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We have already had 3 classes on source coding hopefully, this will be the 4th class and 

the last class on source coding. So, far we have done the following topics: we have done 

introduction, we have seen why we should do source coding? Why it is possible to do 

source coding for most of the practical sources? And then we have classified different 

source coding techniques.  
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Specially, desired source coding properties we have seen that we should have uniquely 

decodable codes so that, we can decode any encoded string uniquely in the destination. 

And then we have seen that, even all uniquely decodable codes are not always 

instantaneously decodable. So, to have instantaneously decodable code we should have 

prefix code. So that, no codeword is a prefix of another codeword.  



And we have so, far two source coding techniques: 1 of them Huffman code; we have 

seen that it is an optimal code and it is a prefix code. However, we need to have we need 

to have all the probabilities of the source to do Huffman coding. And then we have seen 

Kraft inequality which gives us a condition necessary and sufficient condition for having 

a code prefix code of a given set of lengths. So, and then we have seen some properties of 

optimal codes what how much compression is possible to do for a given source. And we 

have seen that, for getting better compression; it is not always possible to do source 

coding with individual symbols.  

So, most of the times we have to combine many symbols together to do block-wise 

source coding which will give us better compression. And then we have discussed 

Shannon-Fano-Elias code which is which we also saw to be asymptotically optimal 

though not optimal symbol wise. So, we will just go through what we have done so, far. 

We have seen that there are 2 types of source coding techniques: 1 is lossless and another 

it is lossy.  
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Lossless source coding technique involved some involves no loss of information due to 

source coding. And in lossy source coding technique there is always some loss of 

information. So, like source coding technique compression techniques like: JPEG, MPEG 



they involve some loss of information. Whereas, our file compression techniques in 

computer like: WinZip in windows or compress in Linux involved no loss of information. 

Because, we know that we can recover the file back by using uncompress on such 

commands.  

And we have seen that variable length in coding gives advantage gives compression 

compared fixed length coding. 
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Then we have seen these 3 kinds of codes. Singular code has a singular code has 2 same 

code words in this case, there are all the four code words are same. Non-singular code has 

all the code words different, but still it may not be uniquely decodable, once you encode a 

string. Uniquely decodable code is uniquely decodable string-wise, but even then it is not 

decodable instantaneously. Whereas, prefix code where no code word is a prefix of 

another code word can we decoded instantaneously.  
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We have seen the Huffman coding technique. You first arrange the probabilities in 

decreasing order and then combine the last 2 probabilities into 1 and then assign 0 and 1 

to the last 2 probabilities last 2 symbols and then you go on doing it and adding bits to the 

symbols. Then Huffman code we have seen is a prefix code specially the example we 

have seen is a prefix code we have we have not proved that, any Huffman code is a prefix 

code, but anyway we accept that.  

(Refer Slide Time: 04:39) 

 



And Huffman code is optimum there is for any random variable there is no code better 

than Huffman code. So, that is something very interesting and very nice to have.  
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And Kraft inequality it gives a necessary and sufficient condition for a prefix code to 

exist for a given set of lengths. So, if these lengths are given we know that a prefix code 

exists with these lengths if and only if this condition is satisfied.  
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So, we have proved necessity and we have proved sufficiency of the Kraft inequality 

condition.  

 

And in Kraft inequality we have seen that we have we have commented that, Kraft 

inequality also holds for uniquely decodable codes. 
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So, it is not only for prefix codes, but Kraft inequality also gives necessary and sufficient 

condition for existence of a uniquely decodable code for any set of lengths. And. So, we 



from there we are good that, if for a given set of lengths there is a uniquely decodable 

code there is also a prefix code we got. Because, if there is uniquely decodable code of 

certain lengths then Kraft inequality is satisfied; then if Kraft inequality is satisfied then 

there is a prefix code also with those lengths.  

So, we should always go for a prefix code of for whatever lengths are given. And also 

that equality in Kraft inequality means that all the nodes of the maximum level are 

exhausted are exhausted by the code words. And we have seen that, an optimal code 

length must be in between these 2 length these 2 limits. 
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We know that it is greater than equal to Hx, but this is something interesting and we have 

proved both the parts.  
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Now, we have seen that block-wise source coding gives better compression.  
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And where we do we combine N symbols together and encode them as a single code 

word. And then, we have seen that by doing block-wise source coding and as we increase 

block length N to infinity we actually, asymptomatically reach the source coding bound. 

