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Today, now we will discuss the problem of how a source can choose the values of the GCRA (T, 
tau) parameters such that it accurately represents the traffic characteristics. 
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So, as we are seeing in the previous lecture that we have traffic source which is random and 
bursty and this source is generating the packets randomly and it is then regulated by a leaky 
bucket regulator or a GCRA (T, tau) regulators.  Now, this bucket is initially full with a depth of 
T plus tau and whenever an ATM cell comes, it takes away capital T units of fluids while the 
fluid is accumulating in this bucket at a unit rate. 
 
Now, there may be a cell buffer here. So, in case if a cell finds that the bucket does not have 
adequate amount of fluids that is capital T units of fluids, then the cell is buffered in this cell 
buffer until the adequate amount of fluid gets accumulated in the bucket. And, when the adequate 
amount of fluid is available that is the capital T amount of fluid is available, the cell is 
considered conferment and it is outputted from the GCRA (T, tau) regulator and the bucket is 
decremented by the capital T amount of fluids. 
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Now, our question is that what are the values of T and tau that a source should select? Because, 
please note that since the cell is buffered here in the cell buffer till adequate amount of fluid gets 
accumulated in this bucket; the traffic source actually incurs some amount of distortion. So, we 
would like to ask this question that what are the values of T and tau that a source should select so 
that the distortion which is obtained by the traffic source is tolerable. 
 
Now, this distortion could be in terms of acceptable delay at cell buffer or an acceptable loss at 
the cell buffer, the cell buffer which is present at the traffic source itself. Now typically, in 
practice, the network will offer a range parameters of T and tau from which the source would be 
required to choose and depending up on what values of the parameters T and tau have been 
chosen, a particular call will be priced or charged. 
 
So therefore, the values of the parameters T and tau are not only related to the quality of service 
guarantees that a network would be able to offer, but it is also related to the pricing of the calls 
that a network operator is likely to make. Therefore, a traffic source has to make a judicious 
choice of what values of the parameters T and tau it should choose such that they form the 
minimal descriptors, minimal traffic descriptors for the traffic source in terms of both describing 
its traffic characteristics as well as obtaining the required quality of service guarantees and 
pricing of the calls. 
 
So, I will just give you an illustration of how these parameters should be chosen and related to 
the effective bandwidth of the traffic source that we had studied in the previous lectures; we will 
later on come back to this problem of how to choose the parameters T and tau such that a 
particular cost function related to the distortion is minimized. 
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So, let us consider how you can choose this. So, what we are assuming is that a traffic source is 
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bursty and the traffic source is represented by A (t) and it passes through a cell buffer that we had 
considered previously and let us assume that the cell buffer has a size of B and then there is a 
leaky bucket and this leaky bucket as we had considered has a depth of T plus tau and the fluid is 
coming into this bucket at a unit rate, at a rate of 1 amount of fluids per unit of time. 
 
Now, our question is that how do I choose the values, the value of T and tau? So, what we do is 
that we redefine the… let us redefine this above units and we redefined the units in such a 
manner so that 1 cell requires, 1 unit of fluid, requires 1 unit of fluid. Note that in this we are 
assuming that each cell requires capital T units of fluids, so we redefine this units in such a 
manner that 1 cell requires exactly 1 unit of fluid. So, we can you know rewrite this diagram by 
saying that we have again a random bursty source A (t) which passes through this buffer. Again, 
these buffers has a maximum size of B but these leaky buckets; now we assume the fluid is 
coming at a rate of 1 by T and let us call this 1 by T equal to lambda and this bucket has a depth 
of 1 plus tau into lambda. 
 
