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Source Coding (Part – 3) 

 

We will continue in this class with source coding. So, this is the third lecture on source 

coding. 
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So, so far in source coding we have covered, we have seen why we should do source 

coding. And then we have seen, different desirable properties of source codes like: 

uniquely decidable property, then prefix property and we have seen 1 particular source 

coding technique: called Huffman code and we have, in the last class we have seen Kraft 

inequality and we have proved Kraft inequality. Kraft inequality gives us a condition of 

condition for existence of a prefix code of certain given lengths. So, given certain lengths 

if, Kraft inequality satisfied by those lengths then, a prefix code exists. Otherwise, a 

prefix code does not exist with those lengths.  

 

Then, we have investigated into, what kind of parameters, what kind of, how much 

compression is possible in practice? So, in terms of the entropy of the source, we have 

seen that the compression, the minimum required number of bits will be in between HX 

and HX plus 1. And in this class we are going to cover block wise source coding.  



 

So, we will see that using blocks of coding blocks of source symbols together, we can 

achieve better compression. And then we will discuss another source coding technique 

called Shannon-Fano-Elias Code. 
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So, we will first go through what we have done in the previous classes. First we have 

seen that, there are two types of source coding. One is lossless where there is no loss of 

information due to coding. So, a typical example of lossless source coding is the; when 

the file compression algorithms that we use in computer like: compress in Linux and 

WinZip in windows. And then is another class of source coding techniques called: lossy 

source coding where, there is some loss of information due to compression. And there 

are popular standards like: JPEG MPEG for compression in image and video. They are 

all lossy source coding. 
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Then, we have seen that using variable length coding; we can achieve better compression 

than using fixed length representation of the source symbols. 
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Then, we have seen that there are different classes of codes: nonsingular, but not 

uniquely decodable and then uniquely decodable, but not prefix code, but finally, there 

are prefix codes. So, we actually want prefix codes because, they are the most they are 

instantaneously decodable. So, this code was not a prefix code, but it is uniquely 

decodable, whereas, this code is a prefix code. 
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Then we have seen, Huffman coding. We have discussed how to do Huffman coding. 

And so, first rearrange the probabilities in decreasing order then, combine the last 2 

probabilities again and again and assign 0 and 1 to the corresponding symbols. 
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Then Huffman code we have seen that, Huffman code is a prefix code and Huffman code 

is also optimum; in the sense that there is no code better than Huffman code in terms of 

average code length part symbol. So, Huffman code is a, is an optimum code. So, its 

lengths will be between Hx and Hx plus 1; average length. 



 

(Refer Slide Time: 04:44) 

 

Then, we have seen we have discussed Kraft inequality. The Kraft inequality says that: a 

prefix code with this given lengths exists, if and only if this condition is satisfied by 

these lengths. And we have proved both the parts necessary necessity and sufficiency 

conditions in the last class. So, necessity says that, this condition is necessity for 

existence of a prefix code, naming by prefix code with these lengths, should satisfy this 

condition. 
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So, we have proved necessity. We have proved that any prefix code satisfies this 

condition. 
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And then, we have proved sufficiency any way, this condition is also sufficient for 

existence of a prefix codes of these length. And that we have proved by constructing a 

prefix code with these lengths. If a set of lengths is given which satisfy this condition 

then, we have proved that there is a prefix code with these lengths. So, this condition is 

sufficient for existence of a prefix code. 
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So, Kraft inequality we also made comments that, Kraft inequality also holds for 

uniquely decodable codes. And that means: that whenever there is uniquely decodable 

code with these lengths, there is also prefix code with these lengths. Because this: a 

uniquely decodable code with these lengths exist means; that these lengths satisfy Kraft 



 

inequality because, Kraft inequality also holds for uniquely decodable codes. And 

because these lengths satisfy uniquely Kraft inequality, a prefix code also exists with 

these lengths.  