So, we get a get an average code length tends to Hx.  
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Then we have seen that, Huffman code using Huffman code block-wise we can actually 

achieve source coding theorem the limit given by source coding theorem on the average 

code length because, Huffman code is optimal. So, L must be in that range within range 

Hx and Hx plus 1.  
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Then we have seen that Huffman code has some disadvantages that you have to compute 

all the probabilities and it cannot to be applied to sources with unknown statistics. Then 

we have seen that another source coding technique called Shannon-Fano-Elias code.  
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Where we have first drawn the, you have taken the cumulative distribution function of 

the random variable and then if you want to get the code word for x we see this jump. 

And we take the half way between them take this midpoint and then take compute this 

length of the code word to be this way. And then, quantize that binary number to so many 

bits. So, in this case if it is 6 we take the midpoint express it in binary representation. So, 

0 point something. So, there are bits after point.  

So, you take only 6 bits out of it that this lx whatever is lx. So, then you take this as the 

code word after the point there are 6 bits. And if you add 1 to the next to the last bit we 

get an interval which gives, which has all the numbers all the code words having this as 

prefix because, any code word which has this as prefix will represent a binary number 

which will lie in between these 2 limits because; it will be less than this.  

This is obtained from this by adding 1 to this, but all the other code words will have this 

number as the first 6 bits. So, we this way we have seen that all the code words certainly 

code word for next symbol will be somewhere here represent a number here. So, this 



cannot be somewhere inside this. So, any code word cannot be a prefix of another code 

word if we construct the code in this using this technique. So, this gives us a prefix code. 

And we have seen that this code also gives us an average length which is slightly higher 

than, what is possible to get for an optimal code.  
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For optimal code we know that L is less than equal to Hx plus 1 whereas, for this we are 

guaranteed that average length is less than equal to Hx plus two. But even this minute 

increase in the average length does no harm asymptomatically; as N tends to infinity we 

still achieve Hx. Now, we will we are going to arithmetic coding which will it is basically 

Shannon-Fano-Elias code used for for block length large block length and iterative 

process and we will do Ziv-Lempel code a Lempel-Ziv code.  
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Which is a tabular coding where, probability is not at all explicitly coming in to the 

construction of the code. So, that is something different from arithmetic code as well as, 

as well as Huffman code.  
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So, we start with the arithmetic code. What is arithmetic code? Arithmetic code is a way 

to do Shannon-Fano-Elias code coding for large block length iteratively. So, as symbols 



come we keep constructing the code. So, we do not receive the whole block and then do 

coding. So, this has several advantages: 1 is that sequential encoding reduces delay if we 

receive the whole block and then do coding the whole coding starts after we receive that 

block of symbols. So, the encoding delayed the total delay is much more then if you keep 

doing partially the sequentially the encoding.  

So, also block length N can be increased if you do sequentially without increasing the 

delay. If you receive the whole block and then encode then if we increase the block 

length we have to receive. So much, much larger than if you take smaller block length 

and then, so the delay will increase. But if you keep encoding sequentially the delay will 

not increase as we increase the block length because, as you get partial first if you say we 

received four symbols you probably have encoded few bits 3 bits you know first 3 bits for 

example. Then you can transmit those 3 bits and as you go on receiving more symbols 

you can encode more and more bits.  

So, receive the symbols sequentially and you fairly keep encoding the bits. So, this 

reduces the delay and it is it does not increase as the block length is increasing. So, in 

fact, when we use arithmetic code for file compression for example, we take the whole 

file as a single block. So, the compression is really maximum, you are taking the 

maximum possible block length so because; we do not pay in terms of delay there.  

So, it is possible to take whole block length as a single symbol in such a case. Okay. So, 

we are going to basically do Shannon-Fano-Elias coding for a block of symbols. So, we 

are we are trying to see if we can do encoding sequentially. So, first of all let us see what 

is the Shannon-Fano-Elias Code for the whole block then, we will see whether we can do 

it sequentially. So, if we have N symbols and we want to do Shannon-Fano-Elias Code 

first thing we have do is, we have to draw the cumulative distribution function of that N 

symbols together.  

So, for the N symbols together we have to draw cumulative distribution function. So, 

before doing that, we have to first arrange all possible N symbol blocks in sequential 

order because; to draw cumulative distribution function you have arrange them in 

sequential order. So, what is the ordering we should use? For example, if the random 



variable is binary 0 1 if you combine 2 bits then you have 0110 you know 0011 you have 

to arrange them in sequential order.  

