
Broadband Networks

Prof. Karandikar

Electrical Engineering Department

Indian Institute of Technology, Bombay

Lecture - 12

Fairness of WFQ and SCFQ Scheduling Algorithms

Now, we were discussing the weighted fair queuing algorithm in the previous sessions
and what we saw is that the weighted fair queuing algorithms requires a computation of a
quantity called virtual time and virtual time keeps track of the work done in the fluid flow
fair queuing systems and then from the work done in the fluid flow fair queuing systems,
we compute something called virtual finish time and that is something like a service tag.

Each packet is then stamped with this service tags and in the weighted fair queuing or the
packetized versions of the fluid flow fair queuing, the packets are then served in the
increasing order of these service tags or what is called as the virtual finish times. But we
have also seen that the computation of this virtual time in real time can be difficult
because the computation of this virtual time actually requires keeping track of the set of
backlogged users. This quantity virtual time is inversely proportional to the number of
users that are backlogged and whenever this set changes that whenever the set of
backlogged user changes, there is a break point in the virtual time curve.

So, typically the virtual time is monotonically increasing with a slope which is inversely
proportional to the number of backlogged users and whenever this set changes, the slope
changes. If the number of backlogged users becomes more, then the slope decreases.
Otherwise, if the number of backlogged users becomes less, the slope increases.

Now, the difficulty is that in generalized processor sharing or the fluid flow fair queuing,
the number of users, there may be many number of users who may finish their service
simultaneously or there may be many queues which may become backlogged
simultaneously. So, as a result, the break points in the virtual time may approach the total
number of sessions in the systems and the total number of sessions in the systems can be
arbitrarily very large in a let us say in a core router or a wide area networking router.

If this number of sessions are very large, then the computational complexity will become
of the order of the total number of sessions. So therefore, the real time computation of the
virtual time may become difficult. Now, today we will see what are the other methods of
having packetized versions of the fair queuing algorithms which are simple to implement,
which has less implementation complexity.

But before we go towards that, as we had seen last time that we wanted to ask this
question that how fair is the packetized versions of the fluid flow fair queuing algorithm
in the sense of max-min fairness? And, we had seen that the fluid flow versions of the fair

 1

queuing algorithm is max- min fair and there were several packetized versions which we
have conceived of or thought of like one is weighted Round Robin or the Deficit Round
Robin and we found that these techniques were unfair over shorter time scales and that is
the reason we suggested the weighted fair queuing algorithms.

And, we state and we wanted to know that how fair is the weighted fair queuing
algorithms and then we have this result where we said let dk is the time at which the k’th
packet departs from the fluid flow fair queuing and dk hat is the time at which this packet
departs from the weighted fair queuing.

(Refer Slide Time: 4:18)

Then the difference between their departure times in the two scheduling systems is
bounded by the L by L max by r, where L max happens to be the maximum size of the
packet and r happens to be the output link rate.

So, what we are saying is that the difference between the difference between the
departure times of the packets in the two systems: one is the fluid flow versions which is
just a abstract or a hypothetical systems and the other which is the packetized systems.
The difference between their departure times will always be bounded by the maximum
size of the packet divide by the output link capacity.

So, to that extent now, L max by r is the time it will be taken for a scheduling the
maximum size packets. So, to that extent the difference between the two departure times
is bounded by the time taken to transmit the maximum size packet, the time taken to
transmit the maximum size packet and that is the best that can be apparently done in the
packetized versions of the fluid flow fair queuing algorithms.

 2

But let us prove this result and try we will try to prove this result and then we will see
whether we can have algorithms which are simple to implement in terms of the virtual
time computations and as well as they are somewhat fair.

So, first let us prove the fairness of the weighted fair queuing algorithms. So, we will try
to prove this result. Now, one thing that we have observed before we prove this result is
that since both the weighted fair queuing algorithm and the fluid flow fair queuing
algorithms are work conserving, since they are work conversing; their busy periods will
coincide. So, this is one important thing that we must keep in mind that a busy period of
the weighted fair queuing algorithm will be equal to or if the same, this will be equal to
the busy period of the fluid flow fair queuing algorithms. So, we will prove this result
over any busy period.

(Refer Slide Time: 6:41)

So, let us prove this result that is d hat k minus dk, this is bounded by L max by r. So, we
would like prove this result. So, let us consider the start of busy period and we call it to
be the time 0. So, let us consider the start of any busy period. Let us say we are
considering the start of any busy period in the weighted fair queuing algorithm which is
also the same in the GPS or the fluid flow fair queuing and let us say in the weighted fair
queuing algorithm, p1, p2 these are all packets which depart in this order.
So, pk is the k'th packet to depart. So, this is like saying that k'th packet to depart under
PGPS.

Now, what we say is that let m be the largest integer such that m lies between 0 to k
minus 1 and dm is greater than dk and also that dm is greater than dk is greater than or
equal to di for all. So, what we are trying to say is that m, let us say m is the largest
integer. So, it happens for the first time at m such that all these packets afterwards; pm
plus 1, pk etc, they will depart in the fluid flow fair queuing algorithms before sorry after
before pm.

 3

So, now what is happening is that what we are saying is the dm is the dm is the departure
time in the GPS. dm is the time at which the packet departs in the fluid flow fair queuing.
What we are saying is that m is the largest integer. Now, look at this way that p1 p2 pk, in
this order the packets are departing in the weighted fair queuing.

