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Lecture - 16 

Adaptive Huffman Coding Part - II 
 

In the last class, we studied update procedure which form an integral part of the adaptive 

Huffman code. In today’s class, we will have a look at two more components of this 

adaptive Huffman code and these are encoding procedure and decoding procedure. Let 

us first have a look at the encoding procedure. 
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Initially, the tree at both the encoder and decoder consists of a single node which we call 

as the not yet transmitted node known as NYT node, and the number of this node is the 

maximum number that is 2 m minus one where m is the size of the alphabet. Now, the 

code word for the very first symbol that we encode is going to be a previously, agreed 

upon fixed code word.  

After the very first symbol, whenever we have to encode a symbol that is being 

transmitted for the first time, we send the code for the NYT node followed by the 

previously agreed upon fixed code for that symbol. The code for the NYT node is obtain 

by traversing the tree from the root to the NYT node. This procedure alerts the receiver 



to the fact that the symbol whose code follows does not as yet have a node in the 

Huffman tree. If a symbol to be encoded has a corresponding node in the tree, then the 

code for that symbol is generated by traversing the tree from the root node to the leaf, or 

the external node corresponding to that symbol. So, the algorithm for an encoding 

procedure would be as follows. 

(Refer Slide Time: 03:42) 

 

First you start then after you have transmitted the first symbol. The codeword for which 

will be from the NYT list for the second symbol you follow the procedure as follows. 

Read in symbol then if this symbol is the first appearance of the symbol then you alert 

the receiver by sending the code for NYT node. So, send code word for NYT node 

followed by the index for that symbol in the NYT list. 

After this step, we are supposed to update the tree at the encoder. So, we will jump to a 

step which involves the updating procedure. If this condition is not true, that means if the 

first it is not first appearance of the symbol, then else code word for that symbol is the 

path from the root node to the corresponding node for that symbol, and then again you 

call the update procedure.  

So, we have the step 4 which calls update procedure which we studied in the last class. 

Then find out if this is the last symbol. If it is the last symbol to be encoded then we stop 

else we read another symbol. So, we jumped to step 2. This would be the pseudo code 

for the encoding procedure. Let us try to understand this pseudo code in a much better 



fashion with the help of the example. Let us take the same example which we considered 

for the update procedure. 
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So, let us assume that we are encoding a source consisting of 26 small case letters of 

English alphabets. So, in our case m is equal to 26. So, to find out the fixed code, we find 

out this e and r values which turn out to be 4 and r is equal to 10. Let us takewe want to 

encode this sequence. So, the first symbol which we want to transmit is a. Now, as a is 

the first letter of the alphabets, k is equal to 1 and as 1 is less than 20, a is encoded as the 

5 bit binary representation of k minus 1 that is 0. So, a will be encoded as 0 and the code 

word for that would be as given here. After you have done this the Huffman tree is 

updated as shown in the figure here. 



(Refer Slide Time: 10:15) 

 

So, we start with NYT equal to 51 and then after encoding a NYT 50. This node breaks 

up into two node, one is NYT new node and another is node corresponding to a. As a has 

occurred for the first time, the weight corresponding to element a is. Now, 1 and the old 

NYT weight is also, incremented to 1. Now, the next symbol to be transmitted or 

encoded is again a. Now, as a is available in this tree, therefore, the code word for 

encoding a of transmitting a would be obtained by simply traversing, the tree from the 

root node to the external node corresponding to a in order to find the code word. In this 

case, traversal consists of a single right branch therefore, the Huffman code for the 

symbol a is 1. 
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So, for the next a, we transmit or encoded as 1. Now, the third symbol to be transmitted 

is r. As this is the first appearance of this symbol, we send the code for the NYT node 

followed by the previously arranged binary representation for r. Now, if it traverse the 

tree from the root node to the NYT node we get a code 0 for the NYT node. The letter r 

is the 18th in the alphabet. So, k is equal to 18. Now, since k is less than 2 r, that is 20, 

the binary representation of r is in terms of 5 bits. So, we represent r as binary 

representation of k minus 1, that is equal to 17 and that is equal to 10001. 

Therefore, the code word for the symbol r becomes 01001. This is the codeword for the 

NYT symbol. So, the tree is again updated at the end of encoding r and the tree becomes 

as shown here. We had looked in detail the construction of the update procedure in the 

last class. Now, the next symbol or letter to be transmitted is lettered and the code word 

for the NYT. Since, d is occurring for the first time, the code word for the NYT node is 

obtain again by traversing this tree from root to the NYT node.  