So, we have just changed the units in such a manner that each cell requires now 1 unit of fluid 
instead of capital T units of fluid that it required earlier. So, we have redrawn this picture and our 
problem now in this picture is that to determine the values of B that is how much amount of cell 
buffer we should keep here to determine the value of T and to determine the value of tau such 
that you know the probability of buffer overflow here is minimized. 
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So, we post this problem as to determine B, T and tau such that probability of buffer overflow is 
minimized. We can also post the problem in other way in which we can say that let the maximum 
acceptable delay B B D. So, if maximum acceptable delay is D, then D is actually given by B by 
lambda, where B will be the maximum acceptable backlog. 
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So, in this picture if you see, what we are saying is that one problem is to determine the values of 
B, T and tau in such a manner that the probability of a buffer overflow is minimized here or else 
the other problem is to assume that there is a maximum acceptable delay D such that there is a 
maximum acceptable backlog B and then how do we choose the values of T and tau such that the 
delay D is acceptable? 
 
Now, to consider this problem, we can have an equivalent representation of this entire 
phenomena and this equivalent representation can be simply given by a single buffer. 
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So, we consider a single buffer whose length is capital B and this buffer has an input of the same 
random source A(t). But this buffer is serving at a rate of lambda and let Z (t) represent the buffer 
length at time t. So, this problem of where we are considering that there is a random traffic 
source A(t) which is passing the fluid through a GCRA (T, tau) shaper can be equivalently 
represented by a single buffer where the input is A(t), the maximum buffer length is B and this 
buffer is being served by lambda. 
 
Why we are saying that this is equivalent, because note that each cell is outputted from this 
GCRA (T, tau) parameters and for each source, it takes 1 unit of fluid and on the other hand, the 
fluid is getting accumulated at the rate of lambda and the cells can get buffered in the cell buffers 
upto a maximum length of B because the cell buffer is having a length of B. So therefore, you 
know, the 2 problems are equivalent. Of course, in these equivalent problems, the amount of 
token fluids which is available in this token bucket will be related to this queue length Z (t) 
which is there.  
 
For example, if we say that Z (t) is less than 1 plus lambda tau; if this is so, then 1 plus lambda 
tau minus Z (t) will be the amount of token fluids which will be available. So, if we say that this 
buffer Z (t) is less than 1 plus lambda tau, then equivalently it means that 1 plus lambda tau 
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minus Z - this much amount of token fluids will be available. Or on other hand, if Z (t) is greater 
than 1 plus lambda tau that means the backlog is greater than 1 plus lambda tau; so on the other 
hand, in this case, the maximum amount of cells which can be transmitted at a time should be 
equal to 1 plus lambda tau so because each cell requires one unit of fluid and therefore only these 
many cells can be sent out.  
 
Therefore, when Z (t) is greater than 1 plus lambda tau, obviously Z (t) minus 1 minus lambda 
tau - this much amount of cells needs to be backlogged. So, this will be as a backlog of cells. 
Now, in order to consider this problem where we are saying that the maximum acceptable delay 
is D and therefore the maximum acceptable backlog is B, what it means really is that the 
maximum backlog is B. So therefore, if for the maximum backlog of cells for maximum backlog 
of cells to be equal to B, let us say that Z (t) has a value is of Z. Then, we say that Z minus 
lambda tau minus 1 should be equal to B and which means that Z would be equal to 1 plus B 
plus lambda tau. 
   
Now, so this is the value of Z (s) which gives us the maximum backlog because the maximum 
backlog which can be there in this buffer will be equal to B. 
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So now, we ask this question that what is the probability that Z (t), probability Z (t) is greater 
than B plus 1 plus lambda tau. This is the question that we should… we are asking. Now, if you 
assume that this input A (t) this input A (t) has an effective bandwidth of alpha delta and if you 
assume that the transmitter is serving at a rate which is greater than the effective bandwidth of 
the source which is alpha delta; then we know from the effective bandwidth theory that the 
probability that Z (t) is greater than B plus 1 plus lambda tau will be equal to e raised to power 
minus delta B plus lambda tau plus 1. Now, so let us recap what we are doing.  
 
