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Hello everyone, we will start a new module today and that will be on source coding. So, 

we will cover these topics under source coding today out of these topics, we will cover 

the following 3 topics in this class.  
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First we will have introduction. So, there we will see why we need source coding? And 

why it is possible to do source coding for most of the sources. And then we will 

describes of the desirable properties of source codes and in particular we will discuss 

what is called uniquely decodable codes and prefix codes. And then we will discuss 1 

particular very popular source coding technique called Huffman code. This source 

coding technique is very important source coding technique and we will see why later. 

And rest of the topics will be covered in later classes.  



(Refer Slide Time: 01:50) 

 

So, let us see why we need source coding. So, this is a typical communication system it 

involves 1 source which generates the message or information that is to be transmitted 

through a channel to the destination. It generates a continuous time signal or a discrete 

time signal and the destination receives a distorted version of the signal yt or yn. And the 

channel distorts the signal in some way or the other and. So, why do you need source 

coding.  
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Because the signal source generates may have redundancy or undesired or unimportant 

extra information that, the destination does not require, For example, telephone quality 



speech can be compressed without compromising much on quality to as little as 1 to 2 

Kbps better rate. So, even if, we do not consider all the nonsense we talk there is lot of 

redundancy in the representation of the signal itself.  
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So, here is particular example, where you will hear a particular original audio recording 

and then a compressed signal which will be compressed to 1.5 Kbps. So, here is the 

original signal (refer time: 03:23) So, we hear the same signal compressed to 1.5 Kbps 

now (refer time: 03:30) as you can see there is not much difference at least there is no 

perceptible differ difference between the 2 signals. That means all the information that 

the original recording contained is more or less contained in the compressed version as 

well.  
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So, here is a particular example, of how 1 can do source coding. This is a very typical 

example, the example is of sampling. So, if you have a band limited continuous time 

signal of bandwidth W and if we sample that signal at sampling that greater than equal 2 

times W that is the Nyquist rate then we know that we can recover thus continuous time 

signal back from the sample signal.  

So; that means; that there is no loss of information when we sampled this continuous 

time signal at a rate greater than equal to 1 times W. And that in turn means that all the 

intermediate values between the samples which we have discarded did not really contain 

any extra information over what these samples contained. So, inter values intermediate 

values are ideally redundant.  
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Another the reason why we may need to do source coding is that, the channel through 

which we are going to transmit the data may not have the capacity to communicate at the 

same rate at which the source is generating the information. So, in such a situation we 

may need to compress the source with some loss of information. So, we have already 

seen 2 types of source coding. 1 is 1 in which there was no loss of information and here 

is another where there is some loss of information and here is an example, of source 

coding with some loss of information.  

If, you have a real value sample signal every sample contains infinite information 

because the precision of the sample is infinite. So, to transmit this, these samples. So, 

any finite capacity channel we need to quantize the samples before transmission. So, that 

quantization will involve some loss of information.  
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Another reason why the source another way the source signal may contain redundancy is 

through non uniform distribution of the source. The symbols source generates may have 

non uniform distribution and as a result the representation of the source may be 

improved. For example in a typical English text, we know that some letters come very 

frequently and some letters do not come so, frequently.  

So, when you try to represent the English text every, English letter using binary 

sequences it will be a good idea to represent the frequent letters using smaller number of 

bits and rare letters using longer bit sequences. And this is exactly what is done in Morse 

Code, which is a very traditional code used for telegraphic communication you might 

have seen in movies or even in labs a small instrument through which telegraphic 

information is transmitted by pressing a key in different ways.  

So, a very short small sound of dot and combination of dots and longer sounds of dashes 

actually communicate the letters. So, every letter in Morse code is represented by a 

sequence of dots and dashes. So, in Morse code the most frequent English letter E is 

represented wisely by a single dot and not so, frequent. In fact, very rare letter Z is 

represented by longer sequence of dots and dashes that is 2 dashes and 2 dots.  

