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In the last class we have started discussing information theory and in this class also we 

will continue some more background on information theory. In the last class we have 

defined entropy of a random variable discrete random variable. And, we have discussed 

that that is that entropy that is the average information contained in a random variable 

that is also the bound for source coding. That is, the random variable can be expressed 

with a minimum number of bits which is same as the entropy of the random variable. 

The minimum number of bits required to represent the random variable on average is H 

X. That is the entropy of the random variable. 

 

Now, in this class we will start by first defining some more information quantities and 

then we will go towards results related to channel coding. That is, if you want to transmit 

information through a channel how much maximum how much information can be 

transmitted? We will try to answer that question after defining some more quantities with 

some examples. So, in the last class we have also defined joint entropy which is quite 

straightforward from the definition of entropy itself. 
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If we have two random variables X and Y then, we define joint entropy of X Y as, 

summation over x and summation over y probability that capital X is equal to x, Y is 

equal to small y times log p x y minus of this. We define this to be the joint entropy of X 

and Y. And, we also commented that this joint entropy will be equal to the sum of the 

entropies of the individual random variables, if the individual random variables are 

independent. And, we also saw examples and we also proved that this is so. 

 

Now, if X and Y are not independent then of course, it is not true that is the joint entropy 

is not same as the sum of the entropies. And, we will see that it will be less than the sum 

if X and Y are not independent. So, before going into that let us first define another 

information quantity. Let us define H Y, given that X is equal to a particular value small 

x. So, if X is known to be x equal to x then, what is the average information contained in 

Y. Then of course, that will be clearly determined by the conditional distribution of Y 

given that X is equal to x. 

 

So, instead of working with the distribution of Y we will work with the distribution of Y 

given that X is equal to x. So, p y given X equal to x will play a role in this definition. 

So, this is defined as minus summation over y p Y equal to y, given X equal to x. We 

will denote this simply by p y given x log p Y equal to y given X equal to x. So, this is 

the definition. We can see that the simply condition it is the same definition as H Y 

except that this all the probabilities are conditioned by X equal to x. So, this is the 

uncertainty or the information contained in Y if you know that capital X is x. 

 

Now, of course X may not be x all the times. So, the probability that X is equal to x is p 

x. So, we can average this quantity itself over all values of x and that will give us 

average uncertainty in Y, if we know the value of x. Here this is the average uncertainty 

in Y if the capital X is equal to x a particular value. But once we average this quantity 

over all values of x, we get the average information in Y given x. So, H Y given x that is 

the entropy of conditional entropy of Y given X is defined to be the average. So, x will 

take the value small x with probability p x. So, that has to be taken into account while 

averaging. So, this is the definition of conditional entropy of Y given x. 

 

Now, one can intuitively feel that this is kind of the extra information that Y contains 

once X is told. So, if they are dependent if X and Y are dependent, then if you tell me the 



 

values of X that will also tell me give me some information about Y. Because they are X 

and Y are dependent on each other. So, if you tell me the value of X we know some 

information about Y, but even then there is still some uncertainty left in Y. So, this 

quantifies the average uncertainty left in Y if X is told. So, one can feel that this will be 

less than H Y itself. Now, we will prove that in a moment. 

 

So, we can write this after substituting this, for this quantity from this definition as 

summation over x and this summation over y in this minus comes here and the p x and 

then this quantity p y given x log p y given x. Now, p x times p y given x is nothing, but 

p x y. So, this is like averaging or expectation of this function. This is the function of x 

and y because p y given x itself is a function of x and y and this is the joint probability 

mass function of x and y. So, this quantity is nothing, but the expectation of minus of the 

expectation of log p Y given x. And, this expectation is computed by using the joint 

distribution p x y. So, we write this x y to denote that that this expectation is computed 

using this distribution. Now, we prove a very important result.  
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So, chain rule. This is H X Y the joint entropy is H X plus H Y given X. So, what it says 

is that the total information contained in X and Y is, can be separated into two parts. One 

is how much information X contains and then given X, what is the extra information that 

Y contains? So, H X is the total information in X and Y that is the sum of the 

information contained in X and the extra information in Y given X. So, that that seems 

quite intuitive, but we need to prove that, using the definitions. So, let us just prove. So, 



 

H Y H X Y is defined this way p x y log p x y, which is same as x y then p x y. Now, this 

p x y we break into two parts, one is p x times p y given X. 