 

So, this comment means: that we should always use prefix code because, whenever there 

is uniquely decodable code with certain lengths, we can also find a prefix code with 

those lengths. So, we will rather use that prefix code because, we can then decode in the 

code instantaneously. Also we have seen that, equality in the Kraft inequality means: that 

the code exhausts all the nodes, at the highest level of the code tree. That we have seen in 

the last class. 
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And then we have discussed what is optimal code. A code will be called if there is, no 

better code for the same random variable; better in the sense that, there is no code with 

smaller average length. So, if an optimal code has length L then, we have proved in the 

last class that, L will lie between Hx and Hx plus 1. So, Huffman code; Huffman codes 

average length will certainly lie between this range means: because Huffman code is an 

optimal code.  So, this is what we have done in the last class. 
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Now, in this class we are going to do block wise source coding. So, we will see that 

better compression can be achieved, by coding many symbols together as a block. And 

then, we will do we will discuss 1 another source coding technique called Shannon-

Fano-Elias code. And this is also a very important code because this actually gives the 

principle for arithmetic coding; a very again very important source coding technique. 

And then we will solve some exercise in this class. 
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So, let us start with block wise source coding. Let us first see that coding symbol wise is 

now, not always the best thing to do. Suppose, we have a binary symbol takes values 1 or 



 

0. It takes value 1 with probability 0.9 and 0 with probability 0.1 suppose. Now, what is 

the best symbol wise code for this random variable? The code can is 1 0, you have no 

other choice. You need at least 1 bit part symbol to represent the random variable and so, 

only choice you have is 1 0. But this will require 1 bit of average length whereas, the 

entropy of the source is 0.469 bits.  

 

So, this is also the Huffman code; this is the optimal code for this random variable. So, 

this is not really giving us any compression. So, symbol wise coding can assure, we have 

seen that this average length: length less than equal to Hx plus 1; where in this case Hx is 

this, we are achieving average length 1 which is between this and this plus 1 as we see, 

between 0.469 and bit and 1.469.  

 

So, source coding theorem on the other hand says: that you can always code a random 

variable such that, the average length goes tends to Hx meaning by; if Hx is this then, we 

can code this random variable with average length as close to this as we want. Meaning 

by: suppose we want entropy is this so it cannot, average length cannot be less than this, 

but suppose we want 0.4 0.47, we want average length 0.47. Source coding theorem says 

that, there is a source code for this random variable, which will achieve average length 

0.47, because 0.47 is greater than this.  

 

So, any length greater that Hx can be achieved by a source code. But, how to do that 

coding? We see that with symbol wise coding that is, if you code 1 symbol at a time 

independently then, there is a, this is not possible average length the best average length 

you can get is 1 bit. 
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So, that can be done, this can be achieved by doing block wise source coding. What is 

the idea? The idea is that, the source is generating all these symbols 1 after another. 

These are all identical and independent random variables and independent and identically 

distributed random variables. In short it is called IID. So, these are all IID. Now, you 

instead of coding X 1 and X 2 and X 3 independently, we code X 1 to X n, we are taking 

a block of n symbols together. Then, next block of n together, next block of n together 

this way and then, coding this block of n symbols together into 1 bit stream.  

 

So, how will I, how will you do the coding? We will take this whole block of random 

variables as a single random vector; a random variable. So, it will take many different 

values for example, if X 1 X 2 each is binary then, this will take 2 to the power n 

possible values, all possible n bit patterns. So, then they will all have some probability, 

each n bit pattern will have some probability based on the provability X 1, distribution of 

X 1 X 2 etcetera.  

 

So, we can find out those probabilities and then, do coding; source coding for this block 

of n symbols together. So, this block will give us 1 code word, this block will give us 

another code word and so on and this will be our code stream. So, if we do coding this 

way, we can see that we can get better compression and we will this in a while. 
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So, this is how, using block wise source coding we can achieve for, we can achieve this 

average length; average length tending to HX for any discrete memory less source. So, 

what is the idea? We have a source sequence; source is generating several random 

variables, a sequence of random variables 1 after another. Now, instead of coding 1 

symbol at a time, we are taking a block of n symbols together, next block of n symbols 

together and so on. And finding out the probability distribution, of a block of n symbols, 

not every symbol independently. So, for binary random variable, if you take say 4 bits at 

a time then, every 4 bit pattern 1 1 0 1 will have some probability, because 1 will have 

probability and 0 will have some probability. So, you can compute the probability of 1 1 

0 1 0 0 1 0 etcetera. So, we can find out the probability distribution of the n bit patterns 

and then, do source coding of n symbols together. So, by doing that, we can actually 

achieve better compression, as we see in this slide.  