So, this is very traditional example of this type of source coding where the source coding 

is possible because of the non uniform distribution of the symbols generated by the 

source.  
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So, we have seen two types of source coding 1 is lossless where there is no loss of 

information due to coding and this is used by a various file compression techniques in 

computers for example, compress in Linux or WinZip in windows and then another type 

of source coding called Lossy source coding which involves loss of information. And we 

have seen. In fact, that quantization is a is an example of such source coding and vector 

quantization is a generalization of source coding will not discuss this technique in detail 

here and subband coding is another very popular source coding technique. And all these 

techniques are used these Lossy source coding technique are used in standards like 

JPEG, MPEG etcetera.  
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From now on we will consider, Lossless source coding for discrete memory less sources. 

So, we will see what discrete memory less source means: 
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A discrete memory less source generates these symbols in discrete times X naught, X1 

X2 each of them is a random variable and each of them take values from this set. So, M 

possible values and each of them has some probability. And we assume from now on the 

these probabilities are known to us while designing source code for this source this 

probabilities will be assumed to be known.  



A typical example, of discrete memory less source is an analog source sampled and 

quantized sample to make a discrete time. So, it is discrete and quantized to make this set 

finite because each random variable should take finite number of values And it is 

memory less means that each symbol here are uncorrelated from each other. So, to make 

a sample signal memory less we actually need to sample the analog signal at a lower rate. 

So, if you sample analog signal at exactly the Nyquist rate we will get a memory less 

source. If we sample at the higher rate we will not get a memory less source memory less 

sampled output.  
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So, let us see without doing source coding what is an obvious way of coding the discrete 

memory less source? So, every symbol takes M values and let us say that, M is less than 

or equal to 2 to the power b. In fact, we will assume that M is greater than 2 to the power 

b minus 1, but less equal to 2 to the power b that is to represents this symbol using binary 

streams with equal length binary streams we will need b at least b bits.  

So, we have all this symbols as possible outcomes of the source and each symbol needs 

to be represented by a fixed length code. So, if we code using fixed length code we will 

need b number of bits for each of the symbols even though they have different 

probabilities we are coding them with equal number of bits. This will require b number 

of bits per symbol whereas, we can do better.  
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If we have for example, 4 symbols with these probabilities these unequal probabilities. If 

we want do fixed length coding we will need 2 bits per symbol because there are 4 

symbols here. So, average number of bits required per symbol is 2 bits using fixed length 

code. Whereas, if you use variable length code like this then what is the expected length 

of the code. It will be 1 times 0.5 plus 2 times 0.25 plus 3 times 0.125 plus 3 times 0.125 

and that will give us 1.75 bits per symbol.  

So, here we have been able to represent the source with less number of bits on average 

then using a fixed length code. And. In fact, this is the best for this random variable we 

can do because entropy of the source itself is 1.75. And by a source coding theorem of 

Shannon this is the minimum number of bits required to code the random variable.  
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So, here some desired properties of source codes. Obviously 2 different symbols should 

not be coded into a same code because, if done that way if we receive a code word we 

will not be able to decipher the we will not be able to decode the code properly at the 

destination because if we receive that, code word we will not know which 1 of these 2 

were transmitted because code for both the symbols are same. So, this code cannot be 

decoded uniquely at the destination.  

For example, so this is that kind of code will be called singular and the code where every 

distinct symbol is encoded into different code sequences is a called non-singular code. 

So, for example, this code is a non-singular code because all these four codes code words 

are different, but even if we have these even, if we have a non-singular code will not we 

may not be able to decode a code uniquely. We will see later an example of that. So, for 

now we will note that singular codes are not useful; that means, we should have distinct 

code word for each different symbol.  
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So, just now we say that even, if we have a non-singular code it may not be uniquely 

decodable. So, what can go wrong what can wrong is this that, if we now we will be 

transmitting these symbols 1 after another. So, if we transmit M consecutive symbols. 

