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Lecture - 2 

Definition of Information Measure and Entropy 
 

In the previous lecture, we had a look at Hartley's definition for the measure of 

information. This definition was based on two assumptions; first assumption was that e 

symbols which build up a message can take any value from q possibilities, but all this q 

possibilities where equiprobable, that was the first assumption which went into the 

definition of Hartley's measure for information. The second assumption was that all the 

symbols which build up the message are independent. 

Today, we will have a look at the definition as provided by Shannon. This definition of 

information is more generic, and it overwrites the deficiencies of Hartley's definition for 

information. To arrive at the definition provide by Shannon, let us approach this 

definition from the understanding of common sense, let us take a simple example. 
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Suppose, if I were to read the following three headlines in a morning newspaper, the first 

headline says, tomorrow the sun will rise in the east. The second headline says, India 

wins the cricket match series against Australia by 5 0, and the third headline says, there 

is snow fall in Mumbai. Now, if I look at all these three headlines then based on my 



common sense understanding of the word information, I can say the first headline 

provides the least information, whereas the third headline provides the maximum 

information. 

Let us look at the probability of occurrence of the events associate with each of this 

headline; the probability of occurrence of the event associate with the headline number 

one is almost 1. It is almost certain correct, whereas the probability of occurrence 

associate with the event number three which is says which says that there is a snowfall in 

Mumbai is almost 0, it is not very certain. So, what it means that if the probability of 

occurrence of the events is lower then there is a higher surprise. 

Therefore, there is more information what it implies that information is connected with 

an element of surprise which is a result of uncertainty or unexpectance of the occurrence 

of the event. The more the unexpectedness or uncertainty of an event higher is the 

surprise and more is the information. The probability of occurrence of an event is a 

measure of uncertainty or unexpectedness of that event. 

So, based on these discussions the common sense understanding of information would 

measure, would be that information is directly related to uncertainty or inversely related 

to the probability of occurrence of that event. So, what we should do, when we define the 

information measure, we should define in a manner which takes into consideration this 

common sense understanding. 
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For example, if the probability of occurrence of an event P tends to 1 which was the case 

for the statement number one or headline number one. Then the information which I 

should get from that event should tend to 0, whereas when the probability of occurrence 

like in the case of the statement number three or headline number three tends to 0. 

Information should tend to infinity with this understanding of expectations for the 

measure of information; we will try to define information more formally as defined by 

Shannon. 

So, to define information more formally I would say, let me assume that I have event E 

and the probability of occurrence of this event is given by P E. Then when the event E 

occurs the amount of information which I get on the occurrence of the event E will be 

defined as I of E is by definition log of 1 by probability of E, I define using this 

relationship. Let us look into little more depth as far as the definition is concerned, if you 

look at this definition it satisfies my criterion number one out here which says that if the 

probability tends to 1 then information tends to 0. Another requirement is that if 

probability tends to 0 information tends to infinity. So, this is the reason for choosing the 

measure which is inversely proportional to 1 by P E. 

Now, the question that comes to my mind is, why should I choose a function log and 

why not something other than log, the reason can be explained again based on our 

common sense understanding of the word information. Let me take simple example, 

suppose if a highway event E this event E consist of two sub events, let me say e 1 and e 

2. Let me assume that both event e 1 and e 2 are independent, so probability of 

occurrence of e 1 is independent from the probability of occurrence of e 2. 

Now, if I were to ask you what is the information which I get when the event E occurs 

which consist of two sub events. Then I would say by this definition I am supposed to 

find out information E associate with the event E is nothing but log of 1 by P of this 

event E. Now, this I can write as log of 1 by probability of event e 1 e 2, this I can 

simplify as log of 1 by probability of e 1 plus log of 1 by P of e 2 based on the 

assumption that e 1 and e 2 are independent events. So, what I get is, I get E of 

information from e 1 plus information from e 2. 

