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Hello everyone. In this class we will start with some basic background on random 

process probability on random process that we will need in this course. So, is most likely 

that this is already known to you, but nonetheless it will be used in this course. So, we 

will just revise the background that we need to do. So, we will start from the basic 

definitions of related to probability and random process. First of all the basic in the basic 

frame work there is a there is an underlying experiment, there may be a practical 

experiment or something some experiment that is performed by the nature not by 

anyone. 

 

So, the experiment may be like tossing a coin, or throwing a die, or it may simply be 

some electrons moving inside the inside a resistor and then, the outcome there may be 

that some voltage observed at the ends of the resistor. In the case of throwing it die the 

outcome is the number that comes on the face, and the in the case of tossing a coin the 

outcome is head or tail. So, there is an experiment and there is an outcome of the 

experiment. Now, the set of outcomes is called the sample space of the experiment. So, 

in the case of tossing a coin the sample space is the set of the head and tail. In the case of 

throwing a die the sample space is the set of numbers from 1 to 6.  

 

In the case of the voltage at the output at the ends of the resistor; the noise voltage that 

there resistor is generating the outcome is simply the voltage observed at the ends of the 

resistor. So, that voltage is continuous value it can be anything from minus infinity to 

infinity where as in the case of throwing a die the outcome is bound to be from one of the 

six numbers that is 1 to 6. In the case of tossing a coin the outcome is one of the 2 that is 

head and tail. So, the set of outcomes that is the sample space may be a finite set or an 

infinite set it may be a discrete set it may be a continuous set it can be of different types. 

  



 

(Refer Slide Time: 04:00) 

 

So, we know what is. So, there is an experiment and that is an outcome of the 

experiment. And, the sample space we will be denoting it by S is a set of outcomes. For 

example, this may be the set of numbers from 1, 2, 3, 4, 5 and 6. When the experiment is 

throwing a die or it may be the set head and tail. An event so, this is sample space an 

event A simply A subset of S. In general the definition is little more complicated there 

are some conditions to be satisfied, but we will not go into the details, and we will 

simply we will assume that the sub sets that we have considered are nice enough. And, 

let us simply say that an event is A subset of the sample space. 

 

For any event A there is of course, the complimentary event that is A compliment which 

is set of all the set S minus the set A. Now, corresponding to an experiment there is a 

sample space, but at the same time every if the sample space is finite. For example, the 

every point in the sample has a probability of coming as outcome. So, there is a 

probability major associated with the sample space. As you deal with the experiment the 

major is on the sample space. So, for every event also there will be a probability that is 

the probability; that the outcome will be in that set in the set A so, that we will call the 

probability of the event. 

 

For example, we can take A to be the set of even number 2, 4, 6 that is subset of this 

sample space and if the die is fair that is if the probability of each of these numbers is 

one sixth same and equal to one sixth then, what is the probability of this event A? This 

is half. Probability that we will observe A that is the outcome of the die will be throwing 



 

the die will be even number. So, that probability is in this case half. So, there is a 

probability of every element in the sample space in this case, from the sample space is 

finite. 

 

Now, if we have some events A 1, A 2 and so on, some many events then we can of 

course, take the union of these events. Then, let us call it A that is the union of all these 

events and then, what is A it is basically the set of all numbers that are appearing in all 

these. So, the probability of A can be bounded by the summation of the probabilities it 

may not be same as the sum of the probabilities, but it may be even less than the sum of 

the probabilities. Why? Because, they are may some common elements between the 

events. For example A A in the we have taken one event like this. They are may be 

another event we can take as A 2 as 1, 2, 3 and there is this 2 is common. 

 

So, probability of this is half probability of this event is also half, but the probability of 

this union this is not 1, it is not half plus half because, the probability is 1, 2 probability 

of 1, 2, 4, 6. So, 5 by 6 is the probability of this union this, but it will be always less than 

equal to the sum of the probabilities. 
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Now, if we have two experiments; say experiment 1 and experiment 2 with two sample 

spaces say S 1 which is this. For simplicity we are considering now, only sample spaces 

of finite size. Let us consider these two experiments with sample spaces S 1 and S 2. 

Then if we take any one element from here and one element from here, what is the 



 

probability? That probability of that is take x i from here and take y j from here. Then 

what is the probability that the outcome will be of the first experiment will be x i, and the 

outcome of the second experiment will be y j. That is we performed both the experiments 

and, what is the probability that the outcomes are x i and y j. So, this will be; obviously, 

in this range and this is called the joint probability major of these two outcomes. 