So, and the total codes sequence for that will be this. If we receive this code sequence it 

should not be code sequence for any other symbol sequence that means: if we have 2 

distinct symbol sequences there are code sequence such should not be there. Code 

sequences should not be same.  

So, that the decoder can decode this whole string uniquely. So, are there non-singular 

codes which not uniquely decodable yes in fact, there are we have, in fact seen an 

example in the last slide will see again this code 001 001 and 10 this code is; obviously, 

non-singular because all the code words are different, but if we receive this string this 

string can be decoded in many different ways.  

If we break this string into 01 and then 010 then we will think that, we have received this 

symbol and then this symbol, but if we break this as 010 and then 16 then we will think 

that we have received this 1 first and then we have received this 1. On the other have we 

can also break this string into 0 1 0 and 10. So, we will think that we are received this, 

this and this symbol. So, a non-singular code need not be uniquely decodable.  

So, this is a non-example not an example of uniquely decodable code whereas, this here 

is an uniquely decodable code. We will not check the this is uniquely decodable there are 



ways of checking that, but we will not go into that now. So, even for uniquely decodable 

codes we will not be able to decode the received sequence instantaneously meaning by 

whenever, we have received a code word we may not be able to decode that, code word 

instantaneously we may need to wait for some for longer time to see what are the future 

bits we receive and then we will be able to decode the whole sequence.  

So, we need to wait for future symbols before we can decode a present symbol that is the 

problem with uniquely decodable codes in general. So, we need to be able to decode 

instantaneously we need some more properties and that is here.  
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We need prefix codes meaning by any code should not be any code word should not be a 

prefix of another code word, if that condition is satisfied the code can be decoded 

instantaneously. So, here is a non-example we have seen this example before this is a 

uniquely decodable, but this is not a prefix free code prefix codes are also called prefix 

free codes. This is a not prefix free code because this code word 11 is epi adding as a 

prefix of this code word.  

So, if we receive this stream for example, then this stream is 1101 code word then 00 

another code word and then 10 another code word. So, the 3 code words, but after we 

have received 110 we will not be able to decode this immediately because after receiving 

110 we may think that this may be 11 and then 0 is starting of another code word this 1. 

So, we do not know whether it is 11 or 11 and 00 or 110 and future bits.  



So, we have to wait longer to decide on that. So, in fact we will have to wait till all the 6 

bits before we can decode the first symbol for this code. So, we see that this code cannot 

be decoded instantaneously. So, here it is prefix code and for prefix codes we can decode 

instantaneously because whenever, we have received a code word we can decode that 

every time we check we receive first 1 than 1 then we received 0 then we know that, that 

is code word. So, we can decode that because this cannot be part of this cannot be prefix 

of another code word.  

So, this is surely the code word we have received and all the future bits can be decoded 

fresh later. So, the prefix codes are the best among these 3 classes all these are desired 

properties the prefix code is uniquely decodable. So, it is also non-singular.  
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So, here is a summary of all the classes of codes we have considered. Singular; 

obviously, this is the most trivial example of a singular code all the code words are same 

non-singular, but not uniquely decodable. We have seen this particular example before 

these non-singular, but this is not uniquely decodable because we can combine a few 

code words and then we will get a string which can be decoded as string of 2 different 

strings of symbols. And this is uniquely decodable, but not a prefix code because this 11 

is appearing here.  

So, this is the example, this example where this string could not be decoded uniquely 

because it could be broken into streams of code words in many different ways. So, it 



could not be decoded uniquely and this code is uniquely decodable, but it is not a prefix 

code because this code word is appearing as the prefix of this code word. and this code is 

prefix code.  
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So, here is exercise is this code uniquely decodable? So, when we try to answer this 

question we have to see whether we can combine several code words which can be also 

broken into code words in a different way. So, if we try this way then we will see that, in 

fact, there are such streams which can be broken into code words in different ways. For 

example this 1, if we take this stream, this stream can be this bit stream can be broken 

into code words like this 11 is a code word then 1010 is code word and then 111 is also a 

code word.  