Essentially, we are saying that there is a random traffic source which we are representing by A 
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(t). Now, this random traffic source is being shaped by a leaky bucket regulator GCRA (T, tau) 
regulators and we are trying to ask this question that what are the best possible values of T and 
tau such that the maximum acceptable delay such that the maximum acceptable delay at the 
traffic source is limited to or is bounded by the capital D. 
 
Now, moment we say that the maximum acceptable delay D is bounded it means that the 
maximum acceptable backlog B is bounded. So now, we are trying to ask this question that what 
are the values of the parameters T and tau such that the maximum delay at the traffic source is 
bounded or the maximum acceptable backlog is bounded which is tau. This backlog is occurring 
at the cell buffer at the traffic source. 
 
Now, we formulate an equivalent problem of this and the equivalent problem is that it is 
equivalent to saying that we have a single buffer where the input is our same traffic source and 
this single buffer is being served by a transmitter which is transmitting with a rate of lambda and 
where this lambda is equal to 1 upon T cells per unit of time. So, this transmitter is transmitting 
with a rate of lambda, the input is A (t) and we are asking this question that what is the 
probability that this Z (t) is greater than 1 plus lambda tau plus B. 
 
Now, this will ensure that the maximum backlog in our original cell buffer will be bounded by 
capital B. Now, this problem is equivalent to the problem that we had considered earlier where 
we had assumed that there is a single buffer transmitter which was transmitting at the rate of C 
cells per unit of time and there was a random traffic input and we were asking these questions 
that what is the effective bandwidth of a source.  
 
And, effective bandwidth of a source essentially was equivalent to asking the question that how 
does the buffer occupancy distribution behave for a large value of the transmitter rate and for the 
large value of the buffer B and we found out that this buffer occupancy distribution or essentially 
the loss rate behaves exponentially and that is what gives us the way to calculate the effective 
bandwidth of the traffic source.   
 
So, that is what we have written here that the probability that Z (t) is greater than B plus 1 plus 
lambda tau is given by e raised to power minus delta B plus lambda tau plus 1. Now typically, 
there will be a certain requirement of how much is this tolerable probability. We can say that this 
tolerable probability is say 10 raised to the power minus 8 or 10 raised to the power minus 9. 
Typical values would be in the range of 10 raised to the power minus 9 to 10 raised to the power 
minus 10. So, we can say that let this be equal to some e raised to power minus x, where x is 
some given quantity.  
 
In that case, we can show that delta will be equal to x upon B plus lambda tau plus 1. Now, this 
means that the lambda, the transmitter rate lambda is greater than or equal to if alpha of x upon B 
plus lambda tau plus 1 which we can also write to be as 1 by T is greater than or equal to alpha of 
x plus B plus lambda tau plus 1. 
 
Now, this equation gives us an insight of how to choose values of T and tau for a given value of 
acceptable backlog B and a given value of x through this equation; because the traffic source A 
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(t) is known, we can compute the effective bandwidth of this and this equation relates the 
parameters of the effective bandwidth to the parameters of the GCRA (T, tau) such that we can 
bound the maximum acceptable backlog at the traffic source. 
 
Now, this concludes our discussion of the ATM traffic descriptors. Just to recapitulate the entire 
discussion, let me just again tell you that what we started really with the question of how to 
provide quality of service guarantees in an ATM switch. And, we said that there could be two 
ways of doing this; either we can do multiplexing without buffering and we can do multiplexing 
with buffering. Now, in the case of multiplexing without buffering; obviously there are no delays 
there are no queuing delays but we have to ensure that the probability of a cell loss is kept below 
at tolerable limit.  
 
In the case of a multiplexing with buffering, there will be delays and therefore we need to ensure 
that the probability of a delay being bounded or the average delay or the maximum delay being 
bounded. At the same time, since the buffer is finite, we also need to ensure that the probability 
of buffer overflow is also kept small. 
 
So, the way to ensure this is we found out that we can ensure this by defining a quantity of a 
traffic source which we called as the effective bandwidth of a traffic source. So then, the 
admission control problem becomes simpler. All we need to ensure is that the sum of the 
effective bandwidths of the traffic sources must be less than the output link capacity. If this is 
maintained, then we can guarantee both the packet loss and the delays where the effective 
bandwidth will be a function of the traffic characteristics of the source as well as the quality of 
service attributes that the source desires from the network. 
 