 

And, once we know this joint probability distribution this P; we can find out the 

probability distribution of this outcome and that is called the. So, for that we have to take 

say for example, if you want to compute the probability of x i. So, that is the probability 

that the first outcome is x i and the second outcome is any of this. So, second outcome 

can be y 1 it can be y 2 or it can be y n. 

 

So, we have to take the sum of all such probabilities; that is probability that the first 

outcome is x i, but second outcome is y 1 then probability that the first outcome is x i, 

but second outcome is y 2 and so on, all those. So, we have to take the sum over all j and 

this will be the probability of the first outcome being x i. So, if you know the joint 

probability distribution we can find the individual probability distributions, and these 

there are called them. So, if you want the distribution of this then, we have to take the 

summation over that is instead and this we get probability of y j. So, these 2 are called 

the marginal’s marginal probability distributions. And, again let us consider that there 

are 2 events either of the same experiment, or 2 different experiments. And, we know 

that one event has occurred then, what is the probability the second event is second event 

also occurs. 

 

So, for example, we throw one die and, we know that the event of even number has 

occurred. That is the outcome is an even number then, what is the probability that the 

outcome is 2. Then the probability is; obviously one-third, if the die is fair because if you 

know that the event is even the outcome is even. Then, there are 3 such numbers with 

equal probability each of them having probability then one-third. 

 

So, that to deal with that kind of situation we need to define what is called as conditional 

probability. So, if there are 2 events probability of this A and B then, if B is known to 

occur B has occurred then what is the probability that A is also true that A also occurs. 



 

So, that is defined as A B by the probability of B. So, this is the marginal distribution this 

is the probability that both A and B is true. 

 

So, these events may be of two different experiments or may be the same experiment. 

Similarly, probability that B given A is probability A B by probability of A. And from 

these 2 one can see that from here we can write probability of A B is probability of B 

times probability of A given B. So, this is quite expected because, what is this is the 

probability that both A and B are true, both the events A and B occur. Then, that is same 

as the probability that B occurs and then given that B occurs what is the probability that 

A also occurs. 

 

So, that if you multiply those two probabilities that is what is the probability that B will 

occur and then, what is the probability that if B occurs, what is the probability that A will 

also occur. So, those 2 probabilities together will give you the probability that A and B 

both occur. So, this is also called chain rule of probability, so will see a generalization of 

that. 
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The generalization is; if you have now, T events A 1, A 2, A t one can show that this 

probability is probability of A 1 time probability of A 2 given A 1, probability that A 3 

given A 2 A 1, probability of A 4 given A 3 A 2 A 1 and so on. Till probability of A t 

given A t minus 1, A t minus 2 and so on, till A 1. This can be written in short as 

probability A i given A i minus A to 1. So, this is called chain rule. And, now from here 



 

one can say that one can now express suppose we know that; we know this probability, 

but we want to compute this probability. So, what is the way to compute B given A 

probability of B given A from probability A given B. So, in this expression this does not 

appear, but then this one can be expressed in terms of this here is how it can expressed 

interest of this. So, we can write probability B given A as probability of A B that is this, 

probability of B times probability of A given B by probability of A. 
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Now if 2 events of there A and B they are called independent, if this probability is same 

as. So, A and B are called independent events, if P B given A is P B. 
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So, if we simply put this quantity equal to P B what do you get this P B P B cancels from 

both sides and then we will get P A given B equal to P A. So, that is what is also that is 

equivalent. Now, on the other hand if we put here this equal to P B what do you get we 

get P A given B equal to P A times P B. So, we get this is same as saying that P (A, B) is 

P A times P B. That is the probability of A and B together is equal to probability of A 

times probability of B. So, this is also same as saying P A given B is P A. So, these are 

all same equivalent and, if this is true then this to this 2 events A and B are called 

independent events. 
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Now, we have a sample space S cross one into an experiment, and if you considered a 

mapping x of S into R. That is what is this mapping? This takes every element from the 

sample space to a real number. So, the outcome of the experiment may not be a real 

number for example, the tossing a coin the outcome either head or tail it is not a real 

number. So, but we can associate with the every outcome a real number. So, that for 

every experiment the outcome is mapped to the set of real numbers. The mapping can be 

indifferent ways, but we can map to the set of real numbers, and such a mapping is called 

a random variable. 

 

So, there is an experiment and there is a mapping of the A set of outcomes to the set of 

real numbers and that mapping is called the it called a random variable. So, if you have a 

random variable like this. So, this is a random variable. For the let us see some examples. 