 

Suppose, we combine n symbols together like this: X t to X t plus n minus 1, there are n 

symbols here and consider it as a single source symbol. Then, entropy of this vector 

random vector is n times HX, because each has entropy that is average information HX. 

So, and all of them are independent and identically distributed. So, the entropy of n 

symbols together will be n times HX. Then, if we find an optimal code for this random 

vector; so this is a, this is like a single symbol now. We can find a random vector, we can 

find an optimal code for this random vector and we can, we will get suppose a length L 

n. Then, we know from what we did in the last class that, this L n will be in between 



 

entropy of this and entropy of this plus 1. And what is the entropy of this random vector? 

It is n times HX.  

 

So, this optimal code length will be in between n times HX and n times HX plus 1. Now, 

part symbol what is the code length we have used? Average code length part symbol is 

now, L n by n because for n symbols we have L n number of bits, to represent this n 

symbols. So, part symbol on average we have, L n by n number of bits. So, now if you 

divide all these terms by n, what do you get? We get HX is less than equal to L because, 

L n by n is L. That is the average code length part symbol, for actual source symbol this. 

So, we get HX is less than equal to L less that equal to HX plus 1 by n.  

 

So, now part symbol what is the code length we have got? We have got between HX and 

HX plus 1 n. Previously by doing symbol wise coding we got 1 here. So, now, this length 

will be certainly nearer to HX than what we could get by doing symbol wise coding, 

because that was between HX and HX plus 1 and this is between HX and HX plus 1 by 

n, 1 by n is smaller than 1.  

 

So, it is closer to HX. So, by increasing n we can see that, L can be taken as close to HX 

as we wish. Because by increasing n this will, this side also will tend to HX. So, L will 

tend to HX because, it is in between HX and HX when n tends to infinity. So, L will tend 

to HX. So, this in fact, this actually will give us the limiting optimum compression that 

is, given by source coding theory. So, L will tend HX as n tents to infinity.  

 

So, what we have done is; by taking blocks of symbols together, we have seen that the 

optimal code length part symbol will be in between HX and HX plus 1 by n. So, as n 

tends to infinity, so as we increase the block length, we will get the average code length 

part symbol will tend to HX. So, by increasing the block length, we actually go, we 

actually achieve a average code length nearer and nearer to the entropy of the source. So, 

that is what source coding theorem says; that it is possible to do so and we have seen 

how to do it. 
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Then, we have these are, these we have already discussed. Now, from previous slide we 

also see that; Huffman code can be used to encode optimally with L tends to HX as n 

tends to infinity; that means, we can instead of doing Huffman coding for every symbol 

now, we can combine n symbols together and do Huffman coding for blocks of n 

symbols. And then, as we increase n our Huffman code will give us L tends to HX; part 

symbol part symbol the average code length will tend to HX. So, that can be achieved by 

Huffman code itself because, Huffman code is optimal. 
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Now, what is the disadvantage of Huffman code? 1 disadvantage is that Huffman code 

requires computation of the probability mass function, for every possible symbol values. 



 

So, if we have a block of n symbols, we are doing Huffman coding for a block of n 

symbols together and every symbols suppose takes m values, m may be 2 for binary 

source. Every symbol takes m values then we have n number of symbols together. So, 

what is the possible, what is the number of possible values for n length block? It is m 

power n. So, m values for each symbol that power the block length. That is the number 

of values the block of n symbols can take.  

 

So, we need to compute m power n number of probabilities to do Huffman coding and 

that is a huge task if m is large, we are saying, we are talking about n tends to infinity. 