Now typically, however, we have also seen that it will be difficult to determine the effective 
bandwidth of a traffic source because it requires the complete traffic characterization of the 
source. Therefore, the ATM forum standards has resorted to the deterministic description of the 
traffic source and we say that the traffic source can be completely characterized in terms of its 
peak cell rate, the sustained cell rate, the burst tolerance and the cell delay variation tolerance - 
these 4 parameters. And, these 4 parameters can be represented in terms of deterministic traffic 
descriptors which are represented by generalized cell rate algorithm the GCRA (T, tau). 
 
Now, given the GCRA (T, tau), we have seen that we have a very simple admission control 
policy and a very simple transmission policy. However, the question remains that what are the 
best values of the parameters T and tau. Now, that question we try to answer partially. We will 
take up this question later. So, this concludes my description of how to obtain a quality of service 
guarantees at the ATM traffic. 
 
Now here, I would like to point out one thing that in this ATM environment, all packets were of 
the fixed length. They were all 53 bytes packet as we had seen earlier and therefore these fixed 
length packets were also called as cells. On the other hand, in the current internet, the packets 
could be of variable length. The difference between the ATM and the current internet is that in 
internet, the packets could be of variable length.  
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Now, when the issue of providing quality of service guarantees in the internet arose, the similar 
problems which we have seen in the ATM world are also applicable in the internet that is we also 
have the concept of a statistical multiplexing in the internet and when you want to provide 
quality of service guarantees in the internet, we also need to have the statistical multiplexing with 
quality of service guarantees and we therefore also need to invoke the definition of the effective 
bandwidth in the internet world as well. So, we now come back to the same question that since 
the effective bandwidth of a traffic source is difficult to determine and we want to represent a 
traffic source by the deterministic parameters, the similar concepts which were like a leaky 
bucket regulator have also been applied to the internet world except with an important difference 
that in the internet, the packets could be of variable length. 
 
So, let me just illustrate now that how the leaky bucket regulator or the GCRA (T, tau) traffic 
descriptors that we have just studied; how it gets translated to the internet world where the 
packets could be of variable length. And then, we will study some properties of these kinds of a 
traffic regulator. 
 
So, let me just explain you how we can define deterministic traffic descriptor for the case of a 
traffic which has variable packet length. Now, in the internet world, this kind of a traffic 
descriptor is also called as a token bucket regulator. So, let me just see what is the token bucket 
regulator.  
 
(Refer Slide Time: 24:32) 
 

 
In token bucket regulator which is very similar to the GCRA (T, tau) that we have considered.   
Now, here is a bucket which is just similar to the leaky bucket and this bucket however has a 
depth of sigma and the tokens accumulate into this bucket with a rate of rho. So, this is also 
called as sigma rho regulator. 
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Now, the important difference is that a packet of length l; so this packet may have a length l and 
it takes l tokens from the bucket. So, the difference here is that unlike in the GCRA (T, tau) 
where what we are assuming is that all packets were of the constant length, fixed length, they 
were having the same size and therefore they were taking away the fixed amount of fluid that is 
capital T from our GCRA (T, tau). 
 
Now here, what we are saying that the tokens are getting accumulated into the token bucket at a 
rate of rho tokens per unit of time and when a packet comes and if the packet is of length l; it 
takes away l tokens from the bucket or essentially the bucket is decremented by l tokens. 
   
More formally, we can define as that let us say that ak is the arrival epoch of kth packet and let us 
say lk is the packet length of kth packet. Then, we say that the sequence, the arrival process is 
arrival process A (t) is rho sigma conferment, rho sigma regulated or constrained. If initially n0 is 
sigma, so we assume initially the bucket is full and nk is given by minimum of sigma nk minus 1 
plus ak minus ak minus 1 into row minus lk minus lk. This is greater than or equal to 0, for all k.   
 