So, you have to use some kind of order in the blocks. So, the most commonly used order 

is the lexicographic ordering. Its called so, because a dictionary that’s how it is that is 

how the words are arranged. So, if you want to arrange 0011 1001 in a sequential order, 

the most natural is the lexicographic ordering that is 0001 1011. So, that is how we do. If 

we have 3 symbols and we have to combine 2 symbols together 3 possible values and 2 

symbols together then this is the natural ordering lexicographic ordering.  

(Refer Slide Time: 14:19) 

 

This is similar to alphabetic ordering in a dictionary.  
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So, suppose we have combined that way we have combined the N N symbol values N 

length block values in sequential order. Then let us see, what will be the cumulative 

distribution function value at a certain I 2? Say yeah, here we are taking I number of 

symbols together. So, we will increase I and see what is happening later, but here let us 

see that for I number of symbols what will be the value.  

So, this is basically by the definition of cumulative distribution function is a summation 

of all the probability of all the I triples which are before which come before xi before or 

equal to xi. This is the; this is the definition. Now, this less than equal to is basically 

according the lexicographic ordering. So, if you arrange these I triples for example, in 

terms like a dictionary then all the I triples which come before that, in that ordering those 

probabilities you have to add.  

Now, this can be broken into parts this is take the I minus 1 number of first I minus 1 

block symbols leave the last 1. So, probability of that so, these things have to be less than 

this. So, this is this probability plus we can say all the yi less than xi probability this will 

be yi this this and this. Now this will not be these two will be yi. So, this is probability 

that xi yi is less than equal to xi. So, if you add these two things we get Fx. Now, this can 

be written in as this in terms of conditional probability this is yi given xi minus 1.  



So, probability that the I th symbol is less than xi less than equal to xi given that you have 

received I minus 1 symbols this is this this probability. Now, this can be taken out of this 

because this is independent of yi. So, this is this comes outside and this probability is 

basically the conditional cumulative distribution function evaluated at xi, this is yi. So, 

we get this. Now, what does this mean?  

This means that, suppose you compute this function iteratively at I minus 1 after you 

receive I minus 1 you compute the value of the cumulative distribution function of at that 

I minus 1 triple the value you have received. So, you will keep that computed and then 

after you receive I-th symbol you will keep compute the cumulative distribution function 

of the sequence till I i th symbol; using the previously computed value.  

So, this thing this minus 1 actually denotes the I minus triple just before xi minus 1. So, 

you have computed this at the after you have received I minus symbols now you have got 

xi also. So, what you need to compute this is also computed before this is does not 

depend on xi this basically, denotes the I minus 1 symbols a block of I minus 1 symbols. 

So, that probability also can be computed before hand and then newly you have to 

compute this probability, this cumulative conditional cumulative distribution function 

you have to evaluate at xi.  

So, then if you multiply with this and then add with this you get Fx. So, you have to 

newly compute only this much.  
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So, what it means is that, you need not compute all the probability masses or the 

complete joint cumulative distribution function. Because, after you have received xi 

minus 1 and you have received newly xi you need not compute F at all the other values. 

You need to compute at only suppose xi is 1 then, you need to compute the cumulative 

distribution function value only at that point. So, conditional cumulative distributions 

function at that point.  

So, that is sufficient; so, you need not compute the whole probability distribution which 

is required for Huffman coding for example. So, we need not compute the whole 

probability distribution and arithmetic coding can tackle sources with correlation first of 

all and thus give better compression for source with correlation. This we are we will not 

show why, but actually that can be done for any coding with block wise any block wise 

coding.  

So, that will take advantage of correlation also to some to extent. So, geometrically what 

does it mean to compute the probability distribution iteratively?  
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It means following. You have computed say these 3 values in the I minus one’th iteration. 

You have received I minus 1 symbols and you have computed these three values. Now, 

as you have received xi what you are going to do is you are going to compute this F there 

are conditional probabilities these 3 conditional this is cumulative distribution function at 

xi. This is the probability of xi given this conditional and this is the before xi what is the 

cumulative distribution function value.  

So, we will newly compute these three we need not compute all the other probabilities 

cumulative distribution function values here we need to compute only these three values. 

So, after you have done that we need to compress this whole thing inside this. So, this 

point will come here this point will come here this point will come here. So, this blue part 

will come somewhere here. So, this is basically, corresponding to correspond to 

multiplying this thing by scaling this thing by P xi minus 1 which we had actually in the 

computation. We have seen that this needs to be multiplied by this, this corresponds to 

scaling this part to this much.  