So, we are going to take large block length. So, that is a huge task to compute all the 

probability mass all the probabilities. Then, we cannot apply this techniques Huffman 

code for sources with unknown statistics. There are practical sources for which the 

statistics is not known beforehand. So, we cannot apply Huffman coding for that kind of 

sources.  So, now we will discuss 1 another technique; source coding technique called 

Shannon-Fano-Elias Code or it is also called Arithmetic Code. 
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It is in fact, this is a, this is this gives us the principle behind arithmetic coding. We will 

see arithmetic coding in the next class, but we will discuss the principle behind it in this 

class. So, Shannon-Fano-Elias Code. 
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How do we go about it? Suppose the source symbol takes; source random variable takes 

so many values. In this case we have taken 8; 8 values 0 1 to 7. We write them in some 

sequence, in some order and then we know; what is the cumulative distribution function 

of the random variable. It is defined this way: cumulative distribution function the value 

at 3 for example, is nothing, but the probability that the random variable takes value less 

than equal to 3.  

 

So, probability of 0 plus probability of 1 plus probability of 2 plus probability of 3 that is 

the value here. So, if you plot a cumulative distribution function of a discrete random 

variable, you will get a staircase function like this. It is, it will be a, an increasing 

function, because at every place it can only increase; it is the sum of the probabilities of 

previous values. So, it will increase and the highest value will be 1; it will saturate to 1, it 

will start from 0 and it will go to 1. This is the; this is the cumulative distribution 

function of the random variable.  

 

Now, suppose we have some value X and we; obviously, this, this jump is the probability 

of X because, at X the value is here, at X minus 1 the value is here. So, the probability 

this is nothing, but the cumulative distribution function of X, is sum of the probability till 

X and whereas, the value here is sum of the probability still X minus 1. So, what has 

increased here is only the probability of X. So, this jump is nothing, but probability of X. 

So, this is probability of 1 this, this amount, this quantity is probability of 1, this quantity 

is probability of 2 and so on.  



 

Now, we will see how to encode to value X. If the random variable takes X the value X 

what will be the code word? We will give a way of computing the code word. So, we 

have seen that this is F x; the cumulative distribution function value at x, this is the value 

at x minus 1 that is nothing, but F x minus p x. p x is the probability of x. And we see, 

suppose, we take the midpoint here that is F x minus half of p x, this is the midpoint of 

this jump; then, we compute this quantity. We know p x, we compute log of 1 by p x. 

And we have seen before hand, that to do to design a good code, we should in fact, take 

lengths which are proportion which are same as which is, same log of 1 by p x.  

 

Now, we are not taking exactly that, because this may be fraction. So, what we do is, we 

take the first, we take the ceiling of this ceiling means: again the smallest integer above 

this number. So, like if this number log of 1 by p x is 2.5, the ceiling will be 3, if it is 3.9 

that ceiling will be 4. So, this ceiling plus 1 we increase it by 1. So, that is the length we 

take for the code for x; for the code word for x we take this length.  

 

So, it is slightly more than what we should take for optimal codes. And then we express 

this quantity as a binary sequence. So, this is the F x minus half of p x, this number this 

will be a fraction 0 point something, because it is between 0 and 1. So, it will be 0 point 

something, but we express that in as a binary number. So, when we express it as a binary 

number, what will we get? We will get some binary sequence of a point; so 0 110110011 

like that. So, some binary sequence after the point we will get. So, that is the binary 

representation of that number.  

 

Now, we take only L x number of bits after the point. So, that number is denoted here by, 

this; this number quantizes to X bits. So, we take only L x number of bits after a point. 

So, we basically truncate this number, after L x number of bits. So, we have suppose, L x 

equal to 4 then, that number is 0.11011100. Then what we do? We truncate this number 

to 4 bits. So 0.1101, that is the new number; certainly that is less than the original 

number. So, this number is less than this because, this is the truncated number. So, this is 

somewhere here and we will see that this cannot go below this. 
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In the next slide, we will see that this number will not go below this and because, when 

we take a less number of bits, we are basically dividing the, this number this interval 0 to 

1 into 2 power l x number of parts. Because, how many l x bit combinations are there? 2 

power l x; so many combinations are there. So, we are taking 1 number from this 

interval, 1 number from those 2 power l x divisions of this interval and basically this part 

is nothing, but the 1 level that is nearest to this below this.  

 

So, we divide this interval into 2 power l x number of parts and immediately below this, 

there will some level, we take that level that is, this number that will be this number. 