Whereas, this can also we broken into code words in this way 111 and then 0101 is here 

and then 11 here. So, this stream can be broken into code words in 2 different ways; that 

means; 2 different symbols streams can be encoded into the same codes stream. So, this 

code is not uniquely decodable. 
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Now, we come to a very important source coding technique called Huffman code. So, we 

will see with an example first how to construct a Huffman code. So, if we have a random 

variable X taking 5 values without loss of generality we will assume that, these 5 values 

are 1 2 3 4 and 5. If they are named differently you can put those names here. 

So, there are these 5 values this random variable can take and we will write the design 

code words here and these probabilities are known to us beforehand.  The 1 comes with 

probability 0.22 comes with probability 0.15 and so, on. So, the first step in designing 

Huffman code is to arrange these probabilities in probabilities and. So, the symbols in 

decreasing order. So, the symbols will be arranged in a in decreasing probability first. 

So, we have this these probabilities we will arrange these symbols in such a way that, 

these probabilities are arranged in decreasing order. Here so, this symbols are arranged in 

such a way that, this probabilities are in decreasing order then we will combine these 2 

probabilities add these to probabilities to get 0. and then consider these 2 symbols as a 

single symbol.  

So, next step in the next step we will combine these 2 symbols as 1 and write the 

probabilities again in decrease order. So, probabilities of the new symbol which is the 

combination of these 2 will be 0.3 and we already have these 3 probabilities. So, 0.3 and 

these 3 probabilities will be arranged in decreasing order here. So, point the combination 

of these 2 symbols goes in the first location where it has the highest probability and then 

the other probabilities.  



And while we combined 2 symbols we will assign 0 to the first symbol and 1 to the 

second symbol. So, 0 and 1 will be the last 2 bits last bits of these 2 symbols later we 

will add more and more bits on the left of these 2 bits. So, again we repeat this process 

now we will combine these 2 symbols into 1 and add their probabilities as the probability 

of the new symbol. So, what is the probability of the new symbol in this step it is 0.45  

So, 0.45 and we add 0 to this symbol and 1 to this symbol. So, 0 to this symbol and this 

came from 4.  So, we have 0 here and 1 to this symbol so, 0 and 1. Now, we repeat this 

process again we combine these 2 symbols. So, we get the probability 0.55 here and add 

0 to this symbol and 1 to symbols of 0 goes to both these symbols. So, we have added 0 

to both these symbols and 1 to this symbol which came from here 1 and the last step we 

combine the last 2 symbols with probability one. So, we add 0 to 0.55 and 0.55 came 

from these 2 that is these 2 and these 2 came from this 1 and the last 2.  

So, we add 0 to this symbol and these 2 symbols and we add 1 to this symbol this 

probability came from these 2 that is: these 2. So, we add 1 to these 2 symbols. So, this is 

the final code book we have and this the Huffman code.  
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So, here we summarize the design process of Huffman code first we arrange the symbols 

in decreasing order of their probability. And there we assign 0 and 1 as the last bit of the 

last 2 symbols then combine the last 2 symbols as 1 and assign the sum of their 

probabilities to the new symbol.  



So, and then we repeat this process again and again we again arrange these new 

probabilities in decreasing order and then keep doing this again and again. And while we 

when we want to add assign a bit to a new symbol that is the derived symbol we actually 

assign we actually add that bit to the left of all the symbols from which that, new symbol 

came. We have seen that before, in fact when we tried to when we wanted to assign 

when we wanted add 0 to this symbol we actually added 0 on the left the all the symbols 

from which that, new symbol came that is, this 1 and then the last 2. We assigned we 

added 0 to all these symbols.  
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Here are some nice properties of Huffman code. Huffman code is prefix code well we 

are not going to prove it, but we can see at least from this example, that this code is 

really a prefix code there is no code word which is a prefix of another code word for 

example, take 01. 01 is not a code is a not a prefix of any other code word. 10 is not is 

prefix of prefix of any other code word 11 is also not a prefix of any other code word.  

