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Lecture – 10 

Shannon’s First Theorem 
 

In the last class, we derived a very important result in information theory, which states 

that the average length of a code can never be greater than the entropy of a source. 

(Refer Slide Time: 01:01) 

 

So, what we derived was average length has to be always greater than equal to the 

entropy of the source measured in array units. Now, to appreciate the importance of this 

result let us re visit some of the examples which we had studied in earlier in our course. 

So, one example which we which we which we had considered was that we had a source 

s consisting of 4 symbols s1, s2, s3, s4 each of this symbols are equiprobable. So, we 

know that the entropy of the source measured with the base 2 is equal to 2 bits per 

symbol. 

Now, if I try to design any code a binary instantaneous code than my length of that code 

can never be less than 2 bits per symbol. And in this case each of this probabilities P i 

which is equal to 1 by 4 is of the form half raised to two. So, what it implies that I can 

design a compact code with 4 code words each of length 2 and 1 such code is. So, now 

the length of this code is also 2 binits per symbol. So, there exists no uniquely decodable 



code for this source with smaller average code word length, that is the length of 2 binits 

per symbol. Now, let us look at one more example to understand the derivation of that 

important result that is L is greater than or equal to entropy of a source. 
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So, if I take this same source s with the same 4 symbols, but with different probabilities 

given as half one forth, one eighth, one eight h then the entropy for this source will turn 

out to be 1 3 4 bits per symbol. Earlier in our course we had designed a instantaneous 

code for the source and that code was given as S1 is 1 0, S2 is 1 1 0, S is 1 1 1 0 and S 4 

is 0. This code is uniquely decodable code in fact it is a instantaneous code. Now, to 

calculate the length for this code it will turn out to be equal to 1 of 7 by 8 binits per 

symbol. 

So, even in this case we find the length of the code greater than the entropy of the source, 

but now each P i in this case also is of the form P i is of the form half raised to alpha i 

where alpha i belongs to integer. Therefore, it is possible to achieve the lower bound of 1 

3 4 binits per symbol and this is done by setting Li equal to 1 2 3 and 3 respectively for 

this 4 symbol S1, S2, S3 and S4. So, the code would be S1 0, S2 1 0, S3 1 1 0 and S4 1 1 

1, if the length the average length for this code will come out to be 1 3 4 binits per 

symbol. So, again in this case we find that the length average length turns out to be equal 

to the entropy of the source. And as a final example to explain the importance of Lis 

equal to H s let us consider a source s with seven symbols. 
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So I have a source s consisting of seven symbols S1, S2, S3, S4, S5, S 6, S7 each with 

symbol probabilities given as one third, 1 third, 1 by 9, 1 by 9, 1 by 9, 1 by 7. Now, the 

entropy for this source will take in the 3 array units we calculate that will turn out to be 

13 by 9 trinary units per symbol. And again we find that the symbol probabilities are of 

the form one third alpha i where alpha i belongs to integer.  

And we can once we have the lengths alpha i are nothing but the lengths for the code and 

we can design the instantaneous code as follows S1 is 0 S2 1. Now, if you calculate the 

length for this code as P i Li Lis equal to 1 to 7 will turn out to be 13 by 9 trinary 

symbols per source symbol. So, far what we have seen is that we have looked at the 

coding problem for the 0 memory source with symbol probabilities of the form 1 by r 

alpha i. 
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So, if I have log r 1 by P i is equal to Li. If I have my P i of this form then I can write log 

r 1 P i is equal to Li where I choose my Li equal to alpha i. Now, the next question arises 

is that if this condition is not satisfied then how do I choose my length. Now, what it 

means that if log of r 1 by P i is not an integer than how do I choose my length. 