 

So, we get log p x plus log p y given x. So, log p x and then log p y given X. So, we get p 

x y log p y with given x. Now, this quantity if you see; if you look at the term inside the 

summations, we see that this is independent of Y is only p x. Only this part is dependent 

on Y. So, this summation this quantity can be taken outside the summation on x. So, this 

is, this quantity is outside the summation of x and the summation p x y on y. If you sum 

this over all possible values of y what you get is nothing but p x that is the marginal 

distribution. So, this summation is p x and then this quantity and then this term as it is. 

 

This term we know to be H Y given X this from the definition of H Y given X that is the 

definition of H Y given X. And what is this quantity is H X. So, we have H X plus H Y 

given X. Now, this result as we said is very important because it was it is also very 

intuitive as I explained just now. And, it says many more things it says for example, that 

that H X Y is H X plus H Y if X and Y are independent. Because, if X and Y are 

independent H Y given X is same as H Y because X does not have any information about 

Y because X and Y are independent. So, the H Y given X is same as H Y. So, as a 

special case we see that H X Y is same as H X plus H Y, if the random variables X and 

Y are independent of each other. Now, let us see this with a see this by an example. 
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Let us consider an example of two random variables. And, we take two random variables 

and we take the joint distribution and we write the probability joint probability mass 

function as a table 2 dimensional table. X takes 4 values, 1 2 3 4. Y also takes 4 values, 1 

2 3 4. And, the probability that X is 1, Y is 1 is one-eighth; probability that X is 2, Y is 1 

that is the probability of 2 1 is one-sixteenth. Similarly, all the other probabilities are as 

following. So, let us take this particular example and compute the important information 

quantities that we have defined. First of all let us compute the marginal distribution of X 

and Y. What is p x p x p x? So, for X equal to 1 what is the probability? We will get that 

by adding all these. 

 

If you add all these we will get half. Then we add all these we will get one-fourth. If you 

add these we will get one-eight, add these we will get one-eight. Similarly, p y the 

marginal distribution of Y we will get by probability of 1 is sum of all these which is 

one-fourth. Probability of 2 is sum of all these which is again one-fourth and one-fourth 

and one-fourth. So, these are the marginal distributions of X and Y respectively. So, 

what is H X? This probability distribution may look familiar to you because of we took 

this as an example in the last class. And, we computed the entropy of this random 

variable for this distribution and it came out as seven by 4 bits. And, what is the entropy 

of this random variable H Y this is uniform distribution. So, it is 2 bits. Now, we have H 

X and H Y. Let us also compute the other quantities H X Y. 
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What is H X Y? This is the we have to take all possible values of x and y pair. So, there 

are 16 possible values 16 entries in the table. And take p x y that is this is the probability 

times the log of 1 by the probability. So, for this term what do we get? We will get one-

eighth times log 1 by one-eighth. So, one-eighth time times log 1 by one-eighth. So, 1 by 

one-eighth is 8 and log of that is 3 log 8 is 3. So, for this that log is 3 for this the log 1 by 

this is 4 this is 32. So, this will be 5 and so on. And this will. So, this will give us a term 

here which is one-eighth times log of 1 by one-eighth. So, that is 3 one-eighth times log 

8 that is 3. And, there are the same value appears here. So, this quantity will appear 2 

times and there is no other term as one-eighth. So, we will have 2 times this. So, there is 

the sum of the terms corresponding to this and this. 