 

So, consider coin toss. So, S is head and tail. Now, we can consider a mapping like this 

where head is mapped to 1 and tail is map to minus 1 or tail is mapped to 0 that will be a 

different random variable. So, if we can take different mappings and they will be 

different random variables. So, this is an example of the of a random variable. 

 

Now, if the outcome if the if the image of this mapping is a discrete set it is not 

continuous value. Then the. So, if image of X is discrete set then X is called a discrete 

random variable. So, X is called a discrete random variable. For example in this case it is 

the discrete random variable the mapping because a image of the mapping is 1, minus 1 

it has only 2 elements and this is a discrete set. On the other hand if you take the voltage 

across a resistor the lowest voltage that thermal lowest that is generator of the at a 

resistor it is continuous value. That is also a random variable the outcome itself is a real 

number and the mapping can be taken as just the real number itself the identity mapping. 

 

So, every real number goes to itself that is the mapping then that is the image of the 

random variable the mapping is a continuous set it can be anything it is not either plus 1 

minus 1 or plus 2 0 it is not integer, but it can be anything. So, it is a continuous random 

variable. 

 

So, if the image is a continuous set then X is called a continuous random variable. Now, 

let us define some more probabilistic functions and concepts regarding random variable. 

So, the random variable the values taken by random variable are real numbers unlike the 

outcome of an experiment. Which may not be a real number like head and tail for coin 

toss they are not real numbers, but the random variable is defined in such a way that the 

out the value is a real number. So, we can now talk about what is called a probability 

distribution or also known as cumulative distribution function. 
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So, it is basically for any X take any X which is real number. So, we denote the set of 

real numbers by this symbol that is real line. Then take any real number X which belongs 

to this set. Then the probability distribution function of the random variable X. So, we 

have a random variable X. So, for that random variable this function Fx is defined in the 

following way. What is Fx at x; x is x denotes a value a real number. So, where as this X 

is the random variable the mapping. So, X this Fx at X is basically the probability that X 

is less than equal to x. So, that is if you take a value x what is the value of this function at 

x the value is the probability that the random variable capital X will be less than x less 

than this. The probability that the value of the random variable will be on the left side of 

x. So, that is the that probability is the value of the function at x. 

 

So; obviously, that is less than one, but greater than 0 it is between 0 and 1 because it is a 

probability and also it is increasing as x increases because if you take one x equal to 1 

the value is the probability that the random variable is less than 1. Now, if you take the 

value 2 the value of the function at 2 is the probability that the random variable is less 

than 2 which will be more than the value at 1. So, it is increasing as x increases. So, this 

is increasing or whether non decreasing it does not decrease. So, it is non decreasing 

function. Let is see some example. So, we just now considered this random variable head 

tail mapped to 1 and minus 1. Now, if let us considered a fair coin where the probability 



 

of head and tail are same that is the half then let us draw the let us plot the cumulative 

distribution function for this random variable. So, this 0. 

 

Let us consider say minus 2. So, at minus 2 what is the value what is the value is 

probability that the value of the random variable is value of this random variable is less 

than minus 2, but the value of this random variable cannot be less than minus 2 because 

it takes either 1or minus 1 values. 

 

So, the probability is 0 at minus 2. So, for any value less than minus 1 the values any real 

number less than minus 1 the value of the distribution function will be 0. So, it is 0 here. 

So, it is the value is 0, here and at minus 1 what is the value it is still 0 because it the 

probability that it is less than equal to minus 1. Now, suddenly here the value becomes 

half because the probability that the random variable is less than equal to minus 1 is half. 

It is equal to minus 1 with probability half. So, it the value is half here. So, this is half. 

And then probability that here the value is on the left hand side of this is also half 

because it takes value already this these values are not taken. And this probability is half. 

So, it is still half it does not increase it is still half and it increases again at 1 because this 

is the next value that the random variables takes. And, here at 1 what is the value it is the 

probability that random variables is less than equal to 1 and that is 1 the probability is 1 

because it is always less than equal to 1. The value of the this random variable is always 

less than equal to 1. So, it jumps to one here. 
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So, this value is 1 and there it remains at 1 it cannot increase more than 1 of course, 

because this is probability it cannot be more than 1. So, this is the cumulative distribution 

function of that random variable. Now, if we consider the this is example 1; for coin toss 

and second example we throw a die. 
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S is 1, 2 to 6 and each has. So, it is fair die. So, each has probability 1-6. Now, so, what 

is the cumulative distribution function of this of this random variable let us take 1, 2, 3, 

4, 5, 6. So, if you take a number below one the random variable cannot be less than that. 

