
Information Theory and Coding
Prof. S. N. Merchant

Electrical Engineering
Indian Institute of Science, Bombay

Lecture - 19

Arithmetic Coding Part – II

In the previous class, we studied the procedure to generate a tag for a given sequence.

However, the binary code for the sequence is what we really want to know. Therefore,

we want to find a binary code that will represent the sequence in a unique and efficient

manner. We have seen that tag forms a unique representation for the sequence.

Therefore, it implies that binary representation of this tag forms a unique binary code for

the sequence. However, we have placed no restriction on what values in the unit interval

that tag can take.

Some of this values would be infinitely long, in which case although the code word is

unique it may not be efficient. To make the code efficient, the binary representation for

that tags to be truncated, but if this code word for that tag is truncated then the question

is the resulting code unique? The next question is that if the resulting code is unique,

then is that code efficient? What we mean by that is how close or how far is the average

length of the code away from the entropy of the source. So, let us examine these

questions. We have seen that for a dyadic source that is if the probabilities of the source

symbols are of the form.

(Refer Slide Time: 02:53)

Pi equal to 1 by 2 alpha i where alpha i is an integer then the length of the code word is

given by log of 1 by Pi, but if the source is not dyadic than we have also seen that a

reasonable choice for this length would be l i is equal to upper flow of log of 1 by Pi plus

1. Now, in arithmetic coding each sequence is uniquely identified by the tag F tilde x.

We know that this tag is a number in the interval 0 to 1. So, a binary code word for this

tag can be obtained by taking the binary representation of this number and then

truncating it to l bits given by these expressions. So, let us look at the example which we

had studied earlier.

(Refer Slide Time: 05:03)

So, we have a source consisting of four symbols and we use the mapping, which we had

studied earlier in the Shannon Fano Elias coding to convert this symbols to integer

random variables. And for this source with this probability model, we can generate the

binary code based on the concept just discuss we have four symbols out here. So, we

have the cumulative distribution function for each of the symbol.

We can get a modified cumulative distribution function for the symbol as shown here,

then the representation of this cumulative distribution function in binary is given as

shown here. Then we truncate this binary representation by the length, which is

calculated as shown here and using that we get the code word as shown in the last

column. Now, we will show that the code obtained in this fashion is a uniquely

decodable code. We first show that this code is unique and then we will show that it is

uniquely decodable.

(Refer Slide Time: 06:23)

Recall that we have the tag for using F tilde f x as the tag for a sequence x any number in

the interval given by this as a unique identifier. Now, to show that when we truncate this

tag to the length l x, which is indicated by this is to show that this is unique. We need to

only show that it is contained in the interval that means this term is contained in the

interval given by this. Now, because lower floor is truncated binary representation of F

tilde x this implies therefore, F tilde x truncated value is less than or equal to F tilde.

(Refer Slide Time: 09:58)

Now, by the definition of Binary truncation, we can write the following expression. If

you recall, this procedure is similar to the one which we had adopted for the Shannon

Fano Elias coding. Now, because F tilde x is strictly less than cumulative distribution

function. Therefore, it implies that truncated version of F tilde is less than F of x. Now,

to show that truncated version of F tilde is greater than equal to F of x x minus 1, note

that 1 by 2 l x is equal to 1 by 2 raise to log of 1 by P x upper flow of that plus 1, this is

less than 2 by 3 log of 1 by P x plus 1. And this quantity is equal to 2 into 1 by P x. So,

this is equal to P x by 2. So, we will use this relationship.

(Refer Slide Time: 13:45)

So, we have from the definition of the above modified C D F, P x by 2 is equal to F tilde

minus cumulative distribution function of the sequence x minus 1. So, from this we get

therefore, F of tilde x minus f 1 is greater than 1 by 2 l x. So, from this relationship and

this relationship which we have derived 1 by 2 l x is less than P x by 2 we get this

relationship. Therefore, what it implies that truncated version of F tilde is greater than F

of x x minus 1. Therefore, it implies that the code word obtained by truncating the binary

representation of F tilde is a unique representation of F tilde x.