So, this arrival process then would be called as the sigma rho constrained if this relationship 
whole would… Essentially nk, what does nk says? nk says, now ak is the arrival epoch of the kth 
packet, ak minus 1 is arrival epoch of the k minus 1th packet. Now, this is the time between the 
two packets. Now, between this time, so many tokens would have come. Since, lk is the length of 
the kth packet, so many tokens would be decremented and minimum of these would be the fluid 
that was there when the k minus 1th packet left. If you add that, that should be greater than or 
equal to 0.  
 
Note that therefore, nk is what? nk is the number of tokens left in the bucket after the kth packet 
has left because these many tokens have come between these two intervals, these many tokens 
have come. lk is the number of tokens that would be decremented and this was a initial token 
grant at k minus 1th instance. So, this represents the number of tokens that would be left after the 
kth packet has left out of the network. This should be greater than or equal to 0. 
 
Now, two particular cases arise of this that packets are of constant length, packets could be of 
constant length, in that case rho and sigma; they could be in units of packets and packets per unit 
time. Essentially, this will degenerate to the case of our GCRA (T, tau) regulator. Another 
approximation could be fluid approximations, where the input arrival process is basically a fluid 
process and similarly the bucket also has a fluid and in that case, the bucket depth could be a real 
number. 
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Now, we will concentrate on this rho sigma regulated traffic. Now, before we answer this 
question, we provide some definition of rho sigma constraint traffic and we say… So, let us 
define rho sigma constraint traffic. Let us say, a source that transmits sigma plus rho t bits in any 
interval, in any interval of t, for any possible value of t; then the source is said to produce sigma 
rho constrained traffic if A (t) is less than sigma plus row t, where A (t) is the cumulative number 
of bits arrived by time arrived during the interval of t, so arrived during t. We should say it 
should say total number of bits, cumulative. Total number of bits that are arrived during the t is 
bounded by sigma plus rho t. 
 
So essentially, what we are saying is that this is a traffic source which is generating the number 
of bits in such a manner that these number of bits are bounded by sigma plus rho t for any 
interval t. We also call such arrival processes to be linearly bounded arrival processes. They are 
also called as linearly bounded arrival processes, linearly bounded arrival processes or what we 
can call it to be LBAP this is an…  
 
Now, let us look at what is the interpretation of sigma and rho. So, if you consider that this 
interval t is very small, this interval t is very small, then if you look at this equation, then if this 
interval t is very small; then we can say that the total number of bits that are arrived during time 
interval t is approximately equal to sigma. So, what is the interpretation of sigma? During a very 
small interval of time t, the number of bits that can be transmitted is bounded by sigma. So 
therefore, what is the significance of sigma?  
 
Sigma represents some kind of a burst. This is the maximum number of bits that sources allowed 
to transmit at a particular instant during a very small infinitesimal interval of time. On the other 
hand, if you say that this interval of time t is very large if this interval of time t is very large; then 
if you consider this quantity - sigma plus rho t, then here this quantity will be dominated by rho t. 
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In that case, we can say that this rho will be equal to the number of bits that have arrived during t 
divided by the interval. So therefore, what is the interpretation of rho? Rho is some kind of an 
average rate. So therefore, this admits a notion that the traffic source, the linearly bounded arrival 
process is such that the maximum number of bits it can generate at an instant is bounded by 
sigma and its long time average rate is going to be rho. So, we call these processes to be linearly 
bounded because they are bounded by a linear envelope by a straight line of sigma plus rho t.   
 
Now, the question is how do we generate such a rho sigma constraint traffic? It turns out that the 
output of a leaky bucket… So, we just hold this proposition, simple proposition that output of a 
token bucket with bucket depth sigma and token rate r, token rate rho is rho sigma constrained 
traffic.   
 