Now, this kind of additions of information from two sub events to get the final 

information in the event E can happen with only log functions it is not difficult to show 



this, therefore the choice of log function is there for the measure of information. With 

this let us go ahead and let us try to calculate the amount of information for a specific 

case of say a TV image.  
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Suppose, if I have a TV image and using this definition for information, if I ask you to 

calculate the information which I get when I view one TV image then this can be done as 

follows. Let me assume that each TV image consists of 572 lines and each line consists 

of 720 pixels that are picture elements. So, one TV image consist of 414720 pixels, if I 

presume that each pixel can take values from 0 to 9 that means it is allowed to take only 

ten grey levels. Then the number of TV images which I can formed based on this 

specification and each grey level consisting of only ten values the number of pictures 

that I can form is 10 raised to 414720. 

These are the total number of pictures TV images which I can form assuming there are 

ten grey levels, if I assume that any of this picture can occur randomly. Then the 

probability of occurrence of any particular image will be given by let us call that event as 

E then the probability associated with that event E would be 10 raised to. Now, to 

calculation of the information for this TV image is straight forward that will come out to 

be this comes out to be approximately bits, one thing is important to note that in my 

definition of for the information I am assuming that the base out here is 2. 



It is not necessary for me to restrict my base to 2, I can choose some any other base and 

it is very easy using the simple conversion formulas between the bases to convert from 

one base to another base. But as far as this course is concerned most of the time we will 

be restricting our self to the base 2. So, whenever log is written for the information it is 

understood that it is to the base 2. So, what I get the information for one TV image turns 

out to be 1.4 into 10 raised to 6 bits. 

We will see later on that is the calculation of information from one image really correct 

or not we will find that what we have got this value is on much higher side. The 

information contained in a real TV image would be much less than this we will look into 

that little later in our lecture. So, far what we have done is that I have tried to define the 

information associated with one particular event. 
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Let us take another case, suppose I have a source S. Let me indicate that source S by S 

capital S and this source s emits symbols S i it keeps on continuously emitting the 

symbols, so starting S 1, S 2, S 3 like that continuously it keeps on emitting. Now, the 

question comes to my mind is, is it possible for me to associate some kind of measure of 

information to this source S, how do I associate the measure of information to the source 

S. We have seen how to associate the measure of information to a particular event to 

solve this problem.  



Let us look at the mission of the symbols from the source and put them in the form of a 

string. So, I assume that first time that I get, I call that symbol which is emitted from the 

source S as S 1 then I get S 2 and like this. Let me assume that I have end number of 

symbols which are emitting from the sources, now each of the symbol which I have got S 

i this itself could take any of the q values from the set. 

So, S i belong to a set S 1 S 2 and S q, so these are the only values which S i can take 

with each of this S 1 S 2 s q there is probability of occurrence associated with it, let me 

call it as P of S 1 P of S 2 and P of S q. Let me make one more assumption for the time 

being I assume that all this symbols which are being emitted be the source S they are 

independent. The occurrence of a particular symbol in this string say S i is not dependent 

upon the occurrence of the previous symbols that is this assumption which I made to start 

with. So, if I look at this source, now the source emits a symbol S i each of S i can take 

the values from the set given by this q possibilities and with each of this q possibilities 

there is associated probability of occurrence. 

This specification is both, this specifications are more than sufficient for me to identify 

the source S this set is called as source alphabet and with each alphabet in this set there is 

a probability of occurrence of that alpha of that symbol in that alphabet given by this 

value is P S 1, P S 2 and P S q. Now, if I am assuming these symbols emission to be 

independent then I will call this S as a zero memory source. So, let us see whether we 

can assign some kind of a measure of information to a zero memory source which is 

given by the source alphabet and the probability of occurrence of each symbol in that 

source alphabet as I have said. 
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Let me assume that the string goes from s 1, s i up to s n, n is the lent of the string which 

I get from the source. Let me presume that a particular symbol in the alphabet S 1 occurs 

in the string n 1 times S 2 occur n 2 times. Similarly, S q symbol occur n q times with 

each occurrence of symbol S 1 the information associated to that S 1 would be I of S 1. 