Now, to show that this code is uniquely decodable, we will show that the code is a prefix

code that is no code word is a prefix of another code word because a prefix code is

always a uniquely decodable code by showing that arithmetic code is a prefix code, we

automatically show that it is uniquely decodable. Now, to go ahead with the proof of that

let us look at one fact that if I have a number.

(Refer Slide Time: 17:04)

Let us say a number in the interval 0 to 1 with an n bit binary representation b1, b2 up to

b n. Then for any other number b to have a binary representation with this as a prefix

with b1, b2 up to the b n as the prefix b has to lie in the interval a, a plus 1 by 2 raise to

n. So, using this fact will try to prove that arithmetic code is a instantaneous or prefix

code. Now, what this implies is that.

(Refer Slide Time: 19:32)

If x and y are two distinct sequences, then we know that F tilde truncated value of it

given by this expression and truncated value for the representation of the sequence y lie

in two disjoint intervals. The intervals are given by f of x y minus 1. Therefore, if we can

show that for any sequence x the interval given by truncated value of F x. So, if we can

show that this interval lies entirely within the interval F x x minus 1, F x is a open

interval. So, if we can show that this lies entirely with within this interval this will mean

that the code for one sequence cannot be the prefix for the code of another sequence.

(Refer Slide Time: 23:05)

Now, we have already shown that, truncated value of F tilde is greater than F x x minus

1, therefore all we need to do is show that F x x minus truncated version of F x is greater

than 1 by 2 l x. Now, this is true because F of x minus truncated version of F tilde is

greater than F x minus F tilde x because this quantity is less than this quantity and this is

can be written as minus this by definition is by 2.

So, this is equal to probability of the sequence x by 2 and this we have shown is greater

than 1 by 2 l x. Therefore, this code is prefix free and by taking the binary representation

of F tilde x and truncating it to l x given by upper flow of log of 1 by P x plus 1 bits, we

obtain a uniquely decodable code. Now, although the code is uniquely decodable, the

next question is how efficient is it? So, let us answer that question, we have shown that

the number of bits.

(Refer Slide Time: 26:03)

L x required to represent F tilde x with enough accuracy, such that the code for different

values of sequence x are distinct is l x is equal to log of 1 by P x plus 1. So lx is the

number of bits required to encode the entire sequence x. So, the average length of an

Arithmetic code for the sequence of length n is given by P x l x summation over all x

now this is equal to summation of P x l x is chosen by this expression.

So, this can be simplified as less than equal to summation of P x log of 1 by x plus 1, like

this is strictly less than and this can be simplified as equal to P x log P x plus 2

summation over all the sequences. So, we get this is by definition then entropy of the

emit extension of the source is to. Now, given that the average length of a code is always

greater than the entropy the bounds on l average length of emit extension will be as

follows.

 (Refer Slide Time: 29:01)

So, this is the length we get for emit extension, so the length per symbol we denote by l

average and since, we are talking about the arithmetic code we will denoted it by AC for

the arithmetic code will be given by dividing this quantity by m. Therefore, we get H of

S m over m is less than equal to l average for arithmetic code less than equal to H of S m

divided by m plus 2 m. Now, for the ii d source we know H of S m is equal to m times H

S.

Therefore, from this we get and therefore, entropy of the source l average for the

arithmetic code is less than equal to the entropy of the source plus 2 by m. So, by

increasing the length of the sequence, we can guarantee an average length of the code as

close to the entropy as we desire. Now, after having studied the mathematical aspect of

generation of the tag for the arithmetic code, and representation binary representation of

the tag. And also having studied procedure to decipher this tag, let us look at some of the

aspects of the implementation of the arithmetic code. So, let us look at the algorithmic

implementation for the arithmetic code, we have developed a recursive algorithm.

(Refer Slide Time: 31:42)

For the boundaries of the interval containing the tag for the sequence being encoded as

given by these expressions shown here, where x n is the value of the random variable

corresponding to the n th observation symbol. Now, one major problem needs to be

resolved while implementing this algorithm. Recall that the rational for using numbers in

the interval 0 to 1 as a tag was that there are infinite number of numbers in this interval.