(Refer Slide Time: 35:59)  
 

 
 
So, what we are saying is that here is a token bucket where our bucket depth is sigma, the token 
rate is rho; whenever a packet comes, it takes away the number of tokens which is equal to the 
length of the packet. We are saying that this output of this traffic is given by this expression 
where the number of bits will be limited or bounded by sigma plus rho t. So, the proof is very 
simple.  
 
Consider an interval s and s plus t. Now, let k is the size of the bucket at time s. Now, obviously 
this k is less, will be less than or equal to sigma because sigma is the maximum bucket depth. So, 
we consider an interval of s to s plus t. So that total interval if of length t. Now, at time s assume 
that the bucket depth is k. This k is obviously less than or equal to sigma because sigma is the 
total bucket depth. Now, during this during this interval from s to s plus t, the bucket the bucket 
will accumulate the bucket will accumulate rho into t tokens. During this interval, the bucket 
accumulates row into t tokens. 
 
So therefore, a total token available at s plus t is how much? The total tokens available at s plus t 
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will be k plus row t. Now, these are the total tokens available and therefore during this interval, 
the source can produce an output bits.   
 
(Refer Slide Time: 39:30) 
 

 
 
So therefore, during this interval, the source can produce output bits which is equal to k plus rho 
t and this will be less than or equal to sigma plus rho t and therefore we can say that the output is 
sigma rho constrained traffic. So, this proves our proposition that a linearly bounded arrival 
processes, linearly bounded arrival process of sigma plus row t can be generated by a token 
bucket regulator with a bucket depth of sigma and token generation rate of rho.  
 
A packet is transmitted out of the token bucket regulator by taking away the amount of tokens 
which is equal to the packet length. There could be other regulators also. The question is there 
could be other regulators also which may also generate this rho sigma constrained traffic which 
may also generate the linearly bounded arrival processes. But interestingly, it turns out that the 
leaky bucket is the best among all FIFO controllers that will generate the rho sigma constrained 
traffic. 
 
Just see, how it happens. So, we will try to see that what is the advantage of having a leaky 
bucket regulator as compared to other FIFO controllers which may also generate the leaky 
bucket regulator or rho sigma constrained traffic.  
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So, our claim is… So, I just write another proposition. So, our claim is that token bucket 
regulator, token bucket or a leaky bucket controller delays, delays the traffic the least among all 
FIFO controllers that will output sigma rho traffic. Now, where is this delay? The delay actually 
is that here is a traffic source; now this traffic source, in front of this you have put a sigma rho 
regulator. Now, this sigma row regulator will output this traffic in such a manner that this output 
is rho sigma constrained traffic. 
 
Now, this could be a token bucket regulator. If it is a token bucket regulator, we have a token just 
generating at a rate of rho and there is a bucket inside which has a maximum depth of sigma. 
Now, if a packet comes and if it finds that there are not enough tokens in the bucket, then the 
packet has to wait; very similar to the case we have considered in the ATM network, where a cell 
has to wait in the cell buffer. So, here also the packet has to wait at the packet buffer. What we 
are trying to claim here is that the token bucket regulator will delay the traffic the least among all 
FIFO controllers that will output a rho sigma constrained traffic.  
 
Now, how does it happen? Let us just let us try to see a proof. Now, consider a token bucket 
regulator, consider a token bucket controller. So, we denote it by TB and another controller let us 
call it TB prime. Now, this is not a token bucket regulator, this is another FIFO controller. So, 
this is you know, another FIFO controller which is also generating a rho sigma constrained 
traffics.   
 
Now, our claim is that every bit leaves token bucket regulator because we have want to prove 
that the token bucket controller delays traffic the least. So, our claim is that every bit leaves 
token bucket regulator before the FIFO controller which is also a TB prime. So, this is what our 
claim is. Note that we want to prove that rho sigma regulator when implemented in the form a 
token bucket will delay the traffic the least. The other FIFO controller may delay it more. So, 
when we say that it delays the traffic least what we are trying to prove is that every bit will leave 
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the token bucket regulator first, before another token bucket, another token bucket regulator.   
 