 

Similarly, one-sixteen is there one-sixteenth is there 1 2 3 4 5 6 six times. So, there will 

be 6 terms which are one-sixteenth times log of 16 that is 4 Then, 132 1 by 32 is there 4 

times. So, there will be 4 terms with the value 1 by 32 times log 32 that is5 plus there is a 

term one-fourth. So, this is one-fourth of log 4 that is 2. So, this is the joint entropy of X 

and Y. And, what is this? This is 2 times 3, that is 6 by 8 plus 6 times 4 by 16 we can. 

So, 6 times 4 by 16 we can write as 24 by 16 which is 12 by 8, we want to keep the 

denominator same. So, that we can add. So we are not canceling all the twos here. 

 

So, this is 12 by 8 plus this is 5 by 8 plus this is 2 by 4, which can be written as 4 by 8.If 

we add 6 plus 12 is 18 18 plus 5 is 23 23 plus 4 is twenty-seven. Twenty-seven by 8 bits. 

This is the joint entropy of X and Y. Now, now let us compute the conditional entropy of 

X given Y  
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The conditional entropy of X given Y is written as, i equal to 1 to 4 that is the summation 

over Y. Y takes these values and then probability of Y equal to i times H X, given that Y 

is equal to i. This is how we defined this quantity. So, what is the probability of Y equal 

to 1? We can take the marginal distribution marginal distribution is in uniform. So, all 

the probabilities are one-fourth. So, one-fourth times H X gave Y equal to 1. So, H what 

is the distribution of X for Y equal to 1? The marginal is one-fourth. So, we have to 

divide this row by one-fourth that is multiply this row by 4 that is the distribution of X 

given Y equal to 1. So, divide the joint distribution by the marginal distribution that is 

the conditional we will get the conditional distribution. So, divide this slope by one-

fourth that is multiply by four. So, if you multiply this row by 4, what is the distribution 

we get? Half one-fourth 4 times 132 is one-eighth one-eight. Then, the entropy of this 

distribution. So, we write it as H of this. 

 

So, this and then other values of Y also, we have to take Y equal to 2 has the probability 

one-fourth and the and the conditional distribution is this times 4. Second row times 4 

and that is one-fourth half one-eight one-eighth plus one-fourth H. Third row times 4 that 

is one-fourth because this is all one-sixteenth. Then, one-fourth H fourth row times 4 that 

is 1 0 0 0 1 0 0 0. Let us now compute these entropies, one-fourth times entropy of this. 

So, entropy of this we already computed entropy of this is the same as this and entropy 

of this is seven-fourth bits. 

 



 

So, this is one-fourth times seven-fourth plus one-fourth times again the same 

distribution in different order. So, it has the same entropy seven-fourth plus one-fourth 

times. What is the entropy of the uniform distribution with 4 values? It is 2 plus one-

fourth times. What is the entropy of this distribution? This does not have any uncertainty 

at all. All the probabilities concentrated in one value. So, it has entropy zero. So, we have 

7 by 16 plus seven by 16 plus 2 by 4, which can be written as 8 by 16, which is 7 plus 7, 

14 plus 8, 14 plus 8 that is 22 by 16 which is 11 by 8 bits. So, the conditional entropy of 

X given Y is 11 by 8 bits. 

 

Now, let us verify the chain rule that we have proved just now. That is according to the 

chain rule we should have H X Y to be H Y plus H X given Y. The information 

contained in Y plus the extra information in X given Y that is the joint entropy of X and 

Y. So, let us just verify that. This quantity as we have seen as we have computed is 27 by 

here computed this to be 27 by 8. And, this is 2 bits and this we have just now computed 

11 by 8. So, if you add this, so 2 plus 11 by 8 is 16 plus 11 by 8. 16 plus 11 is 27. So, 27 

by 8. So, this is really same as the sum of these two. So, this is verified. 
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We can also similarly verify that, H X Y is H X plus H Y given X. If we compute this 

conditional entropy also. We computed here H X given Y we can also compute H Y 

given X and we can verify that these 2 sides will be same. And, if you if we believe the 

result that we have proved just now that are this, then we can also compute this using this 

relation. So, what will be this quantity this we know to be 27 by 8. This we know to be 7 



 

by 4. So, what will be this? This will be this minus this should be H Y given X. And, this 

is nothing, but 27 minus 14 by 8. So, this is 13 by 8. 

