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So, we continue our discussion with traffic characterization by a rho sigma parameters and what 
we had seen earlier is that when a FIFO scheduler or essentially a work on serving link with a 
transmitter which transmits at c bits or c packets per unit of time is fed by a rho sigma regulator, 
then what is the effect on the maximum queue length and what is the maximum bounded delay 
and how we can characterize the output departure process; that we had seen.  
 
Now, in the previous lecture, we were also trying to see what is the effect on the output 
burstiness that how does the output burstiness get affected when the input to a work conserving 
link happens to be a row sigma regulated traffics and we had seen that result here.  
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In the previous lectures I had explained to you the output burstiness and so we had first defined 
what is meant by satisfying the flow constraint. So, let us say that A is an input to a work 
conserving link. So, there happens to be a work conserving link. So, A is an input and B happens 
to be the output. So, we say that a network satisfies the flow constraint if the B (t) that is the 
output is less than or equal to A (t), for all t.  
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Then if this is the definition of the flow constraint, then we have 3 claims. One - if the node 
guarantees the bounded queue length q, that means the maximum queue length that is the 
maximum queue length is guaranteed to be q; then, the output B will be sigma plus q rho 
constraint. So, the input is sigma row and we say that the output will be sigma plus q rho. So, this 
is one result that we will shortly prove.    
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The other result that we had seen was that if the node satisfies the flow constraint and guarantees 
the bounded delay. So, in addition to satisfying the flow constraint, if it guarantees the bounded 
delay d, then the output is sigma plus rho d into rho constrained and lastly, if the node is a work 
conserving link, then B is also rho sigma traffic. So, these 3 results we would try to prove. So, 
first let us prove this result that if the node guarantees the bounded queue length q, then B is 
sigma plus queue or rho constrained. So, let me just prove this result and then we will prove the 
other two results. 
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So, just proof of this is very simple. So, we say that let q (t) be the queue length at time t at time 
t. So, what we are saying is that here is a queue and here is the input A (t) and here is the output 
B (t) and q (t) denotes this queue length. Then we know that B (t) minus B (s), note that B (t) is 
the cumulative number of departures by the time t. So B (t) minus B (s) is given by A (t) minus 
A (s) plus q (s) minus q (t). 
  
So, this is the number of departures that have occurred during the interval t to s. This is number 
of arrivals that have occurred during this interval. Now, A (s) A (t) minus A (s) is the number of 
arrivals that have occurred during this interval and q (s) minus q (t) is the total queue length 
change. So obviously, this should be equal to the number of departures. 
  
Now, this is less than or equal to A (t) minus A (s) plus q (s) and note that this itself is less than 
or equal to rho (t minus s) plus sigma and this q is less than or equal to q, which is q is the 
maximum length then. So, that means that the departure process is sigma plus q into rho 
constrained. 
 
So, we have proved this result that if a node guarantees the bounded queue length and let us say 
that maximum queue length is q and if the input is rho sigma traffic; then the output B is sigma 
plus q into rho, sigma plus q and the rho constrained, if the node is guarantying the maximum 
queue length of q.   
 
Now, let us assume that this node satisfies the flow constraint that is the B (t) is less than or 
equal to A (t) and in addition the node guarantees the bounded maximum delay of d; then we will 
try to characterize what will be the output process B (t). So, we will prove now the second claim 
that we had stated. And, the second claim was that if the node satisfies the flow constraint and 
guarantees the bounded delay d, then B is sigma plus rho d into row constrained. So, we will to 
try to prove this result.  
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So, now since the network node satisfies or guarantees the maximum delay of d, then this should 
be true - B (t) plus d should be less than or equal to t. That means those arrivals, all those arrivals 
which occur by t, they must have left by t plus d. So, all the arrivals, so what does it say is that 
all the arrivals by time t should have departed should have departed by time t plus d. So, this is 
what this result is saying.   
 
So, we now have the B(t) minus B(s) is less than or equal to A (t) minus B (s) because obviously 
B(t) is less than or equal to t, because we have proved we have assumed that the node is 
guarantying the flow constraint. Therefore, we have assumed that B (t) is less than or equal to A 
(t). So, with that we are saying that B (t) minus B (s) is less than or equal to A (t) minus B (s) 
which in addition is less than or equal to A (t) minus A of s minus d plus which indicates 
maximum of 0 or s minus d which in addition we know that since the process A is rho sigma 
constrained, this will be less than or equal to rho into t minus s plus d plus sigma which in 
addition we can show that rho t minus s plus rho into d plus sigma. So, that means that the 
process B (t) is sigma plus rho d into rho constrained. 
    
