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Lecture - 23 

Reduction of Information Channels 
 

We have proved mathematically that information tends to leak in a cascade of 

information channels. We have also found necessarily and sufficient condition that 

cascade not loose information. We will extend this result to see, how to obtain a radio set 

of channel outputs without loss in information. For example, in a case of binary data 

transmission by satellite, the output received at the Earth station often contains irrelevant 

information. 

The antenna on the earth, in a such system might obtain a sequence of pulses of various 

amplitude. The receiver would take each pulse and compare it with a threshold. If the 

amplitude of the pulse is larger than the threshold, it converts that pulse to a binary 1 and 

if it is below the threshold it converts the pulse to a binary 0. We may think of two 

channels in the situation just described. 

First there is a channel with a binary input that is thus that is sent from the satellite and a 

large number of outputs, corresponding to the number of distinguishable pulse 

amplitude. Second we could think of a channel with the binary inputs and binary outputs 

corresponding to the outputs of a receiver. Now, the second channel is clearly a 

simplification of the first channel. We call the second channel as a reduction of the first 

channel so let us define the reduction of a channel. 
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So, consider channel with r inputs and s outputs and this channel is described by a 

channel matrix P of the form P 11, P 12, P 1i, P 1i plus 1, P 1s. Similarly, we have P 21, 

P 22, P 2i, P 2i plus 1 P 2s P r1, P r2, P ri, P ri plus 1, P rs. Given this channel matrix, we 

define a new channel with r inputs, and s minus outs minus 1 output by adding together 

any two columns of this matrix P. We could combine the i th column and i plus 1, 

column to get a radio set of output. So, when we do this kind of combination, we call the 

channel matrix of the new channel P dash.  
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And the is equal to P 11, P 12,P 1i plus P 1i plus 1, P 1s, P 21, P 22, P2i plus P 2i plus 1, 

P 2s, P r1, P r2, P ri plus P ri plus 1, P rs. So, this channel matrix of the new channel P 

dash, the new channel P dash is called an elementary reduction of P. Now, we may 

repeat this process of combining a number of times each time forming a elementary 

reduction of P dash. So, the end product of more than one elementary reduction will be 

simply called a reduction of the of the original channel matrix P. So, let us illustrate this 

with an example. So, let us take a case of a second extension of A binary. 
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Symmetric channel for which the channel matrix, we have seen earlier is of the form p 

bar square p bar p p p bar p square p bar p p bar square p square p p bar p p bar p square 

p bar square p bar p p square p p bar p bar p p bar square. So, this is a channel matrix for 

the second extension of a binary symmetric channel. So, an elementary reduction of P is 

form by combining the first and second column of this matrix. And if you do that we will 

get as P dash is equal to p bar p p bar p square p bar p square p bar p p bar square p bar p. 

Then finally, p p bar p and p bar square. Now, a reduction of p is formed by combining 

the second and third column of p dash. So, if we combine second and third column of p 

dash, we will get a reduction of p. 
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So, if we combine second and third column of p dash, we will get a reduction of p which 

will denote by P double bar, equal to p bar p p bar p p p bar p p bar. A useful way of 

viewing a reduced channel is as shown in the figure. 
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Here, so I have a channel matrix P, I take it is output and feed it to a deterministic 

channel. The input of this is A, the output is B and the output of this is C, and this is 

reduced channel. So, the deterministic channel combines symbols of the B alphabet into 

a smaller number of symbols of the C alphabet. Hence, the channel with the input 



alphabet A and output alphabet C indicated by dash lines in this figure is a reduction of 

channel P.  

Now, this method of constructing a reduced channel allows us to use the results, which 

we had discussed in the last class on channel cascades. So, in particular we have with 

reference to what we had studied in the last class, with reference to this figure, we can 

say, H of A given C is greater than or equal to H of A given B and I of A semicolon C is 

less than I of A, B. 