It might seem reasonable that a compact code could be formed by choosing Li as the first 

integer which is greater than log r 1 by P i. Now, this tempting conjecture is not valid if 

we select Li in this manner it is not necessary that we will get a compact code, but 

selecting Li in this manner where Li is the integer, which is just larger than log r 1 by P i 

can lead to some important results. So, let us select Li, therefore as the unique integer 

satisfying this condition.  
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So, what we will do is we will select Li as a integer which is just larger than this value it 

means that it follows this inequality. So, if I choose a set of Li which follow this 

inequality then the next question is it possible for me to design or synthesize an 

instantaneous code which uses this set of Li. So, that question can be answered that 

question can be answered if I can test krafts inequality. 

So, taking exponential of the left inequality of equation 1 we will get 1 by P i is less than 

equal to r of Li which implies that P i is greater than r minus Li. Now, summing to over 

all i we obtain if I sum this all I assuming that the source is of size Q than I can write this 

relationship and this is 1 therefore, I get this relationship. Now, this relationship is you 

know that we have discussed this earlier and we have shown that if this condition is 

satisfied then it is possible for us to get an instantaneous code for that source. So, this 

choosing Li according to this relationship given by 1 is acceptable for synthesis of a 

instantaneous code. 

Now, equation 1 defines an acceptable set of Li for an instantaneous code multiplying 

equation 1 by P i and summing up over all, i we will find if i sum this up P i summation 

log r 1 by P i i is equal to P i log r 1 by P i P i Li P i log r 1 P i plus P i these are summed 

over all i we get the relationship as this is the entropy of the source measured in array 

units this average length of the code, another very important result which we have 

derived.  



Now, there is a difference between this result and the result which is. So, earlier another 

result which we saw earlier was a H r S is less than equal to L there is a important 

difference between this relationship and this relationship. This relationship expresses a 

bound for the average land of a code independent of any particular coding scheme the 

bound requires only that the code be instantaneous, whereas equation 3 on the other hand 

is derived by assuming the coding method given by equation 1. So, if I use the coding 

method described by equation 1 then I get this relationship and this relationship provides 

both a lower and upper bound on the average length of the code. 

Now, since this relationship is valid for any 0 memory source we may apply it to the nth 

extension of the source. Let us see basically what happens if I apply this kind of coding 

scheme to an nth extension of a source. So, let us assume that I have a source s which is 

a 0 memory source and I look at its nth extension of this source. If I follow the strategy 

for coding which is given by this equation then this equation is also valid for the nth 

extension because nth extension of a 0 memory source is again a 0 memory source. 
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So, the relationship which I get is H r S n is less than equal to a L n less than H r S n plus 

1, where L n is the average length which is defined as probability of sigma i lambda i, i 

equal to 1 to Q where Q is the size of the source Q n Q raise to n is the size of the nth 

extension source sigma i are the symbols of the nth extension of the source s n lambda i 

are the length. 



So, lambda i corresponds to the length of the code word corresponding to symbols from 

nth extension that is sigma i. This is the average length and L n by n will give me the 

average length for code symbols used per single source symbol from S. Now, we have 

also seen that H r S n that is entropy of the nth extension of a 0 memory source is equal 

to n times the entropy of the original source. So, based on this relationship we can write 

this equation. What this equation says is that it is possible to make L n by n as close as 

we wish to H r S by coding the nth extension of s rather than original source that is S 

because S keeps on increasing 1 by n tend towards 0. So, in that case L n by n will tend 

towards H r S that is entropy of the original source. 

Now, sp limit of n tending to infinity would be L n n is equal to H r S. This is a very 

important relationship which we have derived. This equation is known as Shannon’s first 

theorem or the noiseless coding theorem. It is one of the two major theorems of 

information theory equation 5 a tells us that we can make the average number of r array 

code symbols per source symbol as small as possible, but not smaller than the entropy of 

the source measured in r array units. 