So, what is the, this difference cannot be more than the each size of each quantize level. 

So, we have 2 power l x parts here. So, 1 by 2 power l x is the height of each section. So, 

this difference cannot be more than that minus that 1 by 2 power l x that is 2 power 

minus l x.  

 

So, and 2 power minus l x is equal to we can see, that l x is this ceiling of this number 

plus one. So, you replace that l x by this and then we see that, ceiling is certainly greater 

than this number. So, this number will be less that if you remove the ceiling, because this 

quantity is greater less than this quantity. So, minus of that is greater than this quantity. 

So, this whole number is greater than this. And this is 2 power minus log 1 by p x minus 

1, minus 1 is nothing, but half and what is 2 power minus log 1 by p x? Minus log 1 by p 

x is log p x and 2 power that is just p x. So, it is p x by 2.  



 

So, this number is less than equal to p x by 2 whereas, this difference is p x by 2 this 

difference. So, this difference the quantity by which this number is reduced by taking 

only a only l x bits that difference will be, less than equal to the step size of the 

quantization that is, 2 power minus l x and 2 power minus l x is less than equal to p x by 

2. So, this difference is less than equal to p x by 2. So, this will not go below this level 

that is idea. So, we know that this number is in between this range.  

 

So, we have seen how to take the code. Basically represent this number in a binary form 

and then take l x number of bits after the points point and so in this case say: suppose l x 

is 6 and suppose this is this, with some 6 bits. We have taken 6 bits of the original 

number here. And so, this is the code for x; this 6 bits after point 011001. We are taking 

6 bits of the; of the midpoint here.  

 

So, we have seen how to get the, how to construct the code word for x. So, for every 

value here, we will take the code words. So, for 1 we will get 1 code word, for 0 we will 

get, for every place, for every value we will get a code word because, we know the 

cumulative distribution function and these probabilities. Now, we have seen how to get 

the code words. Now we need to see, we need to get convinced that, this is uniquely 

decodable and in fact, we will show that this code is a prefix code.  

 

So, let us proceed towards that. We have this number we will show that, this code we 

have obtained this way will be a prefix code. We have got this; now, we add 1 to the last 

bit of this. 
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So, we have point something, something some number. So, we have this number and 

then, suppose this number is point we have taken 0.011001 this number. We add 1 to the 

last bit. So, what do you get? We get 010110. So, we construct another number. So, what 

have we done? We have added basically like this, we add 1 to last bit meaning by: we 

add this quantity to this quantity.  

 

So, what is this quantity? What is the value of this? This is nothing, but 2 power minus l 

x that is in this case, it is 2 power minus 6 because, value of first bit is 2 power minus 1, 

value of the first second bit after point is 2 minus 2 etcetera, and so, the value of the l x 

number of bit, at position l x after point is 2 power minus l x. So, we have added 2 power 

minus l x to the, to this quantity. So, and we added 2 power minus l x and we have 

already seen that, 2 power minus l x is less than equal to p x by 2. So, the new number 

will be also below this level, because this difference is greater than equal to p x by 2. So, 

we have added 2 power minus l x to this quantity which will be below this number. So, 

this is the new number we get.  

 

Now, observe 1 thing that, we have we first had 1 level that is this 1; 0.011001, then we 

added 1 to the last bit, we get another level that is this 0.011010. We have added 1 to the 

last bit and we have got this. Now, all the numbers of which, this part is the prefix; 

suppose, we take 0.011001 and then some other bits 1011 extra some extra bits then, this 

number because it starts with this number, this number will lie somewhere here because, 



 

this number will be between this number and this number; because this is certainly less 

than this number because, this number is obtained by adding 1 to this bit.  

 

So, any number of which, this is a prefix will be somewhere here in this interval. So, 

meaning by: any number of which this number is a prefix will be in this range, in this 

interval. So, we get such an interval for every possible symbol values. We will get 1 

interval here, 1 interval here. Now, we can see clearly here that, this code will be prefix 

code because, the code word we obtained here this is not a prefix of this or this is not a 

prefix of this because, this number does not belong in this region. So, this is, this cannot 

be a prefix of that because, all the number of which this prefix is in this range. Similarly, 

this is also a not yet prefix of this number.  