(Refer Slide Time: 45:36) 
  

 
 
So, the scenarios are like you know, here is a traffic source and here is a buffer, packet buffer and 
then it is passing through token bucket regulator and the output is rho sigma. Similar situation is 
that there is another traffic source and then it is also passing through a buffer and this time, there 
is a another FIFO controller TB prime and this output is also rho sigma. But since we are saying 
that this delay here in this bucket is less, the bit leaves here earlier. So, this is our claim. So, we 
assume that the contradictory, so we assume the disclaim is not true. So, the claim is that every 
bit leaves token bucket, before token bucket prime - that is another controller. 
 
So assume contradictory, assume the contradiction. So, the contradiction is that to assume this let 
let us assume that at least 1 bucket, at least 1 bit leaves this token bucket, another FIFO 
controller TB prime, before the our token bucket controller and let us say that this occurs for the 
first time, at this occurs at time t for the first time. So at time t, what we are saying… So, the 
picture is something like this that we have the traffic source and this traffic source is being 
regulated by a token bucket regulator.  
 
Same traffic source let us say in another situation is all is regulated by another FIFO controller. 
Both of them are generating rho sigma constrained traffic only. Now assume that 1 bit leaves our 
another FIFO controller earlier then it is left in the token bucket regulator and let us say that this 
happens for the first time at time t.  
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Now at time t, at time t, if this happens; then at time t, the token bucket should have been empty 
because since it is empty, it is not able to leave. So at time t, the token bucket should be empty.  
Now, let us assume that the last time when the token bucket was empty is t minus capital T. 
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So, this was the last time when the bucket was full sorry, when the bucket was full. So, what we 
are saying is that if a bit is leaving another FIFO controller earlier for the first time at t and this 
bit, same bit has not left the token bucket regulator, that means the token bucket is empty at a 
time t. 
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So, let us assume at time t minus capital T, the token bucket is full. So, during this interval, 
during this interval, the total number of bits that would have been outputted, total number of bits 
which is output is sigma plus rho t. Now, the total number of bits that would be outputted by the 
other FIFO controller will be sigma plus rho t – same, plus one more bit because that is the bit 
that is going at time t. So, the total number of bits output by the token bucket regulator TB prime 
is sigma plus rho t plus 1 in t units of time. But then, if the other FIFO controller is outputting 
sigma plus rho t plus 1 - this many bits in t seconds; obviously, this traffic is not rho sigma 
regulated. 
   
Now, this violates sigma rho constrained. So, if it violates sigma rho constraint, then our claim, 
our contradictory claim that at least 1 bit leaves token bucket from before token bucket TB prime 
before token bucket TB; this is not true. So, this proves our earlier claim that we had made, we 
have proved it by contradiction that every bit leaves token bucket earlier then any other FIFO 
controller which is also trying to ensure that the traffic is rho sigma constrained traffic. 
   
So in other words, to summarize what we are saying is that we would like to consider a 
deterministically bounded traffic source and this traffic arrival process is called a linearly 
bounded arrival process and this linearly bounded arrival process is such that the number of bits 
transmitted during an interval of time t is bounded by sigma plus rho t, where sigma admits an 
interpretation of a burst and the row admits an interpretation of a long term average rate.  
 
We see that such a linearly bounded arrival process can be generated by a token bucket regulator 
with the bucket depth of sigma, maximum bucket depth of sigma and a token generation rate of 
rho. This row sigma traffic can also be generated by some other FIFO controller. However, it is 
better to use the token bucket regulator because the token bucket regulator is the best among all 
FIFO controllers that will generate a rho sigma traffic, in the sense that it delays the traffic the 
least at the source side among all FIFO controllers that are going to generate rho sigma 
constrained traffic. 
 
Now, we will see in our next lectures some discussions on this rho sigma constrained traffic and 
how by constraining the traffic to rho sigma; we can ensure the quality of service guarantees in a 
packet switched node.  
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