So, this is a prefix code and then Huffman code is optimum meaning by there is no code 

better then Huffman code for any random variable. So, if we have any discrete random 

variable we cannot design a better code than Huffman code. So, that means; Huffman 

code gives the minimum average length for any random variable. So, we will now 

conclude this class with few we will summarize what we did in this class.  
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So, we have seen there are 2 types of source coding 1 is Lossless the other is Lossy in the 

Lossless source coding there is no loss of information. We have seen example for 

example, we have seen the sampling at greater than Nyquist rate for low pass signals is 

actually lossless compression. And these are some file compression commands which 

use Lossless source coding techniques. And then Lossy source coding actually loses 

some information. For example, quantization vectors quantization and subband coding 

and this loss Lossy source coding techniques are used by this, popular standards like 

JPEG, MPEG.  
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We have seen that instead of doing fixed length coding that is: instead of representing 

each symbol by a fixed length binary string, if we represent them with variable length 

code words after considering their corresponding probabilities then we can represent a 

random variable with less average length then using fixed length code. So, while doing 

that we have keep in mind that all the frequent symbols like this with 0.5 probability 

should be represented by shorter sequences and less probable symbols should be 

represented by longer sequences.  

So that, the average length code length will be minimum. So, we have seen that for this 

particular example of variable length coding we have the average length 1.75 which is 

better than this.  

(Refer Slide Time: 32:03) 

 

Then we have seen 3 types of 3 properties which are desirable in source codes Lossless 

source codes. This is not desirable the singular code where 2 code words will be same in 

this particular example all the code words are same. So, this code is not desirable at all 

because we cannot decode the code at the destination. If we receive 0 here we do not 

know which of these 4 was transmitted. So, a code should be non singular that is all the 

code words should be different.  

That is 1 desirable property another desirable property is it should be uniquely decodable 

that it need not it should not only been non singular, but it should be also be uniquely 

decodable. That is when we combine several symbols together we get a long bit stream 



that cannot be decoded in 2 different ways. It can be decoded only in 1 way. So, that is 

uniquely decodable code and then even uniquely decodable codes will not be decodable 

instantaneously. For example, if we receive 1 1 this symbol we do not know whether we 

have we have received this symbol or we are received part of this symbol. So, will not be 

able to decode this code instantaneously.  

So, for that we need another condition that is: prefix condition that is no code word 

should be a prefix of another code word like this here this code word is a prefix of this 

code word. So, we cannot decode this code instantaneously. So, for that we need this 

kind of code where, no code word is a prefix of another code word. Then we have seen a 

popular source coding technique that is Huffman code where we first arrange the 

symbols in decreasing order of their probability like this and then we combine last 2 

probabilities into 1 that is here point 3 and order the new probability with the rest in 

decreasing order like this.  

So, and while doing that we assign 0 to this symbol and 1 to this symbol and then go on 

doing this again and again. And when we want to add 0 to this we add 0 to this original 

symbol from which this probability came and 1 to this. Then again we want to add 0 

here. So, add 0 to these 2 and 1 to this 1 again do that. So, we get this Huffman code and 

we have seen that, Huffman code is a prefix code.  