So, forming a reduction of a channel decreases or adversely leaves unchanged the mutual 

information of the input and output alphabet. Now, this is the price we pay for 

simplification in the channel. Now, most important question suggested by the above 

remark is, when can we simplify the channel without paying a penalty in reduced mutual 

information. That is when is the mutual information of a reduced channel equal to that of 

the original channel? So, in order to answer this question we need only consider the case 

of elementary reduction. The question in case of a general reduction may then be 

answered by induction. 
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So let us form an elementary reduction of the channel P which is given by P 11, P 12 up 

to P 1s P 21, P 22, P 2s. P r1, P r2, P rs. Now, without loss of general generality, we may 

assume the, at the elementary reduction of this channel matrix P is formed by combining 

the first two columns of P. Now, if we assume this, then the channel diagram. 
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These are the input alphabets and this is the alphabet b and this is the alphabet C. So, A, 

B and C, so this is the channel reduction by cascade. Now, we found necessary and 

sufficient condition that A cascade not loose information. 
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Let us rewrite that condition, the condition said that probability of a given b is equal to 

probability of a given c. This is true for all a, b and c symbols, such that probability of b, 

c is not equal to 0. Now, since we are investigating a elementary reduction, this condition 

is satisfied truly for all b symbols except the two symbols, we have combined b1 and b2, 



so these two symbols we have combined here, this is b1 and this is b2. So, in this figure 

this is your c1 so on. Applying this condition to b1 and b2, we find the necessary and 

sufficient conditions for cascade not to loose information, are probability of a given b1 is 

equal to probability of a given c1, is equal to probability of a given b2.This condition 

should be true for all a. 
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Now, let us look at what is probability of a given b1 and probability of a given b 2. 

Probability of a given b 1, is equal to probability of b 1 given a, multiplied by probability 

of a, upon probability of b 1 and probability of a given b 2, is equal to probability of b 2 

given a multiplied by a upon probability of b 2, so and probability of a given c1is equal 

to probability is c1. Given a probability of a, whole over probability of c 1.  

Now, this expression can be re written as probability of c 1 given b 1, probability of b 1 

given a plus probability of c 1 given b 2 multiplied by probability of b 2 given a 

probability of c 1 given probability of c 1, is equal to probability of c1 given b1 

multiplied by probability of b1 plus probability of c 1 given b 2 multiplied by probability 

b 2. Now, because the output b is fed to the deterministic channel whose output is c 

alphabet. What it implies probability of c 1 given b 1 and probability of c 1 given b 2 are 

both equal to 1.  

So, in this that case it simplifies to probability of b 1 given a plus probability of b 2 given 

a probability of a divided by probability of b 1 plus probability of b 2. Now, what this 



implies is that, if this two conditions are satisfied, then it implies that probability of a 1 

of probability of a given b 1 is equal to probability of a given b 2, is also equal to 

probability of a given c 1 from this and this condition, this condition is equivalent, 

probability of a given b 1 equal to probability of a given b 2, for all a. 
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In other words, the two output symbols b 1 and b 2 may be combined, without loss of 

information if and only if the backward probabilities that is probability of a given b 1 is 

equal to probability of a given b 2 for all a. Now, this is an important result both in terms 

of understanding information and from a practical point of view. It provides condition, 

which a channel may be simplified without paying a penalty. 

The backward probabilities however depend upon the a priori probabilities P ai, that is 

they depend upon how we use our channel. So, it is of even more interest to determine, 

and then we may combine channel outputs, no matter how we use the channel, that is for 

any a priori probabilities P of ai. So, in order to get the answer for that, let us use Bayes 

rule, to rewrite this expression.  

So, this expression may be rewritten using Bave rule, Baye’s rule as probability of b 1 

given a multiplied by probability of a divided by summation of probability of b 1given a 

probability of a. This will give you probability of b1 is equal to probability of b 2 given a 

multiplied by probability of a, whole over summation probability of b 2 given a 

multiplied by probability of a, this condition should be valid for all a. 