So, this will be scaled to this value that is this. This point will come here similarly these 2 

points will come here scaled down. So, after you have done that we get these 



probabilities at the I-th state. So, we have we had these 3 values now we have these 3 

values we keep doing that.  
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Now, how do you do the coding? How we do the coding is, we know that in the Shannon-

Fano-Elias coding we know that, in the encoded code word the code word will actually 

represent a number binary number somewhere in this interval. Because, as we keep 

increasing I actually this interval will be smaller and smaller; first you had this interval 

then this is scaled down. And you have this much coming inside. So, you have reduced 

the interval.  

So, this actually the final code word will lie somewhere inside this interval it will 

represent a binary number in this interval somewhere. At I plus 1 level you will have a 

smaller length inside this smaller interval inside this. So, a binary number inside this will 

be a code word will be the code word for x that whole block. Now, if these 2 points have 

the same few say these 2 points we express as binary number both the points. Now, the 

code word will be somewhere in between.  

So, if these 2 points have binary expression common for few bits say first 6 bits, first 7 

bits are common in both these numbers. Then we know that, in between any number will 

also have the same those 7 bits. Afterwards, it may vary from these 2, but these 2 have 



the same 7 bits, but any number in between that also will have the same seven bits. So, 

we know the first 7 bits of the final encoded code word.  

So, we need not wait for the whole file to come before we encode the first 7 bits. We can 

encode the first 7 bits at the I th iteration itself. So, that is the advantage that is iterative 

encoding we are talking about. So, to summarize the final encoded code stream will 

present to subinterval like this a b inside this interval. So, its sub-interval is basically it 

will be a code a binary number and you add 1 to the last bit you get an interval.  

So, these binary numbers will the code word, but this interval denotes all the numbers of 

which this is a prefix those will cannot be code words because, you are constructing a 

prefix code. So, a will be the; binary representation of a will be the code word. So, we 

know that now if this 2 have first 3 bits common as you said its first 7 bits common. 

Then, a will also have first 7 bits same those seven bits then we can take those 7 bits as a 

partial encoding of the final code.  

As I increases the interval this will be narrower and narrower more and more bits will be 

common to these 2 because, this will be narrower this interval will be narrower. So, more 

and more bits will come common.  
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First for at I-th level you have 7 bits common at the I plus one’th level you have you may 

have 9 bits common. So, you can then encode more 2 more bits. So, more and more bits 

can be encoded as I increases. So, that is the iterative encoding. Now, how do you 

compute this conditional probability?  
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We have seen that this is the key to encoding. So, there are some special cases where this 

computation is easy. For example, for IID source if you know this probability distribution 

then conditioning does not change the distribution. So, for IID source it is easy to 

compute this from Markov source it is simply it is also easy because this conditioning is 

simply conditioned on Xi minus 1. Xi depends on only Xi minus 1 not on the previous 

symbols.  

So, it is easy to compute for these 2 special cases. Now, if you do not know the statistics 

of the source before hand. How do you tackle the situation? So, the idea is that idea is 

that as you keep receiving bits or symbols more and more you keep estimating the 

probability distribution of the source also and use that distribution to do your encoding. 

So, you have received 1 bit you do not know anything what the distribution is. So, you 

encode safely you take that uniform distribution or something.  



Or some applied distribution you assume initial distribution and then as you receive more 

and more bits you can estimate the distribution according to some model. And then, use 

that distribution to encode the further symbols that you receive. So, here are some models 

we can use to estimate the probability distribution.  
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If suppose, we have received I minus 1 symbols and we are going to receive the I th 

symbol then and you can estimate the probability distribution; the conditional distribution 

of the I th symbol based on what you have received in the following way. This is the 

Laplace model here we basically, suppose this is a binary no suppose this a source any 

this discrete source then you count the number of a’s. So, you are evaluating the 

conditional distribution conditional probability of receiving a at the I-th symbol if you 

have received I minus 1 symbols before these values you know.  

So, you count number of a’s you have received before and you count the total number of. 

So, this is Fa the number a you have received before this plus 1 by this is number of b 

you have received before. Now, b you take all other values except a all including a a and 

other values. So, this summation F Fb is basically I minus 1 and then plus the number of 

symbols here. So, this is a model this is basically taking a kind of the frequency of a 

before hand before previously.  