However, in practice the number of numbers that can be uniquely represented on a

machine is limited by the maximum number of bits we can use for representing the

number. Consider values of l n and u n in the example which we had discussed earlier,

for the generation of the tag.

(Refer Slide Time: 32:57)

So, if we examine the values, which we had obtained then are shown here, so at the step

number 1 when we have received the sequence number the first symbol, in the sequence

that is 1 the lower limits are shown here that 0 an upper limit is 0.8. After this, we have

received the symbol 3 the limits are shown here. So, from this result it is clear that as n

gets larger and larger this values of l n and u n would come closer and closer together.

So, the difference this 0.8 difference is less than 0.8 and this difference is still less than

this and this difference is still less than this.

So, in order to represent all the sub intervals uniquely we need increasing precision as

the length of the sequences increases. Now, in a system with finite precision the two

values are bound to converge, and if these two values converge we will lose all

information about the sequence from the point at which the two values converge. Now,

to avoid this situation in a practical scenario rescaling of the interval is done.

This is done in a manner that will preserve the information that is being transmitted and

also it is done in a manner so that the encoding is incremental. What you mean by that is

that, using incremental encoding procedure we can transmit portions of the code word as

the sequences being observed, rather than wait until the entire sequence has been

observed before transmitting the first bit. Now, in the literature integer implementation

of this algorithm has also been discussed. We will not go into the details for as far as this

course is concerned. Now, after having studied arithmetic coding and Huffman code the

question is which is the efficient coding scheme? So, let us look at some of the points or

advantages and disadvantages related to both Huffman and arithmetic coding.

(Refer Slide Time: 36:04)

Comparison of Huffman and arithmetic coding. Arithmetic coding is more complicated

than the Huffman coding, but arithmetic coding allows us to code sequences of symbols.

Now, how well this coding scheme works depends on how it is used. Let us try to use

this code for encoding sources for which we know the Huffman code. So, let us go back

to the example which we had discussed earlier in today's class. For the example which

we had discussed earlier if we look at the arithmetic code, which we obtained for this

source is given here. If we calculate the average length for this code then it turns out to

be 2 into by 0.5 plus 3 into 0.25 plus 4 into 0.125 plus 4 into 0.125, and this is equal to

2.575 bits per symbol.

(Refer Slide Time: 38:41)

And entropy for this source is 1.75 bits per symbol and because this is a dyadic source.

Huffman code is able to achieve this entropy. So, obviously arithmetic coding is not a

good idea if you are going to encode your message one symbol at a time. So, let us

repeat the example with messages consisting of 2 symbols. Now, it is important to note

that we are only doing this to demonstrate a point, in practice we would not code

symbols this shot using an Arithmetic code. So, if we encode two symbols at a time then

that arithmetic code for that can be obtained as shown here.

(Refer Slide Time: 39:28)

So, these are the other different messages which can be generated for this different

messages. We can find out what the probabilities of the sequences of then two we can

find out what is the modified C D F. We can represent this modified C D F in Binary and

then we can truncate this modified C D F in binary by using the lengths calculated as

shown in this column and finally, we get the code words I have shown here.

Now, the average length per message for this coding scheme turns out to be 4.5 bits

therefore, using two symbols at a time we get. The average code word length of 2.25 bits

per symbol which is certainly less than 2.75 bits per symbol, which we obtained earlier,

but still this is not as good as the best average code length, which can be obtained with

the Huffman code and that is 1.75 bits per symbol.

However, we see that as we increase the number of symbols per message our results get

better and better. Now, the question is how many samples or how many symbols do we

have to group together to make the arithmetic coding, perform better than the Huffman

coding scheme. We can get some idea by looking at the bounds on the average length for

the code.

(Refer Slide Time: 41:10)

For the arithmetic code the bound, which we had obtained is given by this inequality.