So, probability is 0 everywhere here, the probability is 0 and at 1 the value is 1 minus 6. 

So, it rises to 1-6 and then at 2 it rises to 2 by 6 and at 3 it rises to 3 by 6, 4 by 6, 5 by 6 

and to 1. So, this is one this is 5 by 6 this is 4 by 6. So, this is the cumulative distribution 

function of this random variable. 

Now, for a continuous random variable it will not a cumulative distribution function. 

Will not look like this kind of staircase because the in the that case there the probability 

that the random variable takes a particular value will be 0. Because there are infinite 

number of values it can take. So, usually it will whereas, here there are finite number of 

points where it takes values there they will be infinite number of points between any 

range between 0 to 1 itself 3 will be infinite number of values all the values can be taken. 

So, if they are all more than 0 s then the total probability will be more than 1. So, it is it 

rises continuously instead of like this. 
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So, for continuous random variable a typical cumulative distribution function looks like 

may look like this. So, the maximum value is of course, 1 the minimum value is 0. So, 

for any cumulative distribution function of course, at extensive infinity that will it will go 

to 1 and it extends to minus infinite the value will go to 0. So, for a continuous random 

variable it rises smoothly and if the derivative exists then the that derivative is called the 

probability density function. So, if we take we define another quantity probability 

density function it is basically derivative by this and it is d Fx by dx. So, for this kind of 

cumulative distribution function if you plot the derivative of this function it will look 

something like something like this. 

And from this definition one can see that this means F x is nothing, but the integral of 

this. So, we need to take an auxiliary variable to integrate d y from minus infinity to x. 

So, this is basically the area under this curve till x. So, if you this value this value is 

nothing, but take this value here this area this area is the probability that the random 

variable its value is less than this and that is same as this value that this what is the 

cumulative distribution function. So, if we know the cumulative distribution function the 



 

way to get the probability density function it to differentiate it. If you know the density 

function we can get the probability distribution function by taking the integral minus 

infinity to x plot that as function of x we will get the cumulative distribution function. 

Now, if you know the density function then can we compute probability of this type 

probability that the random variable is between two values. Suppose you have to find out 

what is the probability that that say we have the density function say like this and we 

have taken x1 and we have taken x2. What is the probability that the random variable 

will be in this range the value will be in this range. That is the area under this curve from 

x1 to x2 because this is the density this really the density of the curve that is density of 

the probability that why it is probability density function. The probability that the value 

is in this range is simply the area under this area. So, this is integral x1 to x2 P xy dy. 

And we can of course, write these in terms of the cumulative distribution function also. 

This is this area is nothing, but the area till x2 minus the area till x1. So, area till x2 is Fx 

x2 minus infinity to x2 that area is this value for this value is for this value is the area 

from minus infinity x2 in this curve and this value is the area from minus infinity x1 here 

So, if we subtract that we will get this area extra area that is this minus this. So, this 

minus Fx x1. Now, let us see some. So, we will just summarize by saying that this is the 

cumulative distribution function this can be defined for any random variable where as the 

probability density function is defined only for continuous random variable. And let us 

see some examples of continuous random variable density function of continuous 

random variables. 
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Uniform density function the density function can be like this say it starts from some 

were and say that with this we say l and then this value will be one by l because the area 

under this curve the total area must be 1. The total probability is one. So, this basically 

says that the this is uniform the probability distributed uniformly in these 2 ranges this is 

in this range a to b And what will be the cumulative distribution function for this random 

variable the cumulative this is Px what will be Fx for this take a b it will rise linearly. So, 

this value is 1 and slope of this is basically this value 1 by L is slope of this curve this 

line the derivate of this is this. 
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Now, let us take another example which very important in this course Gaussian random. 

Variable for Gaussian random variable the density function is 1 by root over 2 pi sigma 

into the power minus x minus mu whole square by 2 sigma square. Mu and sigma are 2 

variables mu is basically what will define later as mean that is the center of the density 

function. So, suppose this is mu and take some sigma to be something some real number 

then some positive real number. Then the this will look like this going to 0, but it is 

never touching 0 actually. So, it is maximum at mu and symmetric around mu also. So, 

this the probability density function it is a the bell shaped famous bell shaped curve and 

the if you plot the integral from minus infinity to x as function of x what will you get it 

will be like this. The slope is maximum here because this value is maximum this is the 

slope of this curve. So, this is Fx of x there is no closed formed expression for this is the 

integral of this for minus infinity to x. 