So, the prize which we pay for decreasing L n by n quantity is the increasing complexity 

of the coding scheme. Now, all this discussion which we have done pertains to a 0 

memory source and its extension. The next question arises is are this results also valid 

for a source which is not a 0 memory source, but say a Markov source. Let us extend our 

discussion to a Markov source. 
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Let me assume that I have a Markov source S and have its adjoined S bar. We have seen 

the definition of a adjoint of a Markov source. Adjoint of a Markov source is a source 

with the source with the same source symbol as the source alphabet as the source S. And 

the symbol probabilities of the symbols in s bar is the same as the first order symbol 

probabilities of source S. So, that is a definition of S bar. Now, the process of encoding 

the symbols in the source S and the symbols which are identical to the source in the 

source alphabet S into an instantaneous block code is identical, because the source 

symbols are same. And the probability of the symbols are also the same.  

In that case what it means that the average length which is defined as p i L i i is equal to 

1 to Q this average length is also identical for both S and S bar. S bar however is a 0 

memory source and we may apply the earlier derived result to obtain H r S bar is less 

than equal to L. Now, we also have seen that entropy of the original source is always less 

than or equal to the entropy of its adjoint. And this is less than equal to L. So, what 

follows is that H r S is less than or equal to L. 

So, again even for a Markov source we have shown that the average length of a code 

when we code the symbols individually in the source is greater or equal to the entropy of 

the source. Let us extend this result to an nth extension of a Markov source. So, I have a 

source S which is a Markov source and I am looking at the coding of this source in 

groups of n elements. So, that means I am looking at s n where i code Si 1 Si 2 Si 3 up to 

Si n and as 1 unit. 

Now, if I start coding the source original source s in blocks of n source symbols then I 

can say that this source symbol form a new source symbol which is the i. And now I will 

range from 1 to 2 raise to n. Now, let us follow the same strategy which we followed 

earlier for a 0 memory source. Now, for a 0 memory source and its nth extension we had 

derived a result saying that L n is greater or equal to this is result which we had derived 

for the 0 memory source. 

And it is a nth extension, now based on this same thing is valid for a Markov source I 

can say that L n is greater than or equal to H of v less than H of v plus 1. So, the same 

result is valid when I code this source in groups of n source symbols. Now, we have also 

seen that by definition H v is equal to n times H n S, where H n S is the average 

information per symbol. So, if you go by this definition which we had seen earlier in our 



lectures I can write this expression as n H n S greater or equal to L n. Now, if I divide 

both the sides by n what I get is this result. Now, this is the average length of code 

symbols per source symbol of S. Now if I take the limit as n tends to infinity. 
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I will get limit n tending to infinity L n by n is equal to H infinity S. And this is the 

entropy of a source which is a Markov source. So, again we have derived the result that 

if I want my average length to be as close as possible to the entropy of the source, then I 

have to use the extensions of the source. Now, another parameter we can define which 

relates the entropy and the average length of the source and that is known as efficiency 

of a code. Efficiency of a code is defined as entropy of source divided by the average 

length of the code for that source. So, this is by definition and efficiency of a code, what 

is desired is to have as large as possible the value for this eta. 

Now, a question that arises is that we have used the coding technique which is based on 

this inequality. So, this inequality provides a some method of choosing the word length L 

i by encoding the symbols from S n and taking n sufficiently large the quantity L n by n 

can be made as small as possible, but it cannot be smaller than the entropy of the source. 

The question is suppose if n is not very large n or capital N, if this quantity is not very 

large the theorem does not tell us what value of L what is the average length we shall 

obtain in that case. It does not guarantee that L or L n by n will be smallest for that fixed 

n. 



Let us try to understand this with a simple illustration. Suppose, I have a source 

consisting of 3 symbols S1 S2 S3 and let us assume the P i is for this is given as two 

third, 2 by 9, 1 by 9 log of 1 by P i. If I assume that I am going to design a binary code 

than is equal to 0.58, 2.17, 3.17. So, my L i which follows in equality will be 1 3 4. So, I 

can design a code which is 0 1 0 0 1 0 1 0. 

So, I have designed a code a which is based on this coding strategy. Now, if you 

calculate the entropy for this source turns out to be H s is equal to 1.22 bits per symbol. 