Similarly, whenever S 2 occurs I can find out what is the information which I get from 

the occurrence of S 2 and similarly, for I s q these are the information which I get when a 

particular symbol occurs. 

Now, if S 1 occurs n 1 time and if I assume that all the symbols are independent then the 

amount of information which I get from n 1 symbols S 1 would be n 1 times I of S 1 and 

similarly, I will get for S 2 and finally, for s q. So, total information which I get from this 

string S 1 to S n would be the summation of all this. So, the total information which I 

would get would be nothing but the summation of all this values. Now, if I am interested 

to find out average value I can simply divide this by N, if I divide this by N then I can 

write this expression which I have this out here. Let me just denote it for time being I 

will denote it by H of S, I will denote it approximately equal to this, this is the total 

information, this is the abbreviation which I am going to use for this quantity on the right 

hand side.  



(Refer Slide Time: 24:11) 

 

Then, I can simplify this quantity to H S is nothing but summation. So, going back to the 

previous expression n 1 by N, n 2 by n and N, q by N, if I use the law of large number 

then what I get then noting but P S i and this is the summation which I will get I 

substitute the value for i S i as log of 1 by P S i and what value I get is this. So, this is the 

average amount of information from that source S per symbol this average amount of 

symbol per symbol is for the source S is termed as entropy of S. 

Now, this entropy of S is dependent on the distribution P S i is this entropy of s bounded 

from the lower side and upper side. Let us try to look into this if you look at H S 

definition is nothing but P S i log 1 by P S i, P S i values can go from 0 to 1. So, P S i is 

always positive log of 1 by P S i is always positive, so what it implies that each of this 

term is always positive. So, the summation will be always positive, so H S always has to 

be greater than 0. It cannot be negative that is the first conclusion which we can make 

about the property of H S. What is the minimum value and what is the maximum value 

that question can be answered very easily if you follow this following approach.  
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Let me assume before we try to find out the minimum and maximum value for H S. Let 

me take a simple function and let me look at the property of that function because that 

property is going to be utilized for the derivation of the maximum value for H S. If I 

have a function which is given by y is equal to log x then I can plot this function y log x 

and the plot would look something like this, this will be my plot for y is equal to log x 

this value will be 1, 2 this is approximately. If I look at the plot of y is equal to x minus 1 

and I draw the same plot on this graph then what I will get would be something like this, 

this would be the plot for y is equal to x minus 1. 

So, graphically I can say that log x is always less than equal to x minus 1 and both the 

quantities are equal only at 1 and one point and that is x is equal to 1. So, if I just 

multiply this quantity by minus 1 on both the sides what I will get is log 1 by x is always 

greater than equal to 1 minus 1 minus x. So, with this small inequality, we will go ahead 

and find out what is the maximum information, what is the maximum value which we 

can get for the entropy of the source or what is the maximum information contained in a 

particular source S. Before I go ahead with this, derivation let me try to define, let me 

derive one more inequality which will be used later on. 
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Let us assume that I have two sets of probabilities given by x 1 x 2 up to x q and another 

set of probabilities as y 1 y 2 y q these are both two different sets of probability. So, it 

means x i is always greater than equal to 0 and y j is always greater than equal to 0 for all 

i and js i and j obviously ranging from 1 to q. So, since this our probability this 

summation over i 1 to q will be always equal to 1 and this summation out here will be 

equal to 1. 

Now, let me just take a simple expression if I have an expression like this log I can write 

this as I just substitute the value for log of y i upon x i, we have seen from this 

relationship that log x is always less than x minus 1. So, if I use this relationship I can 

write this relationship as less than equal to y i x i minus 1 and this can be shown is 

nothing but equal to 0. 
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So, what I get is finally, x i log of 1 by x i i is equal to 1 to q is less than or equal to x i 

log of 1 by y i i is equal to 1 to q. So, this relationship we will be using it later on in our 

course. So, it is a very important relationship which we get when x i and y i are two sets 

of probabilities. So, this inequality will be equal only if x i is equal to y i because e have 

seen that this two equations are equal only for x is equal to 1. So, correspondingly if you 

want equality out here what I should get is y i is equal to x i and from there I get this 

relationship. 