For example, this code is prefix and Huffman code is also optimum meaning by we 

cannot find any better code than Huffman code for any given random variable. So, this is 

the end of the summary, but we will do some excise now on what we have done.  
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So, this exercise says consider that, consider this random variable this random variable 

takes these 7 values x1 to x7 with these probabilities. Find a binary Huffman code for 

this random variable x. So, we will do as we did for the other example.  
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So, we will first write these symbols here x1 x2 x3 we will write their code words here. 

write these probabilities they are already given in decreasing order 0.49 0.26 0.12 0.04 

0.04 0.03 0.02. So, the first step in designing the Huffman code is to combine the last 2 

symbols as 1. So, what probability do we get. We get 0.05 that will come before 0.04, 

but after 0.12. So, we again write the new probabilities in decreasing order 0.49 0.26 



0.12 then we get 0.05 then 0.04 0.04. We have got this new probability from these 2 we 

assign 0 here and 1 here. That means; we assign 0 to this symbol and 1 to this symbol 

and these probabilities are written as they are next step is to combine these 2 symbols as 

1 and we get the probability 0.08.  

So, you have got 0.08 from these 2 probabilities we assign 0 and 1 here. So, 0 goes to 

this symbol and 1 goes to this symbol and all the other probabilities remain as they are, 

next step is to combine these 2 probabilities 0.08 and 0.05. So, we get point 0.13. We 

assign 0 here 1 here. So, 0 goes to 0.08 which came from these 2 probabilities that is: 

these 2 probabilities. So, we add 0 to both these symbols and 1 to this probability which 

came from these 2.  

So, we add 1 to this and this then these probabilities remain as they are. So, we then in 

the next step combine these 2 probabilities. To get 0.25 0.25 get 0.49 0.26 0.25 0.1. So, 0 

goes to these 2 probabilities, these 2 probabilities came from these 3 which came from 

all these 4 So, 0 goes to this and 1 goes to this symbol then we combine the last 2 

probabilities to get 0.51 So, we get 0.51 and 0.49 this probability we have got these 2.  

So, we add 0 here and 1 here 0 goes to 0.26 here and 1 goes 0.5 to this 1 and this 

probability came from all these probabilities. So, 1 will be added 2 all these symbols. 

Now, as the final step we combine these 2 probabilities we get 1 at 0 here and add 1 here. 

So, 1 goes to 0.5 from 0.51 came from all these probabilities all, but the first 1. So, we 

add 0 to all these symbols and 120.49 which is the probability of x 1. So, we add 1. So, 

this a Huffman code for this random variable find the next question is find the expected 

code length for this encoding. What is the expected code length for this encoding. We 

have 1 code word of length 1 which probability 0.49. So, expected code length is. So, 

expected code length is 0.49 times 1 plus 0.26 times code length 2 Plus 0.12 times code 

length 3 plus 0.04 times code length of x4 is 5 plus again 0.04 times code length 5 plus 

0.03 times code length 5 plus 0.0 2 times code length 5 and when we multiply this and 

add all that terms we get 2.02.  

So, this is the expected code length of this Huffman code for this, random variable and as 

this as Huffman code gives the best code for any random variable we can also rest 

assured that, 2.02 is the minimum expected code length we can ever get for this random 

variable. We cannot get any better than 2.02 expected code length. What is the minimum 



length of any fixed length code for this random variable. So, if we use a fixed length 

code for what would be the minimum length for this random variable. We have 7 

possible values.  

So, to do fixed length encoding for this random variable we will need at least 3 bits. It 

will 2 bits we can encode only four symbols with a 3 bits we can encode 8 symbols. So, 

here the number of symbols is 7. So, we have to have 3 bits to encode this.  
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Next exercise, which of these codes cannot be Huffman codes for any probability 

assignment. So, to see why to go to solve this problem we need to observe certain facts 

in the design process of Huffman code. So, what did you do when we try to design 

Huffman code. We first ordered the probabilities and decreasing order and than combine 

the least 2 probabilities into 1.  

So, and combined these 2 symbols as 1 new symbol from this step onwards. So, from 

this step onwards these 2 symbols were considered a single symbol. So, the code the 

symbols having the least probabilities 2 symbols last 2 symbols will have the same bits 

except the last 2 bits that is for sure because in this step we have added 0 and 1 to 

different bits to these 2 symbols from then on these 2 symbols are considered as 1 

symbol. So, whatever bit is added from this step onwards to this probability was added to 

both this symbols.  