 

So, the code words we get this way will be a prefix code. So; obviously, it will be an 

uniquely decodable code. So, just now what I was saying; we add 1 to this bit, we get 

this number. So, all the numbers in between this range are the numbers of which, this is 

prefix or other numbers cannot be a prefix of; this cannot be a prefix of any other number 

which is not in this range. So, this way we can argue that this code will be a prefix code. 
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Now, something interesting; we have so far seen that, the code is prefix code. So, what 

else are you interested in, in a code? We have to check that it is uniquely decodable. So, 

we have seen that because it is prefix code. Then we have see, what is the compression, 

how much compression we get using that code, meaning by: what will be the average 



 

length of the code words? And what is that? We have to basically to take the average of 

all the possible code words. So, that is what we do here. We take the average length; this 

is summation of p x i l i; l i is the length of ith code word. Now, l i we have seen is 

nothing, but this. We have taken l i that way.  

 

Now, we take summation with bracket here. So, p x i times this plus 1 because, 

summation p x i is 1. Now, this ceiling is less than equal to this quantity plus 1 because, 

if this number is 2.5; ceiling is 3. So, 3 is less than 2.5 plus 1 that is, 3.5 certainly 

between any number. And if you add 1 to it, between those 2 numbers there will be 1 

integer. So, that integer next to any number will be less that number plus 1. So, this is 

less than log 1 by p x i plus 1. So, we have done that.  

 

So, another 1 comes out of this summation because, summation p x i greater than 1. So, 

we get 2 here, 2 plus this. And what is this quantity? This is nothing, but HX, this is the 

formula for entropy of the source. So, this is HX plus 2. So, certainly this is suboptimal 

because, we do not we do not know whether this will be less than HX plus 1 also. What 

we have granted is that, l will be less than equal to HX plus 2.  

 

So, this code is possibly suboptimal. This is suboptimal, but this not so bad because, now 

if we suppose combine many symbols together as we have discussed before then, let us 

see what code length we get, part symbol on average. So, now suppose we combine n 

symbols and do Shannon-Fano-Elias Code for a block of n symbols together. Then, the 

average code length l will be l n by n because this is for n symbols. So, divide by n is the 

part symbol code length. This is less than equal to HX plus 2 by n because, l n is less 

than equal to n times HX plus 2. Because n times HX is a entropy of n symbols together.  

So, the average code length l n for n a block of n symbols will be less than equal to HX n 

times HX plus 2 because, entropy is n times HX. So, l which is l n by n will be less than 

equal to HX plus 2 by n. We divide this l n by n n HX by n is HX and then 2 by n. And 

this will tend to HX as n tends to infinity, this is the interesting part. So, if we instead of 

coding symbol wise if, we take n symbols together the average code length we get part 

symbol will be, HX plus 2 by less than equal to HX plus 2 by n.  

 

So, now if we take n tends to infinity meaning by; if as we increase the block length the 

Shannon Fano Elias Code will code will give us, a average code length part symbol 



 

tending to HX. And that is that is good because it says that, using Shannon-Fano-Elias 

Code also we can achieve what is granted by source coding theorem. So, it is 

asymptotically optimal as n tends to infinity, we actually get optimal coding l tends to 

HX.  

 

So, we have done in this class: block wise source coding, why we need block wise 

source coding. With an example we have seen that, there are certain sources for which 

using just symbol wise coding, we get no compression. Whereas, we can do block wise 

coding and block white block wise coding will give us; for any source we can get this 

optimal code length tends to HX. This we can achieve for any discrete memory less 

course using block wise coding. And we have seen that, because Huffman code is 

optimal code we can achieve this limit using Huffman code itself, but Huffman code has 

certain disadvantages, 1 is that it can it needs to compute n power n probabilities that is 

something huge task and we cannot apply this technique for sources with unknown 

statistics.  