So, if it traverse from the root to the node corresponding the NYT we get the codeword 

as 00. So, for d, the NYT node codeword would be 00 and since, d is the 4th letter in the 

alphabet and is less than 20, we represent it by k minus 1 that is equal to 3 and the 

codeword for that is 0011. Therefore, the total code word for d would be NYT code word 

followed by the code word for d. The next letter to be encoded is v. Since, v is appearing 

for the first time, we have to send the code word for the NYT node followed by the pre 

decided code word for v.  

So, the code word for the NYT node would be given by the tree structure here because 

this is a tree structure which is existing at the end of encoding d. So, the NYT code word 

would be 000. So, we have the code word for vas NYT code word 000 followed by the 

pre decided code word for v. Now, since v is the 22 alphabet. So, k is equal to 22 which 

is larger than 20. So, we encode this as 22 minus 10 minus 1. That is equal to 11. So, we 

represent v by the 4 bit representation of 11 and that is 1011. So, the code word for v 

would be 000 followed by 1011. And at the end of encoding, we again call the update 

procedure and when we call update procedure, the final tree structure is as shown here. 

Now, the next alphabet to be the next letter to be transmitted is a. Now, if you look at 

this tree structure than a has already occurred. So, the code word for the letter a in this 

tree is given by traversing from the root to the leaf node corresponding to a, and in this 



case it would be 0. So, the code word for the letter a would be 0. So, if you concatenated 

all these binary digits, we will get the code for this sequence a a r d v a. Now, after we 

looked at the encoding procedure, let us look at the decoding procedure. So, at the end of 

encoding procedure after we have encoded a, the updated tree would look as follows.  
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We have just incremented the weight corresponding to the node a. 
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Now, let us look at the decoding procedure. Now, as we read in the received binary 

string, we traverse the tree in a manner identical to that used in the encoding procedure. 

Let us try to understand the decoding procedure with the help of flow chart. 
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So, we start the decoding procedure by starting from the root of the tree. We keep on 

reading the binary bit string till we reach leaf. Now, we check for the status of this leaf. 

If the leaf is a NYT node then we read in e number of bits, that is four in our example 

and check for the value of those four bits. So, if 2 raised to e turns out to be less than r 

then if it is true then you read one more bit to get 5 bits and then you decode the element. 

But, if the value is not less than r than you decode by adding to that value of 

corresponding to 4 bit k plus 1 and then decode the element. After you have decoded 

element call the update procedure.  

If the leaf is not the NYT node then decode element corresponding to that leaf and then 

again call the update procedure. Now, check if this is the last bit in the string of the 

transmitted sequence. If it is last bit you stop, otherwise, you go back to the root and start 

reading the bit. Now, let us try to look at this decoding procedure with the help of an 

example. So, let us say that we have the same binary string which we had considered 

earlier. 
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Let us assume that we received this binary string. Initially, the decoder tree consists only 

of the NYT node. Therefore, the first symbol to be decoded must be obtained from the 

NYT list. So, we read in the first four bits. This is 0000. As the value of e in our case is 4 

the four bits 0000 correspond to the decimal value of 0. As this is less than the value of r, 

which is 10, we read in one more bit for the entire code of 00000. Now, adding one to 

the decimal value corresponding to this binary string, we get the index of the received 

symbol as 1. Now, this is the index for therefore, the first letter is decoded as a. The tree 

is... Now, updated as shown here. 
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So, you update that tree at the decoder as shown here. This updating procedure is exactly 

the same the updating procedure which we have at the encoder end. 
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The next bit in the string is one. Now, this traces the path from the root node to the 

external node corresponding to a. So, we decode symbol a, and then update the tree as 

shown here. In this case the update consists only of incrementing the weight of the 

external node corresponding to a. The next bit is a 0 which traces of path from the root to 

the NYT node. So, the next four bits are 1000 which correspond to decimal 8 which is 

less than 10. So, we read in one more bit to get the 5 bit word as 10001.  

The decimal equivalent of this 5 bit one is 18 which is the index of r. So, we have here ‘a 

a r’. We decode the symbol r and then update the tree as shown here. The next two bits 

are 00. Again trace the path to the NYT node. So, we read the next four bits that is 0001. 

Since this correspond to decimal number one which is less than 10. We read another bit 

to get the 5 bit word as 00011. To get the index of the received signal symbol in the NYT 

list, we add one to the decimal value of this 5 bit word. The value of the index is four 

which corresponds to the symbol d. Containing in this fashion, we decode the sequence 

0001011 as v, and finally this as a. 