So, as we can see except for the first 2 bits except for the first 2 bits first bits the other 

bits of these two symbols are same. So, in other words and also these 2 symbols will 

have the maximum code length because they have the smallest probabilities. So, we can 

say that the maximum code length will be therefore, at least 2 symbols and 2 such 

symbols will have these 2 code words differing only in the last bits. All the other bits of 

the longest 2 code words will be same except for the first last 2 bits last bits.  

So, after we have observed this fact we can say that, this particular code cannot be 

Huffman code because it has only 1 longest codeword. So, in the design process we have 

seen that the longest codeword should be there for at least 2 symbols and those 2 

symbols will have the same code length differing only in the last 2 last bits. So, this 

cannot be a Huffman code can this be Huffman code yes this can be Huffman code we at 

least see that, this satisfies the observation we have just made in the design process.  

That is it has maximum length to and there are 2 code words of the length 2 and differ 

only in the last bits. So, this can be Huffman code and in fact, we can see that this will be 

a Huffman code.  
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For this, will be Huffman code for the exactly this random variable. If we have random 

variable taking values 1 2 and 3 with probabilities 0.5 0.25 and 0.25 then what will be 

the Huffman code we will combine these 2 probabilities. So, first step is this and then we 



will combine these 2 probabilities to get probability 1. So, add 0 here and 1 here 0 to this 

symbol and then 1 to both these symbols.  

So, in fact we have got exactly the code that is given in the exercise. So, we have got this 

code and the this is Huffman code for the random variable taking 3 values if probability 

0.5, 0.25 and 0.25.  
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So, this is a Huffman code for the random variable with these probabilities and this is not 

a Huffman code because they are cannot be a single longest code word in a Huffman 

code. The longest other the maximum length should be therefore, 2 for 2 2 code words 

for any Huffman code. This can also not be a Huffman code because it has 2 symbols 

and for any binary source the Huffman code will be just 0 and 1 because for a binary 

source suppose, the first probability is p and the other is 1 minus p the first probability is 

p than the other must be 1 minus p.  

Suppose, p is longest the p is larger p is greater than 1 minus p then in the construction of 

Huffman code just involves 1 step. The total is 1 combine these 2 probabilities we assign 

0 here 1 here. So, the codes code words will be 0 and 1. So, for any binary source the 

Huffman code is just 0 and 1 it cannot be 0110. So, Huffman code for any binary source 

is 0 1 it cannot be 0110.  
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So, in the next will do Kraft inequality, Kraft inequality gives a condition for existence 

of a prefix code for any set of lengths. So, if we add given a set of lengths a 2 3 4 4 is 

there a prefix code of this lengths. So, the Kraft inequality will answer that question it 

will give a necessary and sufficient condition for existence of a prefix code for any given 

lengths. We will discuss about optimal code we will see what is optimal code and what is 

the expected length of optimal code.  

So, this will also answer some questions about how much compression can be done for 

the random variable and then we will discuss block wise source coding here, we will see 

that better com compression can be achieved by coding many symbols together as block 

instead of coding every symbol independently we can code we can combine many 

symbols together and do coding. So, that will give us better result.  
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So, in this class, we have covered introduction uniquely decodable and prefix codes then 

we have seen what is Huffman code and how to construct that and some properties of 

Huffman codes. And in the next class, we look a Kraft inequality optimal codes and 

block wise source coding.  
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Here are some reading materials from which these topics can be studied. Thomas M 

Cover, elements of information theory is a very classic book on information theory. And 

this is a more recent book by, David Mackay information theory inference and learning 

algorithms. And this presents these techniques in a very lucid manner. So, I will 



encourage the audience to read this particular text book. So, we conclude this lecture 

here see again later.  