So, for example, if the source is binary and you have received I minus 1 bits you count 

the number of zeros and number of ones. Number of zeros is suppose 6 number of ones is 

seven and you take 6 plus 1 by 6 plus seven plus 2 6 plus 1 plus 7 plus 1. So, this will 

give you the frequency estimate of frequency. Why are these ones kept here? This is 

because initially you should not have 0 by 0 because, you have you have if you have 

received 0 symbols. When you are taking I minus I equal to 1 you have received 0 

symbols.  

So, both Fa Fb all these are zeros. So, you are taking basically 1 by uniform distribution 

in such a case initially, you assuming uniform distribution. For binary you will assume 0 

with probability half 1 with probability half. So, that is the initial distribution we are 

taking and then, as we take if you have received 0 in the first symbol automatically we 

will wait 0 more we assume that 0 has a higher probability. So, that way we just keep 

estimating the probability.  

There is another model Dirichlet model where, you replace 1 by alpha. So, if you take 

alpha less than 1 you try to estimate the estimate the probability faster, but that will have 

more variation though; this will have more error in the estimate. So, you try to reach to 

the actual probability faster, but you sacrifice compromise also something. So, in this is 

the special case of this as you can see if alpha is equal is to alpha is 1 than you get this.  
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So, now, we take an example of file compression using that using Laplace model. So, we 

assume that the file is binary. We have 2 symbols 0 1 and another symbol which can 

come is end of file we do not know when the file will end. So, we assume that at every 

time the file may end with probability something so, we assume that probability fixed. 

We take some probability for that and then except that probability except for end of file 

probability at a at any instance. There is some or rest of the probability is divided in to 0 

and 1.  

So, at any time the next bit can be end of file 0 or one. So, its not bit next symbol can be 

0 1 or end of file.  
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So, we take this model, this example is from Mackay’s book. You we take this 

probability distribution this model. We assume that at anytime the file may end with 

probability 0.15. So, this is the conditional probability. If you have received anything 

whatever you have received the file may end with probability this at the I-th symbol. And 

then the rest of probability is 0.85 that is divided between these 2 depending on how 

many a;s you have received and how many b’s you have received.  

So, we will actually these are actually 0 and 1 a and b are actually 0 and 1, but we are 

denoting by a and b because,we will denote the output bits as 0 1. So, you we want to 

separate we want to distinguish the input symbols and output symbols both are binary. 

So, input we are denoting by a b output we are denoting by 0 1. So, 0 may come with 

some probability and we are basically counting a in the previous symbols and counting b 

and then taking this estimate of the probability.  

So, this is divided between a and b this probability. Now suppose, we have we have 

received a file which is a very short file of this content bbba then file ends.  
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So, now we will see how to do the encoding. First what should I do first you have 

received nothing. So, you have compute probability of a probability of b and probability 

of end of file. So, we assume the probability of end of file is 0.15. We have received no 

bits so you take equal probability for a and b point this summation is 0.85. Then you have 

received b because the file is bbba, so, you have received b. Then you compute given b 

what is the next symbol; probability of next symbol.  

So, if you compute according to the previous slide you will get this probability. Similarly, 

after you have received b you have received bb you can compute that probabilities of the 

third symbol. What is the probability that the third symbol is a. What is the probability 

that it is b similarly, you compute the probability of end of file. So, similarly you 

compute all these probabilities conditional probabilities. So, this column is basically 

probability of a given we have received bb is this. Given bbb what is the probability of a 

in the next symbol is this. So, similarly compute all this.  
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Now, so we are drawing here the cumulative distribution function yes, we will see now 

how to do the encoding. So, here is the 0 1 range. Is now we have cumulative distribution 

function a is less than b and b is than this we have assumed is the ordering we have taken. 

Now, the distribution function is if you take those probability we can see that it will be 

basically approximately this much length a is probably 0.425.B is probably 0.4251 is end 

of file is probability 1.15.  

Now, we have received b we know; so we are interested in this jump. So, are these 2 

intervals having any bit common any initial bit common that we have to see. Then we can 

encode that bit that is the idea, but we are seeing that the this number has the first bit 1. 

Because all these numbers have the first bit 1, all these numbers have first 0 this is 

basically point five number. So, this bit has first bit 1 this bit has this number has first bit 

0. So, there is no common bit between these 2 numbers. So, we cannot decide on the first 

bit also at this moment after receiving 1 symbol.  
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So, we receive the next symbol then, we are interested in this much this interval the 

interval has narrowed down to this bb this part. Now, we have to see whether these 2 

numbers have any bit common. Now, we see that they have 1 bit common point 1 both 

start with point 1. So, we can out give 1 as output because 1 is certainly the first bit of the 

encoded bit stream because, the final number code will be somewhere in between this it 

will have first bit 1.  