 

Now, so far we have also discussed how to do Shannon-Fano-Elias Code. We have taken 

first the cumulative distribution function; this jump here is the value of probability of x at 

any x. If we take 6; this jump is a probability of the value six. So, we have seen how to 

construct the code word for x similarly for every value we can construct code word. We 

take first the midpoint then, take binary representation of the midpoint here and take only 

l x number of bits, l x is computed this way. Then this will be a number below this 

because, that is truncated this number is truncated after l x bits and then this take l x 

number of bits, those l x number of bits here. This is the code for x. And we have seen 

that this coding will give us a prefix code ah.  

 

Now, this is, this also so far as we see, will require computation of p x and f x for every 

possible value. So, what disadvantages we have talked about for a Huffman code is also 

valid so far is this coding. But we will see in the next class, how this can be avoided and 

how this technique in general can be applied to sources with unknown statics also, some 

modeling of the statics can be done. And we have seen that, Shannon-Fano- Elias Code 

is suboptimal in general, but is asymptotically optimal meaning by: if you combine n 

symbols together and as n tends to infinity we will achieve a code length part symbol 

tends to HX with Shannon-Fano-Elias Code also; just like Huffman codes.  



 

Though, Huffman code will be better if we do symbol wise coding. For any block of n 

symbols probably Huffman code, Huffman code is optimal, but Shannon-Fano-Elias 

Code is not optimal, but as n tends to infinity they will both perform similarly. They will 

both achieve, they will both tend to HX. So, that is something good for Shannon-Fano-

Elias Code also. 
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This is a, this is what we have done in this class. Now we will solve some exercise. So, 

this exercise is that, it says a source generates 5 symbols. So, the random variable the 

source generates takes 5 values, each value has some have some probability. Now, these 

are probabilities given: 0.2 0.05 0.45 0.15 and 0.15. Then which of these statements are 

true? There is a binary uniquely decodable code for this source with average length equal 

to 2. Now whether that is a source, there is a binary uniquely decodable code with length 

or not, that depends on that can be found out by taking the, by computing the entropy of 

this source. 
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So, we need to compute the entropy of the source. We have it here; the entropy of the 

source can be this, the formula is simple p x times log 1 by p x, summation of all such 

terms. So, we take 0.2 probability 0.2 0.05 0.4 5 0.15, but that is 2 times; so 2 times that. 

And when we compute this we get 2.02. So, HX; the entropy of the source is 0.02. So, 

this statement, that there is a uniquely decodable code with average length 2 is false 

because, the entropy of the source itself is 2.02. So, we cannot have a code with average 

code length less than the entropy of the source. So, this statement is false.  

 

Then, we have there is a binary uniquely decodable code for this source with average 

length less than 3.2. Now, what is the entropy of the source? 2.02. And we know that, 

there is always a code with average code length less than HX plus 1. So, HX is 2.02; so 

there is always a code with length 3.02. The entropy is 2.02; there will be code certainly 

with average code length less than 3.02. So, there this is true that, there is a uniquely 

decodable code with average length less than 3.2.  

 

The next statement is, there is no binary uniquely decodable code for this source, with 

average length less than 2.5. Now, can you conclude about the truthness of this from the 

entropy? Entropy is 2.02. This number is 2.5, this is between 2.02 and 3.02; that means, 

this may possibly be average length of a code for the random variable because, we know 

that the optimal code length is between entropy and entropy plus 1. This number is such 

a number; it is between entropy and entropy plus 1.  



 

So, this can be possibly a code length for a uniquely decodable code, for this random 

variable, but we, so this needs to be verified. We cannot grantee that, this will be 

certainly a code because this is between this, but the optimal code may not have this 

length. So, we need to check, we need to construct an optimal code and see what length 

it achieves. And we can do that, because Huffman code is optimal code and we know 

how to construct Huffman code. 
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So, let us see, let us construct the Huffman code for this random variable and see if what 

average length we get. So, the code length the probabilities are 0.45 0.2 0.15 0.15 and 

then 0.05. So, first we combine this 2, we get 0.2 probability 0.2 0.45 0.2 0.2 then 0.15. 

So, we add 0 here and 1 here, then we combine we get 0.35. So, we add 0 to this; so, 0 to 

both this and 1 to this. Then we combine these 2 we get, 0.55 and this comes as it is. So, 

we add 0 here 0.35 0.35 comes from all these 3. And 0.45 and 0.2 gets 1 then, so we get, 

we add 0 to all this and 1 to here.  