So, this can be simplified as probability of b 1 given a, upon probability of b 2 given a 

should be equal to summation probability of b 1 given a multiplied by probability of a 

upon probability of b 2 given a probability of a this should be valid for all a. Now, if this 

condition is to hold for all possible a priori probabilities P ai, then what it implies that 

probability of b 1 given a should be equal to constant times probability of b 2 given a for 

all a, so this is the condition. 
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We see, so if you have a channel matrix, satisfying this condition, we may combine two 

columns of the matrix and the new channel matrix will be as good as the original one. 

So, more precisely for any set of probabilities over the input alphabet, the mutual 

information of the channel and the reduced channel will be identical. So, a reduced 

channel with this property will be called a sufficient reduction. An example of this would 

be a channel with a channel matrix given as one-sixth, one-third, half, 0, one-twelfth, 

one-sixth, one-fourth, half. Now, this may be reduced to half, half, 0, one-fourth, one-

fourth, half because this column is half the times this column and this may be finally, 

reduced to by combining this two columns as 1, 0, half, half. So, this is a sufficient 

reduction of the original channel. 
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Now, another important property of mutual information is additivity. We will investigate 

additivity by considering the average amount of information, provide about the set of 

input symbols by a succession of output symbols. That is, where we consider the case 

where we may gain information about the input by a number of observations. That is we 

consider case, where we may gain information about a input by a number of observation 

instead of a single observation.  

An example of this situation occurs when the input symbols of noisy channels are 

repeated at a number of times, rather than transmitted just once. Such a procedure might 

be used to improve the reliability of information transmitted through a unreliable 

channel. Another example is an information channel where the response of a single input 

is a sequence of output symbols, rather than a single output symbols. 

So, let us investigate the additive property of mutual information in the special case 

where the output of a single input symbol consist of two symbols. The more general 

case, where the output consist of n symbols, may then be treated by induction. So, let us 

modify a model of information channel then so that instead of a single output for each 

input if two symbols say b j and c k, the symbols b j and c k are from the output 

alphabets B equal to b j, where j goes from 1, 2, s and c k is from the output alphabet C 

equal to k equal to 1, 2 up to t.  



So, without loss of generality, we may assume that the two output symbols are received 

in the order b j followed by c k, so then the a priori probability of the input symbols P ai 

change into the posteriori probability P of ai given b j upon reception of the first output 

symbol b j upon reception of the second output symbols c k. They change into the even 

more a posteriori probabilities that is, probability of ai given b j, c k. 
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So, if the two symbols b j and c k are received, the average uncertainty or entropy of the 

set of input symbols changes from HA equal to Pa log 1 by Pa to the a posteriori entropy 

given by H of A b j to H of a given b j equal to probability of a given b j log of 1 by 

probability of a given b j. This summation is over input alphabet A and on receiving c k, 

this a priori entropy changes to the even more a posteriori entropy which is given by H of 

A given b j, c k equal to probability of a given b j, c k log of 1 by probability a given b j, 

ck the summation is over A. 

So, now if the average this quantity over the b j to the to find average a posterior entropy, 

we will get the equivocation of a with respect to b. So, probability of b H of A given b 

average over B alphabet will give us equivocation of a with respect to B, that is H of A 

given b, so in the same manner, we may average this term over all b j and c k, in order to 

find the equivocation of a with respect to the output alphabet b and c.  
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So, if we do that we get the quantity as follows, and this is by definition equivocation of 

A given B and C. So, the results of our generalization of Shannon’s first, theorem applies 

directly to this term. So, this quantity is the average number of binits necessary to encode 

a symbol from the alphabet A after we are given the corresponding B and C symbols. 

Now, this equation and this equation out here, suggest two different ways we might 

measure the amount of information B and C yield about a that is the mutual information 

of mutual of B, C and A.  

So, we can define the mutual information of A and B, C just as we did the in the case, 

when the channel output consisted of a single channel, so that is mutual information 

between A and B, C is by definition we can say equal to H of A minus H of A given B, 

C. This is one way of defining, second of looking at the same thing is to consider amount 

of information provided by A. The second way is to consider amount of information 

provided about A by B alone, and then the amount of information about A provided by C 

after we have seen B. So, let us look at this quantity. So, we have the quantities of the 

type H A minus H of A given B and H of A given B minus H of A given B, C. 