Similarly, we go on doing it. Now, are there any if further bits common to these 2 no 

because second bit of this is 1 third bit of second bit of this is zero. So, we cannot encode 

the second bit.  
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So, we receive another symbol now so we are magnifying this for convenience of 

viewing now, we have basically this much magnified to this. So, it is 0.11 here 0.10 here. 

So, now we receive another symbol this probability we are interested in this jump we 

have received bbb. So, we are interested in this much because they still have no second 

bit, not common. Second bit of this interval is 1 second bit of this interval this number is 

0. So, we cannot encode the second bit still. We have received three symbols. So, far we 

have encoded 1 bit.  
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We received the fourth symbol now. Now, we are interested in this interval the interval 

has narrowed down to this much because we have received a bbba So, now do they have 

these 2 interval numbers have any bit further bits common? Yes, both of them have 0 at 

the second bit and also 0 at the third bit.  
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So, and also 1 as the fourth bit both these numbers have all 4 of these 4 of these bits 

common because 0.1001 is the first part of all the numbers in between this range. So, 

these 2 numbers have the same four bits. So, we can encode 2 further bits.  
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We go on doing it we have this is the previous pages figure now, we keep doing it we 

receive again we divide this in to 3 parts bbbaa b and end of file. Now, we receive end of 

file here. End of file now these 2 intervals do they have any these 2 numbers do they have 

any common further bits? Yes, they have these further bits 111 and so 11101 End of file 

11101 there is something missing here; it has to be extended to some more.  

So, we can encode if you see carefully we will see that we can encode further 5 bits. So, 

this is the encoded this is the code, code word, code string. So, this is the final code string 

the file ends here.  
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Now, how do you do the decoding? We do exactly similar to encoding we take this and 

first bit we receive is 1. So, we take this interval. Now, can we see whether the first 

symbol was end of file or b we cannot see because the number final number code word is 

going to be some number here, but it may be in this part or in this part. So, we do not 

now; so we cannot still give any output in the decoding 

(Refer Slide Time: 37:37) 

 



Then we take the second bit 0 so we see this interval. Do this interval lie in between any 

symbol here? Yes, it is lying in this b first of all this b interval. So, we know that the first 

symbol must be b, but can we decide on the second symbol no because it may be bb or it 

may be ba it may be here ba or it may be bb here. So, we do not know the second bit, so 

we have out we have 1 bit output b.  
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Then we receive 1 0 another bit third bit. Now, this again we cannot decode the second 

bit the second symbol because it may be here bb or it may be here ba.  
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So, this is another bit we are expanding this here. Now, we are receiving another bit this 0 

1. Now, still yes we can say that it is now in this bb bb is divided now here. So, bb starts 

from here and here. So, it is inside that so we can decode the second symbol also. So, we 

keep doing that and we see that as we receive bits we can still we can also decode. So, 

final decoded output will be this bbba end of file.  
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So, we can do encoding and decoding in this sequential manner that is the most 

interesting part in arithmetic coding. So, we have basically used the same principle as 

Shannon-Fano-Elias code it is basically Shannon-Fano-Elias coding, but in a sequential 

manner. We have seen how to compute the probability in a sequential manner and we 

have used that technique to do arithmetic coding. So, arithmetic coding is basically 

sequential encoding of a encoding in Shannon-Fano-Elias coding.  
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So, we now go to another coding technique called Lempel-Ziv code. So, this is a tabular 

coding technique. What is done is at any time a list of substrings previously you have 

received is maintained. So, we will first we receive 1 we have not received 1 before. So, 

this is new substring we have received. So, we keep that in a list. So, we enter 1 as 1 

element of the list than we receive suppose, 10 then 11001 something like that. So, you 

have received second bit 1 then we see that 1 is already there. So, we have not received 

any new substring so far. So, 1 0 we have received next 1 then 0; so we combine 1 0.  

So, 1 0 is there in the list it is not there. So, we enter that new substring in the list we 

keep entering new substrings which is not there in the list. Now, whenever we enter 

something that input is discarded we receive again fresh. So, that is the, that is how we 



construct the list. So, we maintain a list of substrings appeared before store the output 

string from the source in a buffer.  