So, we have seen that entropy of the source is given by this expression, let us try to find 

out what is the maximum value if it exist for what probability distribution function of S i, 

will I get the maximum value for H S? Let us try to find out that this we will try to do it 

for a zero memory source.  
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So, if I have a zero memory source then that source will be identified S given by source 

alphabet, I will assume the source alphabet S 1, S 2 and s q are the symbols of the source 

alphabet along with that I will get the probabilities for the symbols or sometime these 

symbols in the source alphabet are also known as letters. So, the probability associated 

with these letters of the alphabet is also given to me and I assume that this source S is a 

zero memory source. Let us I will try to simplify this P S i, I will write it as P 1, P 2 up to 

P q, so my entropy for the source H S is nothing but P i log of 1 by P i i is equal to 1 to q.  
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Let us try to evaluate, this expression log q minus H of S, I can write this very simply as 

P i log q i equal to 1 to q minus P i log of 1 by P i, since P i are the probabilities 

summation of P i is is equal to 1. So, for log q i can write this expression this I can 

simplify as P i log of q P i and as a simplification instead of writing i is equal to 1 to q, I 

can say that a summation over is the source alphabet. So, I just write the source S this 

implies that I am summing up I from 1 to q that is denoting the alphabet. 

So, this I can simplify as log of this, now at this instant I can use the previously derived 

inequality which is given by graphically log 1 by x is always greater than equal to 1 

minus x. So, I can use this relationship to write as greater than equal to this, you can 

show very easily is nothing but equal to 0. So, from this I get the relationship as log of q 

is greater than equal to H of S is a very important relationship which we have derived the 

first important relationship which we have derived. Information theory is these both are 

equal only when I look at the point whether inequality was introduced; it was at this 

instant of the time. 

So, if you want the thing to be equal what it should happen is 1 should be equal to 1 by q 

P i, this implies that P i should be equal to q for all I if I can satisfy P i is equal to q for 

all I then I can write log q is equal to H S. So, what it means that entropy H S is always 

less than or equal to log q and it will take the maximum value of log q when all P i is 

equal to 1 by q, sorry it is not P i is not q, but 1 by q. So, what it means that all the 

symbols or the letters in the alphabet occur in an equiprobable fashion.  
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Let us take a simple example of a binary source I have a binary source which is zero 

memory. So, if I have a binary source let me denote the alphabet for this binary source S 

as 0 and 1. Let me also associate the probabilities with this letters of this source as 

probability of 0 is equal to w and probability of 1 is equal to 1 minus w is equal to w bar. 

If I assume that this binary source is a zero memory source then I can write the entropy 

for this binary source H S is equal to this. Now, in the information theory literature, you 

will find that the expression on the right hand side this is a function of w and it occurs 

very frequently. 

So, if I denote this as a function of w, then I write H w as w log 1 by w plus if I write like 

this. Then H w is basically termed as entropy function it is important to realize the 

difference between these two expression. This is an expression for the entropy of zero 

memory binary source, where this is an expression for entropy function which like any 

other function is the variable is w out here whereas, here given w this is the entropy 

function entropy which I will get for the binary source. Let us look at the property of this 

entropy function. 
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If we plot the entropy function H w versus w, you will get something like this ,this is my 