Now, it does not take many symbols in a sequence before the average length of the code

arithmetic code becomes quite close to the entropy. However, for the Huffman code if

we block m symbols together then the average rent of the code is given by this inequality

which we had proved earlier.

Now, looking at this two inequalities this is for arithmetic code this is for Huffman code,

the advantage seems to lie with the Huffman code all though the advantage decreases

with increasing m. However, it is important to remember that to generate a code word for

a sequence of length n using the Huffman procedure requires building the entire code, for

all possible sequences of length m. So, if the only alphabet size was q and we are coding

sequences of length m then the size of code book would be q raise to m. Now, taking

reasonable values of q equal to 16 and m equal to 20, this would give us a code book size

of the value which is equal to 16 raised to 20.

Now, this is obviously not a viable option for the arithmetic coding procedure we do not

need to build the entire code book. Instead we simply obtain the code word for the tag

corresponding to a given sequence. Therefore, it is entirely feasible to code sequences of

length 20 or much more using arithmetic coding procedure. So, in practice we can make

m large for the arithmetic coder, but we cannot do the same way for the Huffman coder.

This means, that for most of the sources we can get the average length of the code closer

to the entropy using arithmetic coding procedure than by using Huffman coding

procedure.

The exceptions are sources whose probabilities are powers of 2. In this case the single

letter Huffman coding achieves the entropy and we cannot do any better with arithmetic

coding, no matter how long a sequence we pick. The amount of gain also depends on the

source recall that for the Huffman codes, we are guaranteed to obtain the average length

of the codes.

(Refer Slide Time: 44:44)

Within 0.086 plus p max of the entropy, where p max is the probability of the most

probable letter in the alphabet. Now, if the alphabet size is relatively large and the

probabilities are not too unbalanced the maximum probability p max is generally small.

In this cases, the advantage of arithmetic coding over Huffman coding is small and it

may not be worth the extra complexity to use arithmetic coding rather than Huffman

coding. However, there are many sources like alphabet size is small and the probabilities

are highly unbalanced in this cases the use of arithmetic coding is generally worth that is

complexity.

Another major advantage of arithmetic coding is that it is easy to implement a system

with multiple arithmetic codes. Now, this may seem a bit contradictory as we have

claimed that arithmetic coding is more complex than Huffman coding. However, it is the

computational complexity of the machinery that causes the increase in the complexity.

Once we have the computational machinery to implement one arithmetic code all we

need to implement more than single arithmetic code is the availability of more

probability tables.

So, if the alphabet size of the source small as in the case of binary source there is very

little added complexity. In fact it is possible to develop multiplication free arithmetic

coders that are quite simple to implement. Finally, it is much easier to adapt arithmetic

codes to changing input statistics. All we need to do is estimate the probabilities of the

input alphabet. Now, this can be done by keeping a count of the letters as they are

encoded. There is no need to preserve a tree as with adaptive Huffman codes.

Furthermore there is no need to generate a code upright as in the case of Huffman

coding.

Now, this property allows us to separate the modelling and coding procedures in a

manner that is not very feasible in Huffman coding. This separation permits greater

flexibility in the design of compression systems which can be used to great advantage.

Arithmetic coding is being used in a variety of lossless and lossy compression

application. Arithmetic coding is the coding scheme recommended by the joint bi-level

image processing group that is J B I G as part of the standard for coding binary images.

So, far in our course we were concerned with properties of information sources and their

transformations of sequences of source symbols into sequences of code symbols.

We were able to relate our information measure to properties of information source. In

particular, we showed that the entropy of our source could be use to obtain lower bound

to the average number of code symbols needed to encode each source symbol. We also

use this bound to define the redundancy and efficiency of a code. We devoted our study

to synthesise of course, containing as little redundancy as possible.

Now, we will shift our study from the information source to the information channel that

is from information generation to information transmission. We shall see that it is not

always desirable to use codes with little or no redundancy. We will be concerned

primarily with methods of putting redundancy back into codes. We will also use the

entropy idea to describe, how we may utilise an unreliable information channel to

transmit reliable information. So, from the next class onwards we will shift our attention

to Information channels and the concepts related to it.