So, we have proved this result that if a network node satisfies the flow constraint and in addition 
guarantees the maximum delay of d, then the output process B (t) is sigma plus rho d rho 
constrained. That means the maximum burst size will be sigma plus row d and of course, the 
average rate remains to be rho.  
 
Now, we will prove the third result that if the node is work conserving then the output is also row 
sigma constrained. So, let us prove the third result. 
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So, the third result is that if the node is work conserving, then B is also… If the node is work 
conserving, then B is also sigma rho constrained traffic. So, we will try to prove this result and 
so let us say that let the capacity of the work conserving link be C, then we had already proved 
that this the departure process B (s) will be equal to minimum of A (s) plus c (s minus tau).  
 
Note that we had proved this result about how in a deterministic queuing system, the departure 
process behaves for a work conserving link and how the queue length behaves for a work 
conserving link. Both these results we had proved in our earlier lectures. So, that is what we are 
trying to say that this B (s) is actually equal to minimum over 0 to s A (s) plus c into s minus tau.  
And, by the similar … we have B (t) will be equal to minimum over 0 to t A sorry this should be 
A tau and so similarly, here it should be A tau plus c t minus tau.   
 
Now, let us say in these equations that let tau star be that value, be the value of tau that 
minimizes this, that minimizes in B (s). Then, we will have Bs which will be equal to A tau star 
plus c into s minus tau star and B (t) will be less than or equal to in that case A (t) minus s plus 
tau star plus c into s minus tau star. So, what we are saying? Let us say that tau star is the value 
that minimizes this; then we have B (s) is equal to A tau star plus c into s minus tau star that is 
what we have written.  
 
Now, B (t) is this. So now, if we choose the tau to be equal to t minus s plus tau star in this 
equation, for the B (t) equation; then we will have B (t) is less than or equal to. Say instead of 
tau, we have put t minus s plus tau star and it has to be less than or equal to, because we are 
minimizing it over 0 to t. So, c (s minus tau star) minus, so us right, so we have put this.  
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So now, we have B (t) minus B (s). So, if you write B (t) minus B (s) that will then become less 
than or equal to A (t minus s plus tau star) plus c (s minus tau star) minus A (tau star) plus c into 
s minus tau star. This, we get simply by subtracting B (t) minus B (s). So, this A (t minus s tau 
star) minus A (t tau star) - from subtraction of this which actually is equal to A (t minus s plus 
tau star) minus A of tau stars which as you know is less than or equal to rho of t minus s plus 
sigma. So, that means the traffic B (t) is sigma rho traffic.  
 
So, this is how we have proved the 3 results on the characterization of the output burstiness. One 
- if the node guarantees the maximum queue length q, then the output is sigma plus q rho 
constrained. If the node satisfies the flow constraint, we need an additional assumption of it 
satisfying the flow constraint and the bounded delay d; then the traffic is sigma plus row d into 
row constrained. If the node happens to be a work conserving link, then the output is also sigma 
row traffic. So, these three results actually completely characterize the burstiness of a node, 
where the input is rho sigma traffic.    
 
So now, what we have seen till now in our discussion is that if the traffic is regulated by a rho 
sigma regulator; so the first we proved about the multiplexing. That is such traffics are 
multiplexed by an ideal multiplexer; then what will be the output process and what we saw? We 
saw that if such traffics are multiplexed by an ideal multiplexer, then the output is also a rho 
sigma traffic where this sigma is the sum of the sigma’s of all the traffic and the rho is the sum of 
the rhos of the all the input traffics that is what our ideal multiplexer was. Then, we tried to 
characterize that what will be the characteristics if a node is fed by this rho sigma traffic, then 
what can we say about the queue length and then we proved that a maximum queue length will 
be bounded by this sigma. That is one result we proved. 
 
The second result we proved that a delay will be bounded by sigma upon c minus rho where c is 
the capacity of this work conserving link and a rho that is the average rate happens to be strictly 
less than the capacity of the link.  
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In addition, if we invoke this assumption that the link happens to be a FIFO scheduler, then we 
can say that the maximum delay will be bounded by sigma by c, where now rho is strictly rho is 
less than or equal to c. So, that is how we characterize the queue length and the delay. 
 
And thirdly, we have just now proved that what will be the effect on the output burstiness if the 
input happens to be a rho sigma regulator. The other results that we have proved is that this rho 
sigma traffic can be generated by a token bucket regulator whose maximum depth is sigma and 
whose token generation rate is rho.   
 