 

So, H Y given X is 13 by 8 which you can which is obtained using this relation. So, this 

relation can also be expressed in terms of a diagram like Venn diagram. If you denote 

HX by the circle as this is total information in X and this is total information in Y then 

there is some common information between X and Y. That is this is part and if Y is told 

this is known. So, the extra information X is this part and. So, this H X given Y 

similarly, this is H Y given X. So obviously, one can see that H X Y which is joint 

entropy is nothing, but this total. 

 

This is H X plus H Y, given X or it can be said to be H Y plus H X given Y. And, what 

is this part? Then, this is the common information between X and Y, and we will define 

this quantity also rigorously in terms of the probability distribution in a moment. So, this 

is called the mutual information between X and Y. The mutual information, it is denoted 

by X Y. The order does not matter a I X Y is same as H I Y X. This is defined to be 

summation x, summation y p x y log p x y by p x p y. So, one can see this is the 

expectation of log p y p x y by p x p y the expectation is taken by using this distribution 

p x y. 
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Now, one can if one sees this expression carefully, one observes that if p x y is same as p 

x times p y that is, if x and y the two random variables x and y independent. Then this 

quantity is always 1 for all values of x and y this quantity is one. So, log of 1 is zero. So, 

summation over 0 is nothing, but 0. So, if x and y are independent of each other then, the 

mutual information is 0 and that is quite expected intuitively also. Because, if x and y are 

independent you expect no common information between them. If y is told it does not 

reveal any information about x because they are independent. 

 

So, that is also, so this definition satisfies our expectation in that regard. So, that is 

mutual information and we can also prove that this is same as this part. This common 

this common part here denote that is H Y minus H X given Y. The H X minus H X given 

Y. So, that will be this part already we have seen that this is also true and both these 

expressions are true that is, H X Y is same as H Y plus H X given Y and which is same 

as H X plus H Y given X. So, if these 2 quantities are the same we already have that H H 

Y plus H X given Y which is same as H X Y the same as H X plus H Y given X. 

 

Now, we can this means H Y minus this quantity is taken on the left hand side. And, H Y 

given X then H X minus this quantity is taken on the right hand side. With negative sign 

H X given Y. So, that is, what is this quantity H Y minus H Y given X this part? So, this 

what is left is here this quantity common part. Similarly, H X minus H X given Y is also 

this common part. So, it is no wonder that this is true because we expect intuitively that 

this common part is same. So, it is high it is obtained either as H X minus this or H Y 

minus this. So, that that these two are the same things and these two are the same things 

as the mutual information between X and Y. So, what we have defined just now the 

definition of mutual information will actually be same as this and that can proved. 

 

So, first thing we observe is I X Y is 0 when X and Y are independent. Next as you said, 

we can show that this mutual information is same as either this or this. Then let us just 

see that. So, we want show that I X Y is H X minus H X give X given Y. Similarly, by 

interchanging X and Y one can show that this is same as H Y minus HY given X. Let us 

just see that. 
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So, let us first write down the definition of I X Y this is summation over x and y p x y 

log p x y by p x p y this is definition of mutual information. Now, we can write this as 

summation over x y p x y then log p x y by p x can be written as p x y by p y can be 

written as p x given y. So, p x given y by p x. So, p x y by p y is written as p x given y. 

Then, we can type this as log p x given y minus log p x then, we will have 2 terms 1 is 

log p x given y the other is log p x. 

 

So, what is the first term? First term negative of the first term is H x given y because, this 

is expectation of log p x given y. So, this is minus H X given Y and this quantity 

including the minus is H X because this is independent y. So, the summation this 

quantity is same as p x. So, summation minus summation about x p x log p x is nothing, 

but H X. So, this is H X minus H X given Y. So, we have I X Y equals H X minus H X 

given Y. Similarly, one can obtain I X Y equal to H Y minus H Y given X. So, we can 

now say that this part is really I X Y the mutual information between X and Y. So, this is 

intuitively also quite nice because if considered any part like H X or H Y. 