 

So, this the Huffman code for this random variable and what is the average code length? 

This is 0.45 times 1 plus 0.2 times 2 plus 0.15 times 3 plus 0.15 times 4 plus 0.05 times 

4. When you compute this we will see that this is 2.5. Now, Huffman code itself has code 

length 2.5. So, certainly there is, there cannot be a better code. So, there is no binary 

uniquely decodable code for this source, with average length less than 2.5. So, this is, 

there is no binary uniquely decodable code for this source with average length less than 



 

2.5 this is true, this is not correct There is no better code so this statement is true. There 

is no binary uniquely decodable code better than Huffman code. 
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Next exercise is, using Kraft inequality show that there is a prefix code with lengths this. 

This can be checked because you simply compute, you simply compute this summation 2 

power minus l i and l i is for li’s you can put these values 6 6 5 4 4 4 this. And then you 

will see that, this is actually equal to 1. So, this is, this satisfies Kraft inequality and 

construct such a code. Now, we have seen in the proof of Kraft inequality that, given 

certain lengths which satisfy Kraft inequality, a prefixed code can be constructed. The 

proof was by construction. 
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So, we can in fact, use that construction itself to construct such a code. So, let us do that, 

so we had, we have to the maximum code length is 6. So, we have to draw a code tree 

with 6 levels. So, 6 levels means: the number of, maximum number of branches at the 

last level will be 2 power 6 that is 64. So, we have, we will have last branches will come 

like this. So, 10 11 12 13 14 15 16 17 18 19 23 will be 32 such, there will 64 n here and 

then you can construct like this, you have to go on constructing, it will go on. There will 

be 64 such ends. And then we have to do this way. So, 1 2 3 4 5 1 2 3 4 5 6; 6 levels it 

will like this. From here, now you have to choose the code as we saw in the proof of that, 

proof of Kraft inequality that, we have to start from the smallest code length 2.  

 

So, 2 code length mean: a code word of length 2 will be node at level 2 1 2. So, you take 

the first node at level 2. So, this is 1 code word. So, what is this code word? This is 00. 

So, we have 1 code word 0 0, then take a code of code word of length 3. So, we code 

word of length 3 at level 3, the first node available. Remember that this part is not 

available any more, this is disqualified by this. At level 3 we have this1 this is 010.  

 

Similarly, as we go on taking we will see that was can get this 010011, then 100 these 

are 3 code words of length 3 then 4 5 code words of length 4. So, 1010 1011 1100 1101 

1110. These are the 5 code words of length 4 then, 1 code word of length 5. So, we get 

11110. This is 1 word length 5 then 2 code words of length 6. So, we have this code. So, 

as we take from the tree, also we will get this code. We have constructed such a code 



 

now, specify a set a symbol probabilities such that, this code gives the average length 

equal to HX. And we have seen that in the section with, when we discussed optimal 

codes we saw that, these are the probabilities to be taken.  

 

So, you just take these lengths and compute these probabilities. If we compute these 

probabilities and take this code you can see that, this will achieve this code will achieve 

average code length equal to HX for this particular this particular source probabilities. 
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There are some other exercise, these will solve later in the later classes. This can be 

solved by this is given as homework also, you can note down this numbers this is from 

Thomas and Covers book 5.5 exercise number 5.5. 
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This is from Mackays book exercise number 5.21. 
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And this is from again Mackays book 5.22. Try to solve these problems as an exercise. 
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In the next class we will do arithmetic coding. We will see that using Shannon-Fano-

Elias Codes principle itself, we can, we need not without computing source probabilities 

explicitly we can do arithmetic coding. And this code is universal works for any source 

probabilities and it is asymptotically normal because, it is basically Shannon-Fano-Elias 

Codes. So, it side asymptotically normal. And we will another source coding technique 

called Lempel-Ziv coding which does not require computation of probability at all. This 

is a basically tabular method.  

 

So, we have done these 2 techniques. We have done these 2 topics in this class. We will 

do these 2 topics in the next classes.  This is the end of this class. See you again in the 

next class. 