So, if we have a random bursty traffic and if we pass through a token bucket regulator whose 
bucket depth is sigma and its token generation rate is rho and every traffic you know takes away 
as many number of token as is the length of the packet; then the output of such a token bucket 
regulator will be a rho sigma traffic. 
 
In addition, we have proved another result and that is very important result that if this random 
bursty traffic needs to be regulated by a token bucket regulator, if there are other FIFO 
controllers that also can generate the rho sigma regulated traffic; then among all these FIFO 
controllers, token bucket regulator is the best, token bucket is the best rho sigma regulator, in the 
sense that it will delay this traffic at the source the least among all the controllers that are trying 
to generate the rho sigma regulated traffic.  
 
Now, we are going to prove the last result of this rho sigma traffic characterizations and that 
result is that the output, the output of the row sigma regulator will always be less burstier than 
the input traffic - that is what we will try to prove. I mean, the input traffic happens to be some 
kind of a random traffic and the regulated traffic, input traffic happens to be an unregulated 
traffic. That means, by putting this row sigma regulator, we will always need a less buffering at 
the downstream network nodes. That means token bucket regulator is essentially acting as some 
kind of a smoother. So, that is what we will try to prove this last result. 
    
So, let me just prove, state this result and then well, we will prove this result. 
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The claim is the output of a token bucket regulator is… so let say, let us call this output to be 
some B is less bursty than the input A. So, what you mean by less bursty? By saying that less 
bursty means it requires less buffering at a node with the capacity c. This is what we mean.  
 
So, what we are essential trying to say that if this A happens to be an on the regulated traffic and 
the output of this token bucket regulator is now a regulated traffic B, what we are try to prove is 
that B is less burstier than the A. If it is less burstier, obviously it will require less buffers at the 
downstream network nodes. That is what we will try to prove. So, we will prove this.  
 
So essentially, this is your downstream, possible downstream network nodes which is serving at 
a rate of c and this has a queue length, let us say a q. The input to this is B. So, let us say that t 
happens to be the time when the queue length queue length q (t) is b is q and let us say s is the 
last time when queue was empty before t. So, at time t, the queue length has reached queue and s 
was the last time the queue was empty. So during the period from s to t, the B must have carried 
how many numbers of bits? The B must have carried q plus c into t minus s.  
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So, we will just write by saying that therefore during this interval s to t; this input B, input B to 
the node which is the output of this token bucket regulator, the input B must carry q plus c into t 
minus s bits. Now, let us say k is the amount of tokens in the token bucket at time s. Now, note 
that token bucket regulator so here is the token bucket and the input is A and this is like, the 
token rate is rho and the bucket depth here is happens to be sigma. 
 
So, what we are saying is that let us say that k is the amount of tokens in the bucket at s. Now, k 
is 0, then the A should have carried at least q plus c into t minus s bits. So, we have trivially 
proved this result. So, what we are trying to say is that there is downstream node which is being 
served the capacity of c and this node, let us say at time t has reached a capacity of q of a queue 
length. So obviously, the input must have transmitted this q bits plus during the interval t to s, 
those many bits; how many bits? c into t minus s bits must have been outputted because at time t, 
the queue was empty.  
 
Now, this input traffic B itself is coming from a token bucket regulator itself is coming from a 
token bucket regulator. So, since it is coming from a token bucket regulator, we say let us say 
that at time t, when the last time this downstream buffer was empty, the k is the amount of tokens 
in the token bucket. So, if k is the amount of tokens in the token bucket and that k was 0, then 
this input A must have transmitted at least q plus c into t minus s of bits.. So, I trivially proved.  
 
However, if k is greater than 0, then let us say that s prime be the time before s when the token 
bucket was empty. So, it is something like this that here is the s, here is t, here is s prime. So 
here, the token bucket has a token equal to q and here the bucket was empty. Now, to accumulate 
k amounts of tokens, k units during this, the m that the input A, it carries at least how many bits?   
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To accumulate these many amount of fluids, the input A must carry at least k plus rho into s 
minus s prime. So, what we are saying is that to accumulate this k units, the input A must carry 
this. So, A must carry these many number of bits which is greater than k plus c into s minus s 
prime bits. This is rho into s minus s. 
  
So, during therefore you know s to t interval, A therefore must carry q plus c into t minus s   
minus k bits and hence during s prime to t, A carries q plus c into t minus s plus rho into s minus 
s prime which is greater than q plus c into t minus s bits. So, that means A is more bursty. Let me 
just re-sketch the proof again. 
   