So, we when we encode when we enter a substring in a list we also we also discard that 

we actually we will encode that and discard that from the buffer. Then we will receive 

fresh bits and keep it in the buffer and we will see whether, we will keep entering 

receiving more and more bits and to check at the same time whether it is there in the list. 

If it is not there whenever it is not there we will encode that and enter that substring in the 

list. We will see with an example how exactly we do it.  

So, check if the present string at the buffer is there in the list spelling is wrong check if 

the present string at the buffer is there in the list. If yes, then wait for 1 more symbol to 

come into the buffer and then go back to step 3. So, whenever we have received a string 

which is there in the list. So, if it is there then we will receive another bit if it is still there 

in the list then an extra the longer substring then we will take another bit.  

So, we will continue this still we receive a substring we get a substring in the buffer; 

which is not there in the list. So, then what will you do? So, if we have received a 

substring in the buffer which is not there in the list. Then first we will find the substring 

in the list that is we excluding 1 bit we know that the rest of the substring is their in the 

list. Because we have not we have got that substring in the list then we have received 

another bit and then that is not there in the substring.  

So, if we remove the last bit we have received we know that that substring is there in the 

list. So, we see which element in the list is that substring. So, if you remove 1 bit from 

the buffer now you get a substring in the list you see the index of that. So, you transmit 

that index that is the part of the encoding that is part of the code, code word. 
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So, what is done so, in the buffer we have fixed many bits. The last bit say it is 1 then 

0101 something. So, we know that this much is there in the list that is why we received 

another bit we take took another bit and considered this extra longer substring. Now, this 

bit we consider later first this sequence is there in the list. There is a list here, where all 

these codes words are listed and there is a serial number here 0 1 2 this way. So, we see 

the index of that. So, that index suppose it is 5 the 5 is part of the code word encoded 

code word and then we add 1 to that so 1.  

So, now five of course, will not be transmitted this way five will be, will have binary of 

that. So, we will have 101 then 1 so we will transmit this as the code word for this. So, 

we take the index of this in the list and then add 1 to that that is the code word for us. 

Okay. So, this is the way we keep doing the encoding then we will once we have encoded 

we have got this codeword we will empty the buffer this buffer will be emptied.  

So, we have a empty buffer now. Now, we keep receiving fresh bits next bit is suppose 1 

we give we get this next bit is 0 we check when we receive 1 see whether it is there in the 

list. It is there, then receive another bit it is their 1 0 is there then receive another bit keep 

doing it till you receive a sequence which is not there in the list. Then you do the 

encoding as you did before for the first previous symbol. 
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So, we will take an example now, we suppose we are receiving input, but before we 

receive any input we have this list. This is basically the zero’th the first element in that is 

a null because; we have to have something in the list before starting. So, that is the initial 

state. We have 1 element here that is the null element. So, we check we take the first bit 

we have received 1, we see whether 1 is there in this We see that it is not there the only 

element in the list presently is null.  

So, we have got a string substring which is this is in the buffer which is not there in the 

list. So, what do we do? We first encode the string which is preceding the last bit last bit. 

So, that is nothing so null. So, we have do not have anything so we do not have anything 

then, we just take 1 this last bit. So, 1 is output if you have received 1, but we have also 

entered this last bit whatever is there in the buffer we forgot to mention in the previous 

part when we are explaining. That when we have this after encoding this new string 

which is not there in the list this total is entered in the list as a new extra element.  

So, that is entered as a element in the table then we receive another bit 0 we check 

whether 0 is there in the list. We see that it is not there we have only null and one. So, 0 

is not there. So, here the output should have been 0 1 because we there was null before 1 



there was nothing actually, that is null. So, 0 1 and then we have received 0. So, 0 is not 

there in the list so we see that the previous symbol is basically null previous bit is null.  

So, null is zero’th so 0 and then the then the bit is 0. So, this is the index 0 and this is the 

bit 0 this is the extra code word this is the output so far. So, then we have to enter 0 here, 

so when we enter 0 you have to index it. So, 0 1 2, but now you cannot represent the 

index using 1 bit. So, you have to go to 2 bits so 00 01 10. So, then we receive 1 we see 

that 1 is there; so we receive another bit 1 again 1; so, 11 11 is not there is the list. So, we 

now start encoding it.  