Now, this first quantity has already been defined and that is nothing but mutual 

information between A and B. Now, it is natural to define this quantity as mutual 

information of A and C given B, so if we add this equation and this equation we find I A; 



B plus I A; C given B is equal to H A minus H of A given B, C and that is equal to 

mutual information between A and B, C. 

So, what this expression expresses is that, so this equation expresses the additivity 

property of mutual information. It says that the average information provided by the 

observation does not depend upon, whether we consider observation in its entire, entirety 

of broken into component parts. So, this equation maybe generalise immediately to more 

than one variable. 

(Refer Slide Time: 39:37) 

 

So, this equation can be generalised as follows I of A and B, C, D equal to I of A, B plus 

I of A, C given B plus I of A, D given B, C. Now, in this equation the first term on the 

left is the average amount of information about A provided by an observation. Now, in 

this equation the term on the left is the average amount of information about A provided 

by an observation from the alphabets B, C dash, dash up to D.  

The first term on the right is the average amount of information about a provided by an 

observation from the alphabet B. The second term on the right is the average amount of 

information about A provided by an observation from the alphabet C, after an 

observation from the alphabet B. And this term is the average amount of information 

about A provided by an observation from the alphabet D after an observation from the 

alphabets B, C dash, dash. 
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The particular order of the information we receive is irrelevant, so it is important to also 

realise that, if you look at these two equation, it clearly shows that a particular order of 

the information we receive is irrelevant. For example, we may write this equation as 

mutual information between A and B, C is equal to mutual information between A and C 

plus mutual information between A and B given C. 
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Now, we may write the information quantities, discussed in several different forms for 

example, I of A, B, C which is written as H A minus H of A given B, C is equal to 



probability of a log 1 by probability of a summation over alphabet A minus, this by 

definition is equal to probability of a, b, c log of 1 by probability a given b, c the 

summation over A, B, C alphabets.  

Now, this can be rewritten as probability of a, b, c log 1 by P a summation over A, B, C 

alphabet this quantity is again repeated probability of a, b, c log of 1 by probability of a 

given b, c and this can be simplified as probability a, b, c log of probability a given b, c 

divided by probability of a summation over A, B, C. Now, another useful form, which is 

found by multiplying the numerator and denominator of the log term in this equation is 

by probability b, c. So, if you multiply both terms by probability b, c. 
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We get, I of A colon B, C equal to probability of a, b, c log of probability a, b, c divided 

by probability of a multiplied by probability of b, c summed over A, B, C. Now, the 

similarity of this equation and this equation is very clear, if we compare to what we had 

done earlier, I of A, B is equal to probability of a, b log of probability a given b upon 

probability of a summed over a, b.  

So, this expression or this equation is similar to this equation and I of A colon B is equal 

to probability of a, b log of probability a, b upon probability a probability b summed over 

A, B alphabet and this is similar to this. So, what it implies that we could have obtained 

this equation, and this equation by replacing b by b, c. So, if you go by this argument 



then we can define H of B, C given a equal to probability of a, b, c log of 1 by 

probability b, c given a summed over A, B , C. 
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So, we can using this relationship it is easily verified that mutual information between 

input alphabet A and output alphabet B, C is equal to H of B, C minus H of B, C. Given 

A we will illustrate additivity property of mutual information, by examining an example 

based on a binary symmetric channel, this we will do in the next class. In the next class 

we will also extend our definition of mutual information, to more than two alphabets.  

We will also investigate an interesting property of information channel that is channel 

capacity. We know to calculate the mutual information of a channel it is necessary for us 

to know the a priori probabilities of the input alphabets that is P ai. So, what it implies 

that calculation of mutual information for a channel, not only depends on the channel 

matrix, but also on the a prior probabilities P ai that is on how we use the channel. So, it 

is of interest to see how the mutual information varies with this P ai, and what is the 

maximum value which we can achieve. And this maximum value is defined as channel 

capacity, we will investigate this in the next class. 