Now, let us consider multiple random variables. Suppose we have multiple random 

variables just like we considered two experiments and considered joint probability we 

will. 
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We now define joint distribution say we have x1 and x 2 are random variables and then 

we can define F x1 x2 the joint cumulative distribution function, as it is two dimensional 

function now we take two variables x1 and x2 and this is probability, that x1 is less than 

x1 less than equal to x1 and x2 is less than equal to x2. So, this is the function of two 

variables. So, to plot it you need three dimensions two dimensions for the variables and 

one dimension for the value. So, we can now differentiate it with respect to these two 

variables and get the density function P x1 x2 at x1 x2 this is del square del x1 del x2 F 

x1 x2 x1 x2 the derivative of this. 

And then we can write this in terms of this also simply as integral this is basically minus 

infinity to x1 minus infinity to x2 then P. Let us call this twosome get some auxiliary 

variables d y1 d y2 the integral. From this density function we can get the marginal 

density function of these two random variables separately for x1 there is at density 

function for x2 also there is a density function. If they are if they are continuous random 

variables then this density function is the joint density function of two random variables 

If you know the joint density function of two random variables this gives us all the 

information not only about two of two random variables, but; obviously, we can extract 



 

any individual information about any other random variables like the probability density 

function of the two random variables separately that is the marginal density functions. 

So, the way to get them is as. So, the marginal density can obtained as p x2 of x2 this is 

marginal density function of x2. This minus infinity to infinity p x1 x2 this is x1 x2 d x1 

with respect to x1 if you integrate then you get the marginal distribution of marginal 

density function of x2.  

Similarly, you can get marginal density function of x1 by integrating the joint density 

function with respect to x2. So, we have multiple random variables we have a joint 

cumulative distribution function and a joint density function and from the joint density 

function. We can get the marginal density function by integrating with respect to the 

other variable. We can define just like for events we can define for random variables we 

can define conditional probability distribution conditional density function and all those 

related quantities. 
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So, the conditional probability distribution if you take x1 given x2. So, x1 given x2 that 

is if you know that the value of x2 is x2 then what is the cumulative distribution function 

conditional cumulative distribution function of x1. So, that is defined to be x1 what is 



 

probability of the x1 less than x1 given that x2 is x2. So, this can be shown to be minus 

infinity to infinity x1 the integral joint density function this one can show that this is 

same as this. Now, from here one can get conditional density function at x1 given x2 this 

will be simply del F x given x2 by del x at x equal to x1 and this nothing, but p x1 x2 at 

x1 x2 by p x2. So, this is looks just like conditional probability of two events one event 

given the other. 

This is the joint previously you have joint probability and divided by the probability of 

this. So, the here also similar quantity, but these are not random variables these are 

density function of random variables. And. So, from here we have chain rule that p x1 x2 

is p x2 x2 times p x1 given x2 x1 given x2. If you have more random variables we can 

generalize this just like we did before and if now this is same as p x1 for all x2 and x1 

then x1 and x2 are called independent random variable. So, independent if ((when at)) 

random variables are called independent if we have this random variables then they are 

called independent random variables if their cumulative distribution function factors this 

cumulative distribution function is the product of the marginal cumulative distribution 

functions. 
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So, this is this times F x2 times F xn. So, all the random variables are actually 

independent the value of one random variable does not get influenced the probability of 

x1 being something is not influenced by what happens to the other random variables this 

basically that. So, this is true and at the same time this true one can also show that this x1  

the this density function is also can be factored. So, these are x1 x2 xn. So, x1 x1 p x2 x2 

p xn xn. 

So, we have in this class we have discussed what is an experiment what is the outcome 

of an experiment and then we defined the sample space to be the set of outcomes of an 

experiment and then we defined independent events conditional probability of one event 

given that other another event has occurred and then we defined random variable to be a 

mapping of the samples space into the set real numbers. 

And, since the sample space has a probability associated because of the experiment the 

random variable the value of the random variable also has some probability major on the 

values. So, using that probability we defined what is called the probability distribution 

function or cumulative distribution function. And, then for a continuous random variable 

that cumulative distribution function is differentiable and the derivative is the called the 



 

density function and we have actually seen why it is called density function by 

integrating that density function in one range get we actually get the probability the 

random variable will in that range. 

So, it makes sense to call it the density function and then we defined joint cumulative 

distribution function joint probability density function of some random variables 

multiple random variables and we defined conditional probability distribution and 

conditional density function and then at the end we have defined independence random 

variables. We will we will continue or discussion probability random variables in the 

next class also.  

Thank you. 