 

If we consider H X, for example; it is the sum of 2 parts, one is how much information Y 

gives about X. That is the mutual information between X and Y and how much extra 

information X has that is this. So, if Y is revealed it gives some information about X that 



 

quantity is this and there is some extra information in X that is this. The together they 

form H X. Similarly, for H Y okay, now we will start channel coding theorem. 
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It is very important theorem of important results by Shannon. Before discussing channel 

coding theorem, let us observe that I X Y is a function p x y, but p x y itself can be 

expressed as product of p x and p y given X. So, we can say that I X Y is function of p x 

and p y given x they together give us p x y and I X Y is a function p x y. So, it is function 

of p x and p y given x. Now, consider the communication setup there is a channel a 

random variable X is transmitted and Y is received then this p y given x is actually 

property of the channel. If X is given, that is if the transmitted value is known the density 

of Y or the distribution of Y is a property of the channel. 

 

We have nothing to do with it. We cannot dictate what this will be. For a particular value 

of x the distribution of y is given by the channel. So, this is this is given by the channel 

and we assume it to be known. Now, the other part of which I X Y is also a function that 

is p x is in our hand, that is this decided by the system designer. So, we have this in our 

hand we can change p x as we want. This determines how we are doing to transmit the 

values of x with what distribution. Now, the channel coding theorem says that, for any 

given value of p x a p x is also told that we want transmit with the x with the distribution 

p x then the maximum rate at which you can transmit reliably.  



 

We will define what reliably is more precisely now later. But let us accept that there is 

something called reliable communication. So, if you want to transmit at transmit reliably 

at what is the maximum rate at which you can transmit for a given p x? That is nothing, 

but I X Y. 
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The mutual information between x y X and Y that is also quite intuitive. Because, we are 

doing to transmit X with distribution p x. And, we are going to receive Y and p x is also 

given and p y given X is also given by the channel. So, if we transmit X with the 

distribution p x then I X Y is fixed. And, then from what we have seen we want to 

estimate the value of X and that information theoretically. How much information can 

you get about X from the value of Y? That is nothing but this mutual information. So, 

this quantity should be the amount of information that can be transmitted through the 

channel by every use of the channel. 

 

So, by one transmission we should be able to transmit this much information through the 

channel. And, really the channel coding theorem says that this rate at which once can 

transmit. More precisely what it says is that for any so, channel coding theorem, so this is 

actual theorem will come later, but this is the preparation to that. So, it says for any 

epsilon greater than 0. So, consider any probability of error that we are satisfied with. Let 



 

us say we want to have probability of error that is consider it to be bit error rate or 

something error rate. 

 

The error rate to be we want the error rate to be less to than ten to be equal minus 6 or 10 

to minus 5 10 or minus 10 or whatever. Fix some small quantity that is, that gives us an 

upper bound on the probability of error that you want. So, given any epsilon greater than 

zero, which is the upper bound on the probability of error that is desired. We can 

communicate at a rate R, if R is less than this quantity. So, for any epsilon greater than 0 

and R less than I X Y. So, if we choose a rate less then I X Y, then if we choose any 

small probability of error bound, we can transmit at this rate with less than this 

probability of error. 

 

So, for any epsilon greater than 0 and or less than this quantity, we can transmit at rate R 

so that the probability of error, average probability of error is less than epsilon. So, is 

very important result, but it also very important to understand the result of the statement 

precisely. What it says is that you fix any probability of error that you are satisfied with. 

You say that I want probability of error less than 10 to the power minus 100. And, what 

this result guarantees is that, if you want a probability of error 10 to the power minus 100 

or minus 200 or whatever does not matter, as long as you want to communicate at a rate 

which less than the mutual information between X and Y. 