So, after having studied both adaptive and non-adaptive Huffman coding procedure, let 

us look at some of the examples of applications, where Huffman coding is applied. One 

such example is for lossless image compression. A simple application of Huffman 



coding to image compression would be to generate a Huffman code for the set of values 

that any pixel may take.  
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For monochrome images, this set usually consists of integer values from 0 to 255. In one 

such experiment, four images were taken and each image was of size, 256 by 256 pixels 

with each pixel taking values from 0 to 255. So, they are represented by 8 bit. This 

corresponds to 65,536 bytes. And on this four images, Huffman coding procedure was 

applied directly on pixel values, and the results of that experiment is as shown here. 
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So, four images, let us call them as A, B, C and D were chosen and Hoffman code was 

directly applied on the pixel values and the result of that investigation is tabulated here. 

So, for the image A after the Huffman code was applied bits per pixel turned out to be 

7.01. For b, it was 7.49 and C and D is given here. The total size in bytes are also, 

indicated here. Now, the compression ratio has been shown here. The compression ratio 

is defined as the number of bytes in the uncompressed representation divided by the 

number of bytes in the compress representation.  

The number of bytes in the compress representation also, includes the number of bytes 

needed to store the Huffman code. So, from this investigation, it appears that we got the 

best results for the image C. Now, this is always the case the compression ratio is 

dependent upon the type of the images which are considered. Now, to get a better 

compression ratio it is necessary to utilise the statistics existing between the pixels in an 

image. Now, in most of the images, neighbouring pixels are highly correlated. What is 

implies is that the value of the current pixel can be predicted, or estimated from the 

values of the neighbouring pixels. So, one of the simplest school model, which can be 

used to estimate the current value of the pixel would be to say. 
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That estimation of the current value is equal to the past value. So, instead of encoding the 

pixel value x n, if you encode the residual between the pixel value and its estimate using 

this model, we would get as x n minus x n minus 1. So, this would be the residual value 



which will obtain after taking the different between the neighbouring pixels. Now, if you 

take this difference values and use the Huffman code on the residuals then we get the 

results as shown here. 

(Refer Slide Time: 32:01) 

 

The same images were considered, but now, the bits per pixel representation of this is 

given here and the compression ratios are again indicated out here. So, if you follow this 

procedure then it shows that for the image A we get the best result. Now, both these 

experiment were conducted by constructing the Huffman code based on 2 pass 

procedure. In the first pass, the statistics of the symbols in the source that is 0 to 255 

integer values was connected and in the next pass it was used to code the same values. 

Now, if we had to use the adaptive Huffman coding procedure than the results are as 

shown here. 
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This result is basically obtained after applying adaptive Huffman codes on pixel 

difference values and we see that there is a further improvement for the image A. 

Adaptive Huffman coder can be used as an online or real time coder. However, it is 

venerable to errors and also it is more difficult to implement. We will have look at better 

strategies for exploiting the statistical relationships between the pixels in the images. Just 

now, we have used the simplest model of utilising this statistical relationship in the form 

of estimation of the current value by the passed neighbouring pixel. Another application 

of Huffman code is to text compression. 
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So, for text compression, application it seems that Huffman coding is a natural form of 

coding procedure. In text, we have a discrete alphabet that in a given class has relatively 

stationary probabilities. For example, the probability model for a particular English novel 

will not differ significantly from the probability model for another English novel. 

Similarly, probability model for a set of a C programs is not going to be much different 

than the probability model for a different set of C programs.  

Now, simplest way to obtain the probability models is by counting the frequency of 

occurrence of letters in a document pertaining to a certain application. For example, 

English novel, in an experiment a document consisting of 70,000 bytes was Huffman 

coded and the result was represented by 43,000 bytes. There is a substantial drop in file 

size. While this reduction in file size is useful, a better compression can be obtained if 

we first remove the structure existing in the form of correlation between the symbols in 

the file.  

Unfortunately, this correlation is not amenable to simple numerical models as it is in the 

case of image files. However, there are other somewhat more complex techniques that 

can be used to remove the correlation in text file. These techniques are based on what is 

known as dictionary concept. There are two types of dictionary. One is a stationary 

dictionary and other is adaptive dictionary. Let us consider only one example of a static 

dictionary. So, we will use dictionary concept for the encoding of the texts material.  