So, what we are saying is that during s to t, input B must carry these many number of bits 
because the queue length is q, the maximum queue length is q and the link capacity is c, the 
buffer was empty at time t and the buffer has a queue length of q at time s. So, during that 
interval of s to t, you have accumulated queue bits and you have transmitted c into t minus s bits. 
So, input B must carry this. 
 
Now, let us say that k is amount of tokens in the bucket at time s. That is this k is 0, then 
obviously A also carries the same number of bits. So, that means A is at least as bursty as B or 
other A is as smooth as B. But now let us say that this k, that is the amount of tokens in the 
bucket was not 0 at time s and this was greater than 0. Then let us say that s prime be the time 
before s when the token bucket was empty. Now, this is so.  
 
Now here, the token has accumulated k amount of fluid or k amount of token and here the bucket 
was empty. So, that means during this interval, A must carry k plus rho into s minus s. 
Remember, the token generation rate is rho. So, during this interval, these many tokens would 
have accumulated. 
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So, A therefore must have transmitted these many bits and they are greater than k plus c into s 
minus s bits. So, that means during s to t interval, A must carry these many bits and therefore 
during s prime to t interval, A must carry q plus c into t minus s plus rho into s minus s bits and 
that means they are greater than q plus s into t minus s bits. So, we have proved that A is actually 
more burstier than the output B. Now, this completes our discussion of rho sigma regulated 
traffic. As I have already pointed out is that rho sigma is a deterministic way of characterizing 
the traffic.    
 
In practice, as we know that it is not possible to give a characterized a traffic statistically, in the 
sense either by its distribution functions or density functions or even by its effective bandwidth, 
it is difficult to determine the effective bandwidth of an otherwise a statistical traffic source. So 
typically, in practice, what will be done is that traffic source will be regulated by this 
deterministic envelope and the commonly accepted deterministic envelope is a linearly bounded 
arrival process which is parameterized by sigma and rho and a linearly bounded arrival process 
can be very easily generated by a token bucket regulator which has a bucket depth of sigma and 
the token generation rate of rho. 
 
So, as a result what we have seen is that we have a arrival process whose envelope is bounded. 
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So, this is like an arrival process whose envelope is bounded. So, this is a sigma and the rho is 
the token generation rate. So, this is like a straight line equation of sigma plus rho t. So, these are 
with respect to the time and these are number of bits which are generated. An arrival process 
may have something like this. So, what we are giving is an envelope to this arrival process and 
by having this deterministically bounded arrival process, we have seen that if this arrival process, 
now that is the rho sigma regulated traffic is given to queuing system which is or a work 
conserving link which is transmitting these packets; then we can ensure the queue length, we can 
ensure the bounded delay and we can predict the output burstiness of the traffic also. 
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So, as a result what we have essentially seen is that if this traffic regulator sorry if this traffic is a 
rho sigma regulated, the network node will be able to give certain quality of service guarantees 
to the traffic source in terms of the maximum delay or the maximum queue length.   
 
So, as a result the network is able to give quality of service guarantees. Now, we have just 
considered a very simplified case where we have seen that the network node essentially happens 
to be just a simple common buffer. So, it multiple such rho sigma traffic is transmitting to this 
simple common buffer, then we can apply these results. But we have not considered the case 
when there are multiple queues and there is a scheduler which is scheduling these queues. Those 
cases we will take up in our subsequent discussions, we have not considered that case. 
  
Similarly, we have not considered that case that what happens when these nodes are connected 
together in a multi node network which is typically the case in a practical network where we 
have a network of such nodes. So, we have not considered that but these results are applicable, 
these results can be extended and generalized to a multi node network case and we can show that 
the quality of service guarantees can be given the end to end delay bounds can be given and an 
end to end burstiness can be maintained if the input traffic happens to be a rho sigma regulated 
traffics. 
   
So, hence the importance of this rho sigma regulated traffic which have been the subject of 
extensive research both in the theory as well as in the practical implementations and there have 
been; therefore lot of debates as to what should be the appropriate values of the rho sigma 
parameters that a traffic source should choose so that it not only gets a quality of service 
guarantees which the network is offering to it but at the same time, it is able to characterize the 
traffic source accurately enough. That is that means these parameters are representative of the 
traffic source parameters. 
  
So, with this we conclude our discussion of the rho sigma traffic characterizations. 
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We will see in this rho sigma regulated traffic characterization with an example. So, let us take 
an example. So, let us say there are 2 nodes. This c1 has a capacity of 4 and this c2 also has a 
capacity of 4. There is an input here, there is an input here of a rho sigma which let us say that 
this has a (1, 2) characteristics and there is another input which has (2, 1) and let us say that this 
input goes out here and however, this input continues here. 
  