H w and this is my w 0 1. What it shows is that when w is equal to 0, H w becomes 0 and 

when w is equal to 1 H w again become 0, but when w is equal to 0.5 my H w becomes 

the maximum value and that is equal to 1. So, for a zero memory binary source if I have 



probability of 0, and probability of 1 both equiprobable equal to 0.5 then the entropy of 

that 0 memory binary source would be nothing but equal to 1 bit. So, this is the 

maximum entropy I have of a zero memory binary source, we know that if we have 

binary source, then physically if I want to assign some symbols to those to symbols. Let 

us look at some of the physical implications of entropy.  
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Let me take a simple example. Suppose, I have a graphical grade which is 4 by 4 given 

like this and I number them from 1 to 16 and let us say that 1 of this grade is marked I 

mark this grade. My problem is to find out ask questions and find out which grade has 

been marked my answers will be only in terms of yes and no. So, I can make a guess and 

ask someone is the grade number seven marked the answer which I expect should be in 

terms of yes and no, the answer I will get obviously is no. So, if I use this kind of 

procedure to find out which grade is marked the worst case I can ask from 16 questions, I 

can say whether grade number 1 is marked or not marked and I expect the answers. 

So, in this case if I go in a serial fashion at the tenth question I will get my answer. So, I 

will require ten questions to be asked before I get the answer which grade is marked, is it 

possible for us to find out what is the minimum number of questions which you should 

ask whose answers. We expect in terms of yes or no in such a way I can find out which 

grade is marked. So, in this case what I can do a clever way of finding out which grade is 

marked I can ask a question saying which of the I can ask a question simply like this is 



the marked grade lies in the bottom eighth grade. So, what I am saying is that the marked 

grade whether it lies on the upper side or the lower side of this line. 

So, the obviously the answer I would get is yes, so I have asked the question once 

whether the grade lies on the top or the bottom, once I get that answer I know the grade 

that marked grade lies somewhere from 9 to 16. Now, the next question which I can ask 

is the marked grade lying on the left of the remaining eight regions, the answer would 

again be yes. So, I know that it is between 9 ten 13, 14 either one of this again I can ask a 

next question is my grade lying on the top or the bottom this case he will say it is lying 

on the top. 

So, if I say it is if I ask the question it is lying on top the answer would be yes, so I get a 

third answer yes. Now, finally I would ask the question is the grade lying on the left the 

answer would be say no, so I know the grade is basically 10. So, I required four 

questions to be asked before I could find out which grade was actually marked in this 

graphical picture. Is it possible for me to relate this minimum number of questions to the 

concept of entropy which we have just seen? If you look this from the information from 

information theory point of view I can say that the probability of marking any grade 

would be 1 by 16 because I have sixteen values out here and any grade can be marked 

randomly are equiprobable. 

Then, I can find out what is the entropy associated with this grade and what I will get is 

summation of P i log 1 by P i, i is equal to 1 to 4 and in this case it will turn out to be 

nothing but four bits always the logarithm is to the base 2. So, what it means that and 

since we are asking in terms the answers we are expecting is in terms of 0s and 1 what I 

get here entropy also in terms of four bits.  

This gives a relationship between a mathematical concept and the physical experiment, 

which we have carried out to find out which one of the grade is marked. So, this is a 

simple application of information theory we could have many more applications in this 

course, we will restrict our application to only communication systems. Now, the way 

we have defined entropy here was for a single source S emitting single symbols S i. 
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The question that comes to my mind is, is it possible to assume that if I have a source S 

and if it emits symbol S i instead of considering the symbol S i individually if I start 

blocking this symbols in some length. Let me assume in length of two that means what I 

do is that when I have S 1, S 2, S i, S i plus 1, I start blocking them in terms of two, so I 

get like this. 

Now, if I start blocking in terms of like this then what I can assume is that I am forming 

a new source whose symbols are coming out in group of two, but each of the symbols in 

that group of two is coming from the primary source S. If I start interpreting the output 

of the source S in terms of another source which I have written here like this. Then is it 

possible for me to relate the entropy of this new source to the entropy of my primary 

source; is there some kind of relationship? If there is a relationship existing, what is the 

usefulness of such relationship? We will look into this matter in the next lecture. 