And if I calculate the length for this code is 1.78 binits per symbol. If you look at 1 .78 it 

satisfies this inequality of H S this inequality is satisfied by this code a, but unfortunately 

this coding strategy does not give me a compact code, a code with the length average 

length of the code to be as small as possible. So, if I take another code in this case if I 

have another code say B which is 0 1 0 1 one which is again an instantaneous code. And 

you can calculate the length for this code turns out to be 1.33 binits per symbol. 

So, what it means that this procedure does not guarantee a compact code. Now, this code 

B 1.33 is very close to 1.22. So, what it also implies that by going for an extension of the 

source I may not able to achieve much. So, what this example demonstrate is that using 

this coding strategy, it is not essential that we always get a compact code. We could get a 

compact code when n is very large then when we consider nth extension of a source. 

Otherwise we have seen in this example that follow another strategy I could get average 

length of the code which is smaller than the strategy for given by this inequality. Now, 

this strategy of coding is known as Shannon coding strategy or Shannon coding 

assignment for the lengths. Another question which arises is that whenever the design 

using this strategy based on some probability of symbols given here, but in reality if this 

probability is not correct than what is the effect on the average length. So, let us answer 

this question. 
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So, what we say is that we have a source s with source symbols given as S1, S2, up to 

Sq. The real probability of these symbols are P1, P2 up to Pq, but for some reason this is 

not available and the estimate of this probabilities are available. So, let us call those 

estimates given as Q1, Q2 up to Q q. So, as far as we are concerned since this is known 

to us we will be designing our code based on this information. 

So, when we do that what it means that if we use Shannon code assignment. Then my 

lengths for the code word for each source symbol will be decided by log of this is a 

symbol which we use for finding out the first integer larger than this value. So, our 

designing of L i will be based on Q i. Now, the two function or the two probabilities are 

given by this. So, the entropy of the source is P i log r P i. So, this is a real entropy of the 

source.  

And if we design our code properly than we expect that every length of our code should 

be as close as possible to H S, but since this is not known to us and well be designing our 

code based on the length given by this probabilities. Then the average length of the code 

which we will be getting in a practical case would be very much different from the 

entropy of the source. 

How much is the difference is in the entropy and the average length based on this is of 

interest to me. And this difference is given in the form of a theorem. The theorem says 

that the average code word length under real probability of real probabilities given by P i 



of the code assignment L i equal to log of 1 by Q i. This is what is available to me 

satisfies the following relationship where by definition P of Q is by definition given as P 

i log of P i Q i i is equal to 1 to q. So, this is what we want to prove. 
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Let us look at the proof of it the average length of the code which we will get is L is 

equal to P i is the real probability of occurrence of a source symbol. And the design 

length for this source symbol S i would be given by this quantity because Q i are 

available to us. And this quantity is less than P i i equal to 1 to Q log of r 1 by Q i plus 1 

this is equal to P i log of P i Q i 1 year 1 by P i 1. This is equal to summation of P i log r 

P i Q i plus P i log. This by definition is equal to d of plus H r S plus 1. So, we have 

shown that L is less than H r S plus. Similarly, we can show the other side of the 

inequality not very difficult to do that. 
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So, we write L is equal to a again P i log of 1 by Q i and this is greater or equal to 

summation where i P i log r 1 by Q i is equal to this can be shown as equal to. So, finally, 

we get result as H r S plus d of Q where d of P Q is by definition given as P i log P i Q i. 

So, this is known as this is termed as relative entropy or it is also known Kullback 

Leibler distance between two probability distributions. More appropriate would be to say 

to two probabilities density. 

So, the penalty which we pay for the wrong choice for the probabilities of the source 

symbol is in terms of the relative entropy. So, our average length is going to increase by 

this quantity. So, we have looked at the mathematical relationship between the average 

length of a code and the entropy of the source for which the code has been designed. We 

also look at some of the methods to synthesize an instantaneous code. Now, in the next 

class we will have a look at different coding strategies which can be adapted in particular 

scenario to obtain average code word length to be as cool as possible to the entropy of a 

source without going further extension of the source. 