So, first bit excluding the last bit is 1. 1 is there in the list that is 0 1 so, 001 is the index 

of the substring 1 then 1 is added. So, we keep doing that then 01 when you go to the next 

entry of the list we have to increase the index to 3 bits because, we have 5 symbols 5 

elements in the list now, we keep doing that. But, after we do all this we see that there is 

no apparent compression there are more bits here than here what is the reason.  

The reason is that the file is too short we would not possibly get any compression for too 

short a file like this using Ziv-Lempel coding. So, and another thing is that 0 and 1 are 

almost equally likely here they are almost with same number. So, we would not get 

possibly any compression for that reason also. So, if you have a sufficiently long file with 

unequal distribution of 0 and 1 then we will get compression using this technique. How 

do you do the decode decoding? So, decoding we are getting the encoded code word.  
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So, we know that the, so we will maintain the same list we will keep constructing the 

same list as the encoder is keeping we can guess from what code word we receive. So, we 

keep doing that. First the list has this null we know that that the encoder keeps null first 

then. we receive 1 that is the encoded bit string coming from the source 1. We know that, 

we have received 1 so 1 means, first null and then the null will be there actually 

anywhere so, first 0 will be their 0 1.  

So, we know that first bit was 1so, we keep 1. Then we received 0 0 so, then 0 0 so this 

must have been 0 because 0 is the 0 denotes the index of the in the list. So, you have this 

null first and then 0 is the next bit. So, 0 is the output. So, you keep doing that way. So, 

receive then 0 1, so, 0 1 is the. So, how do you know that how much we have received 

more bits.  

How do you know how much is the index? Because, we know that so far we have so 

many elements in the list the index must be so many bits. So, you take so many bits as the 

index and the next bit as the extra bit here. So, we take the index that index what is the 

element you take 1. So, 01 is the index we know it is 2 bits now so we take 1 and then 

add 1 bit here. So, we keep doing it that way.  
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Now, we can do improvement in certain way here for example, if we have 0 and 1 both in 

the list for example, we had it here that 0 and 1 are both in the list. Then, we know that 0 

and 1 are in the list like if S no 1 S 0 and S 1 are in the list; then S can be removed from 

the list. So, let us see what can be removed here. So, 11 and 10 are both there so 1 will 

never be will 1 need not be kept here, so we can put a new element here.  

So, we can minimize the size of the list and that way we can have less number of bits for 

index. So, that will give us a better compression we need not keep say 56 bits. So, if you 

can remove some elements from the list then we can keep the list smaller and as a result. 

we need less number of bits to represent the index. So, that will give us better 

compression. So, we can if S is substring and 0 is the next string 0 is another this 0 is 1 

string S 1 is 1 string both are there then, S substring need not be kept in the list; that can 

be removed.  

So, if S 0 and S are both there and we receive S 1 now we know the last bit need not be 

transmitted because, S 0 is there. So, last bit cannot be 0 otherwise it would be found in 

the list. So, last bit cannot, need not be transmitted if S with 0 and S alone are both there 

in the list. And we can limit the size of the list by removing any element which is not 

used for a long time; so, which is the least used element in the list.  
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So, there are some comments is a universal coding we can use it for any source statistics 

it will adapt itself automatically. Asymptotically optimum for memory less source and 

also Linux compressed in Linux which we give an example, as example of a lossless 

coding uses LZ coding. So, we have done we have seen how to do iterative encoding of 

Shannon-Fano-Elias coding technique that is arithmetic coding. We have taken an 

example of arithmetic encoding of a file using Laplace model of adapting the probability 

statistics.  

So, and we have also take done LZ coding which is not mentioned here, but we have a 

done a tabular coding technique which is LZ coding where we do not need the probability 

explicitly. It will automatically adapt the probability.  
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These are some exercises; this is a string the exercise is to do Ziv-Lempel coding on this 

string. Then this is a string this is Mackay’s book 6.6 exercise this is encoded string 

which basic Ziv-Lempel coded coding which we have just described. You do decoding 

for this.  
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So, we have done all this, so we have completed arithmetic coding in this class and we 

have done another source coding technique Liv-Ziv a Lempel-Ziv coding. This is the end 

of the source coding. We will have new topics in the next class.  

(Refer Slide Time: 53:42) 

 

So, again this is these 2 books are very good books. There are other books on information 

theory very popular books, but this book is a very lucidly written book and good for 

undergraduate. Information Theory Inference and Learning Algorithms, it is available in 

Indian edition with low cost. So, I will encourage you to read this book and solve the 

exercise there. Thank you. This is the end of the source coding technique class.  