Now, there is an input (1, 2), there is an input 2 1, we apply the principles of multiplexing; what 
will be the combined input?  The combined input will be combined multiplexed input here at this 
node. What will be that? The 2 sigmas will be added, that is what we had said. In an ideal 
multiplexer if the input is rho 1, sigma 1 and if another input is rho 2, sigma 2; then the 
multiplexers output will be sigma 1 plus sigma 2 and rho 1 plus rho 2.  
 
So, in this particular case, what do we get? We get 2 plus 1, 3 and 2 plus 1, 3. So, in that case, 1 
plus 2 that is sigma 1 plus sigma 2 and rho 1 plus rho 2 that is 2 plus 1. So, we actually get 3 into 
3 is the output. Now, what will be queue length that will get bounded here? The queue length, 
the maximum queue length, the maximum queue length is bounded by sigma. So, the queue 
length q is, maximum queue length is 3 and what is the maximum delay? The maximum delay 
was sigma. So, that is in this case; 3 upon c that is 4, minus rho that is 3, which is again 3. So, the 
queue length is 3 and the delay is 3.  
 
So, this is we have used the formula as sigma upon c minus rho. So, sigma is 3, this 3 and c is 4 
which is this 4 and rho is 3 of the combined input and therefore this 3. Now, so this A1 output 
goes here, so what will be this output characterization we would like to know? What will be this 
output characterization? 
 
Now, note that a maximum queue length is 3 and therefore if you assume that all these packets, 
the worst case belongs to only A; then this output process which will be characterized which is 
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going as an input to this will be what? Sigma 1 plus q into rho 1; that is what we had proved that 
is the queue length is bounded by q, the output will be sigma 1 plus q into rho.  
 
So now, what is sigma 1? Sigma 1 is the input A traffic that is 1. What is q? The q is maximum 
length 3. So, that is 3 here and what is rho 1? Rho 1 is here, so we have 3 plus 1 that is the (4, 2) 
traffic. So, this is the input traffic. 
 
Now, let us say that this input traffic is something like you know, (3, 2). So, this is (3, 2), this is 
(4, 2), so what will be the combined traffic? 
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The combined traffic will be, the multiplexed traffic will be, so this one is (3, 2), another is (4,2), 
when they are multiplexed; we get is (7, 4). So, input to this case is given by the (7, 4) traffic. So 
now at the node 2, what will be the queue length, the maximum queue length? The queue length 
will be sigma. So, the maximum queue length is equal to sigma. What will be the delay? What 
will be the maximum delay?    
 
Now, if you see here, maximum delay, note that rho is strictly less than c, here in this case. That 
is because rho is 3 and c is 4. But what happens at the second link? Second link, the c is 4 and 
the rho is how much? The rho is also 4. So therefore, c is actually equal to rho. So then, we need 
to make an additional assumption here as we had seen previously, because in this case we cannot 
apply this result of the delay because otherwise in this case, the delay will be bounded by infinity 
and we do not get any proper delay bound.  
 
So, then we have to invoke an additional assumption that let us say that at the second link, the 
scheduling policy is FIFO. So, the scheduling policy is FIFO; then the maximum delay will be 
bounded by sigma by c. So therefore, the delay d will be bounded by sigma which is 7 here by 4. 
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We will take an integer part of this, so which is which is 2. So, therefore this output is given by a 
4. 
 
What is the output characterization? We can well, we can say the output characterization; since 
the maximum queue length is 7 here, the output will be 14 plus 4. But we can get a better bound. 
Since this is the work conserving link, the output will also be a rho sigma regulated traffic and 
therefore the output of the second link is also (7, 4) which gives us a better bound. So, in this 
manner what I was trying to say is that in this manner we can characterize, I mean I have just 
given you an example. We can characterize that if we have this various network nodes which are 
connected together, then we can characterize the output burstiness and we can characterize the 
departure process, we can characterize the delay at each of the nodes and as a result, we can 
characterize the end to end delays of a multi node network.  
 
We have of course considered a single queue here as I was just trying to mention that when we 
considered a non first in first out scheduling scheme that means that there are several queues and 
there is one scheduler which is trying to schedule out of these queues; we will see that it is 
possible to guarantee or characterize the delay bound if these input you know, if the input to all 
these queues happen to be the rho sigma regulated traffic.  
 
So, if they happen to be rho sigma regulated traffic, it should be possible to characterize the 
delays even in the case of a non FIFO, non first in first out scheduler and with a multiple queuing 
classes. So, that we will see in our subsequent lectures but this concludes our complete 
discussion on the rho sigma regulated traffic.  
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