So, very reasonable approach to encode such source is to keep a list or dictionary of 

frequently occurring patterns. When these patterns appear in the source output, they are 

encoded with a reference to the dictionary. If the pattern does not appear in the 

dictionary then it can be encoded using some other less efficient method. In effect we are 

splitting the input into two classes. One class consist of frequently occurring patterns and 

other class consist of infrequently occurring patterns.  

For this technique to be effective, the class of frequently occurring patterns and hence the 

size of the dictionary must be much smaller than the number of all possible patterns. As I 

said dictionary can be of two types static and adaptive. Choosing a static dictionary is 

most appropriate when considerable prior knowledge about the source is available. A 

static dictionary technique that is less specific to a single application is known as 

diagram coding. 



In this form of coding, the dictionary consists of all letters of the source alphabet 

followed by as many pairs of letters called diagrams as can be accommodated by the 

dictionary. For example, suppose we were to construct a dictionary of size 256. For 

diagram coding of all printable ASCII characters. Then the first 95 entries of the 

dictionary would be the 95 printable ASCII characters.  

The remaining 161 entries would be the most frequently used pairs of characters. The 

diagram encoder works as follows. It first reads a two character input and searches the 

dictionary to see if this input exist in the dictionary. If it does, corresponding index is 

encoded and transmitted. If it does not, the first character of the pair is encoded. The 

second character in the pair then becomes the first character of the next diagram. The 

encoder reads another character to complete that diagram and search procedure is 

repeated. So, let us take an example. 
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Suppose I have a source consisting of 5letters a, b, c, d and r. Now, based on the 

knowledge about the source, we build the dictionary shown in the table here. 
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Let us assume, so the dictionary is built as follows. All letters of the source alphabet are 

included in the dictionary. So, all a, b, c, d and r are included and then we have provision 

for including three more letters in this dictionary, if you want a size of a dictionary to be 

represented by three bits. So, if you want the size to be of 8, then we have provision to 

take care of three most frequently occurring pairs. So, let us assume based on some 

knowledge about the source we find that a b, a c and a d occurred very frequently, so if 

you form a dictionary based on this than if we had to encode a sequence. 
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Let us say a, b, r, a, c, a, d, a, b, r, a then the procedure is as follows. First we read the 

two characters they formed a diagram. Now, check for this in the code whether the code 

word exists for this diagram a b. Now, if you look in the code which we have designed 

here based on some knowledge, we find that the code word for the diagram a b exists and 

that is 101. So, we code a b as 101. 

The next diagram is r a. Now, if you look for r a we find that r a is not existing in the 

code. So, we take the first character of this diagram r and coded individually and the 

code word for r based on this code is 100. So, we code this as 100. The second character 

or the second letter in this diagram forms the first character of the diagram to follow. So, 

we read in the second letter and form another diagram that is a c. The code word for a c 

exists in our code that is 110. So, we code this as 110.  

The next diagram is a d for which the code exists as 111. For a b again it exists as 101. 

For this it does not exist. So, we code this as 100. Now, only a is left out. So, we coded 

as 000. So, this would be the sequence of the code word being generated based on the 

concepts discussed. Now, most adaptive dictionary based techniques are based on a very 

popular algorithm that is known as Lempel-Ziv-Welch - LZW algorithm. 

This algorithm is well explained in the literature. We will not go into the details as for 

this class is concerned. The idea behind this algorithm is that it dynamically constructs a 

dictionary from pattern observed in the source output. Dictionary based algorithms can 

be used to compress all kinds of data. However, care should be taken with their use. 

Otherwise we may end up with data expansion instead of data compression. So, the 

advantages of the dictionary based techniques can be summarised as shown here. 
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This approach is most useful when structure constraint restrict the frequency occurring 

patterns to a small subset of all possible patterns. These techniques are very efficient for 

text and computer to computer type of communication, but it is not very efficient for the 

images. Now, we have looked into quite of few number of techniques for coding. We 

have seen that the Huffman codes is the optimal or compact code. Huffman code is a 

variable length coding approach.  

Now, there is another popular variable length coding approach which is known as 

arithmetic coding. Arithmetic coding is very useful whenever you have source alphabet 

of small sizes, and when the probability of occurrence of the letters in the alphabet here 

are squealed. That means they are not uniform. In such cases Huffman coding procedures 

do not give very good results. So, in the next class we will have a look at arithmetic 

coding, but before we study arithmetic coding, we will study a simplified version 

arithmetic coding and that is based on what is known as Shannon Fano Elias coding. 