 

If the rate is less than mutual information between x and y, then there is a transmission 

scheme by which you can transmit at that rate. And, the probability of error will be less 

than whatever you say. It cannot be zero, but it can be as small as you want. It can be less 

than the power minus 10 it can less than ten to the power minus 100. If you want there is 

scheme for that. So, now here also we fixed p x the distribution of x is fixed. Because, 

this quantity depends on p x now p x can be still varied by the designer. So, we can chose 

the p x and try to maximize this quantity also. 

 

So, actually the channel coding theorem says that, you can maximize this quantity by 

varying p x. Chose the maximum possible quantity I X Y that you can get by dividing p 

x. And, then if you chose a rate less then that maximum that rate is also achievable with 



 

arbitrarily small probability of error. So, that maximum mutual information between X 

and Y is called the capacity of the channel. So, let me repeat again that this I X Y this 

quantity I X Y in this result depends on the probability distribution of X that we choose. 

So, we can try to maximize this quantity by choosing different p x. So, we can choose p 

x. So, that this quantity is maximum and then we can assume that p x we can fix that p x 

and use that for transmission. 

 

Then the same theorem will tell us that, for any rate less then that maximum is also 

achievable. So, the channel coding theorem says that, first of all we define C that is the 

capacity of the channel. 
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So, this quantity is maximized by choosing a suitable value of p x is maximization is 

over distributions of x. So, chose that distribution p x and that will give us the maximum 

value of this and then; obviously, for we can restate the previous result in the following 

manner. That, for any epsilon greater than 0 and R less then C that is this quantity, if you 

chose any rate less then C, then you can chose that p x which maximizes this quantity. 

Then for that p x I X Y will be equal to C and then R will be less then that I X Y. So, this 

will becomes the same statement as the previous statement. 

 



 

That for any epsilon greater than 0 and R less then C, we can transmit at rate R with P e 

less than epsilon. That is the average probability of error less than epsilon. This is the 

channel coding theorem. And, it says something more it also says that if you chose rate R 

greater then C then this is not possible. That means; if you chose a rate R which is 

greater than C then, the probability of error is always greater than sum value. Below if 

you chose value the probability of error cannot be brought down below that. So, for any 

rate greater than C, the probability of error cannot be brought down to brought down 

near 0 as close to 0 as we want we cannot do that. 

 

So, in fact, one can if one plots the upper bound on the probability error the lower bound 

on the probability of error for different rate, this is rate this P e. Then one can show that 

it is like this. It is the lower bound on P e. So, it will be something like this. So, and this 

point is C. So, if R is less than C the lower bound is 0 that is P e can be brought down to 

and brought down to as close to 0 as we want where as if R is greater than C say here, 

then probability of error cannot be brought down below this point below this level that is 

the channel coding. This is the channel coding theorem and the converse this statements 

is called converse that is, if R greater than C then reliable communication is not possible. 

 

And, here by reliable communication we mean that we cannot bring down the probability 

of error as close to zero as we want. There is and there is lower bound on the probability 

of error. So, for R less then C we can bring down the probably of error to as close to 0 as 

we want where as if it is greater than C it is not possible. So, this is really from practical 

point of view also this is the capacity of the channel. Because, we reliable 

communication is possible below this rate, but not above this rate. So, it is defined in 

terms of information theoretic quantities whereas, channel coding theorem connects this 

with the practical communication schemes. And, says that this quantity as defined using 

information theoretic quantities is really the maximum rate at which one can transmit 

information through a channel. 

 

Okay, so in this class we have we have seen that the relation between the joint entropy of 

two random variables the entropy of the individual random variables and conditional 

entropies. And, also we defined the mutual information between two random variables 



 

and seen the relation of this with the other information quantities that we have defined. 

And, then we have discussed channel coding theorem in terms of mutual information 

between the transmitter random variables and the received random variables. And, we 

have said that channel coding theorem says that, reliable communication is possible if 

the rate is below the mutual information, maximum mutual information that is the 

capacity and is not possible above that rate.  

 

Thank you. 


