetition, then if a channel noise caused an 

error even if it was a single error? Then, the received sequence would occupy a vertex 

assigned to other transmitted sequence.  

We are certain to make a wrong decision precisely because we have left the neighbouring 

vertices of the transmitted sequences unoccupied. We are able to detect the sequences 

correctly despite channel errors within a certain limit. The smaller the fraction or vertices 

used the smaller error probability. It should also be remembered that redundancy or repetition 

is what makes possible to have unoccupied vertices. Now, if we continue to increase n that is 

the number of repetition, the probability of error will reduce. But this will also reduce the bit 

rate that is R b by the same factor n. But no matter how large we make n, the error probability 

P E never becomes 0. 
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The trouble with this scheme is that it is inefficient because we are adding redundant or check 

digits to each information digit to give an analogy. Redundant or check digit are like guards 

protecting the information digit. Now, to hire guards for information digit is somewhat 

similar to a case of families living on a certain street hid by several burglaries. Each family 

panics and hires a guard. This is obviously an inexpensive and inefficient way of doing 

things. A better solution would be for all the families on the same street to hire a single guard. 

A single guard can check all the houses on the street as long as the street is not sufficiently 

long. If the street is sufficiently long, then we can hire more than 1 guard in using repetitions 

we had.  

A similar analogy repetition or repeated digits is used to check only 1 information digit using 

the clue from the preceding analogy. It might be more efficient to use redundant for a block 

of information digits. This is the key to our problem. Let us consider a group of information 

digits over a certain interval of time of T seconds. Let us add redundant digits to check on all 

this digits. If we continue to increase n that is the number of repetitions, we will reduce the 

error probability that is P E. But we will also reduce the bit rate that is Rb by the same factor 

n.  
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So, if n denotes the number of repetitions and if we increase this, the error probability will 

reduce. But this will also reduce the bit rate by the same factor n. But no matter how large we 

make n, the error probability never becomes 0. The trouble with this scheme is that it is 

inefficient because we are adding redundant or check digits for each information digit to give 

an analogy. Redundant or check digits are like guards protecting information digits. To hire 

guards for information digits is somewhat similar to a case of families living on a street, 

which is hid by several burglaries.  Each family panics and hires a guard. This is obviously 

expensive and inefficient. A better solution would be for all the families on the street to hire 1 

guard and share the expenses.  

1 guard can check on all the houses on the street assuming that the street is not too long. If 

the street is too long, it might be necessary to hire more than 1 guard. But it is certainly not 

necessary to hire 1 guard per house. In using repetitions, we had a similar situation. 

Redundant or repeated digits were used to check on only 1 information digit using the clue 

from the preceding analogy. It might be more efficient if we use redundant digits not to check 

or guard any 1 information digit, but a block of information digits. Herein, lays the key to our 

problem. Let us consider a group of information digits over certain time interval of T 

seconds. Let us add some redundant digits to check on all this information digits.  

Suppose, we need to transmit alpha binary information digits per second, then over a period 

of T seconds, we have a block of alpha T binary information digits. If this block of 

information digits, we add beta minus alpha times T check digits, that means beta minus 



 
 
alpha check digits or redundant digits are added per second. Then, we need to transmit beta 

T, where beta is greater than alpha digits for every alpha T information digits. 
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Therefore, over T second interval, we have alpha times T information digits beta times T total 

transmitted. Beta is greater than alpha and this implies beta minus alpha times T are check 

digits or redundant digits or guard digits. Thus, instead of transmitting 1 binary digit every 1 

by alpha seconds, we let alpha times T digits accumulate over T seconds. Now, consider this 

as a message to be transmitted. Therefore, there are total of 2 raise to alpha T such super 

messages. Thus, every T seconds, we need to transmit one of the 2 raise to alpha T possible 

super messages. These super messages are transmitted by a sequence of beta times T binary 

digits. What this implies that there are in all 2 raise to alpha times beta T possible sequences 

of beta times T binary digits. This can be represented as vertices of a beta times T 

dimensional hyper cube. 
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Now, because we have only 2 raise to alpha times T messages to be transmitted, whereas 2 

raise to beta times T vertices are available, we occupy only 2 rise to minus beta minus alpha 

times T fraction of the vertices of the beta times T dimensional hyper cube. Observe that, we 

have reduced the transmission rate by a factor of alpha by beta. This rate reduction alpha by 

beta is independent of T. The fraction of the vertices occupied also known as occupancy 

factor by the transmitted message is 2 raise to minus beta minus alpha T. 

This can be made as small as possible simply by increasing T in the limit as T tends to 

infinity. The occupancy factor approaches 0. This will make the error probability go to 0. We 

have the possibility of error free communication. One important question however remains to 

be answered. What must be the rate reduction factor that is alpha by beta for this dream to 

come true? We will try to seek an answer to this question in the next class. We will also look 

into the verification of error free communication over a binary symmetric channel. 