Now, m is the largest integer where dm is greater than dk. That means the packet pm that
departs in weighted in fluid flow fair queuing after pk, it departs after pk. In PGPS, it
departs before pk. So, in weighted fair queuing, it is departing before pk. But in fluid flow
fair queuing, it is departing after pk.

Now, this happens for the first time in m. Before that before that what we are considering
is that all the packets, they depart in this order either earlier in weight GPS or at least at
the same time. So, now this is the first time it is happening at the m'th instant where the
departure time dm of the m'th packet happens to be greater than the departure time of the
k'th packet.

So, we will so what we are trying to say is that the packet pm is transmitted before pm
plus 1 so on upto pk under WFQ but after all these packets - pm plus 1 pk under GPS or
fluid flow fair queuing. So, that is what we are trying to say.

Let m is the largest integer. That means it happens for the first time in m where the
packet pm happens to be transmitted before pm plus 1 pk. So, this packet obviously is
transmitting before all these packets in the weighted fair queuing. But this packet gets
transmitted after pm plus 1 pk etc in the fluid flow versions of the fair queuing algorithms.
If no such m exits, then obviously m is equal to 0. So, we will prove this results for m
greater than 0.

So, what we were saying is that the packet pm is transmitted before pm plus 1 pm plus 2
pk under weighted fair queuing but after pm plus 1 pm plus 2 pk under the fluid flow fair
queuing.

 4

(Refer Slide Time: 12:47)

Now, let us see that the packet pm, it begins transmission at d hat m minus Lm by r in
weighted fair queuing. Now, d hat m is the time at which the m'th packet that is the pm
packet departs in the weighted fair queuing. Lm is the length of the packet and Lm by r is
the transmission type. So therefore, the pm packet will begin transmission at this time.

Now, note that this packets that is pm plus 1 pm plus 2, all these packets, these pk - all of
these packets obviously arrive after d hat m minus Lm by r. However, they depart they
depart before - this is pk minus - before pk under the generalized processor sharing or the
fluid flow fair queuing. And, this is easy to see but assume that the packet pm begins
transmissions at this time and it is very easy to see that this packets m plus 1'th packet, m
plus and upto k minus 1 packet, they all arrive after d hat m minus Lm by r. But all these
packets depart before the k'th packet under the fluid flow fair queuing.

So therefore, dk will be greater than all. Now, dk is the time at which this k'th packet
departs in the fluid flow fair queuing system. So therefore, dk is greater than or equal to 1
upon r Lk plus Lk minus 1, these are all the length of the packets of the respective packets
so on till Lm plus 1. These are all the times it will take to transmit the k'th packet, k minus
1'th packet and m plus 1'th packet plus d hat m minus Lm by r because all these packets,
they are all arriving after d hat m minus Lm by r. And therefore, this should be equal to
and if i add these d hat m to all that will become equal to d hat k minus Lm by r and this
shows that dk minus d hat k is less than or equal to Lm by r and the maximum size of the
Lm could be L max by r.

So therefore, we can say that the difference between the departure times of the packets
that is dk minus d hat k sorry this will be d hat k minus dk. That is the departure times of
the packets in the fluid in the weighted fair queuing and the fluid flow fair queuing or the
GPS will be bounded by the transmission time of the maximum sized packets. So, this we
have proved, we know the result that how fair is the weighted fair queuing algorithm.

 5

Now, as we have seen, we would like to see whether there is a mechanism by which we
can reduce the computational complexity of the weighted fair queuing algorithm. And,
Golestani in 1994 proposed a way of implementing fair queuing algorithm in the
packetized versions which reduces the computational complexity of computing the virtual
time. That algorithm is called self clocked fair queuing algorithm.

So, let us see how we can implement a computationally efficient packetized fair queuing
algorithm which is called self clock fair queuing algorithm.

(Refer Slide Time: 17:29)

Now, before we go to the self clock fair queuing algorithm which is actually trying to see
whether we have an approximation to computing the virtual time or a computationally
efficient way of computing the virtual time; so we have self clocked fair queuing which is
also called as abbreviated as SCFQ.

Now, one thing we should note that F i k, how are we computing the virtual finished time
in the weighted fair queuing algorithm F i k? Note that F i k, we are computing with the
virtual time when this packet will depart in the fluid flow fair queuing. What we are
doing What we are doing is that we were keeping track of the virtual time and we would
find out what is the virtual time when this k'th packet departs in fluid flow fair queuing
and at that time, whatever the time that we note, we call it the service tag or the virtual
finished time. So, that is how we were computing the virtual finish time.

Now, this suggests that we can estimate the virtual time. It should be possible for us to
estimate the virtual time by the finished tag of the packet currently in service. So, this
suggests because what we are doing is that since we are serving the packets in the
increasing order of their finished tags and our finished tag that are being computed in the
weighted fair queuing, our philosophy of computing the finished tag in the weighted fair

 6

queuing is that the finished tag is actually the virtual time and this packet will depart in
the fluid flow fair queuing algorithm.

So, if you really want to have a scheduling algorithm which closely approximates in
terms of fairness to the fair queuing algorithm or the weighted fair queuing algorithm but
does not require the computational complexity of the weighted fair queuing algorithm;
then they suggest that suppose somehow we know the finish tag of the packet which is
currently in service, so if we know the finish tag of the packet which is currently in
service, then by following the philosophy by which we had computed the virtual time in
the weighted fair queuing algorithm, it should be possible for us to estimate the virtual
time by looking at the finish tag of the packet which is currently in service. And, after
that we can use the same recursive formula which we had used in the weighted fair
queuing algorithm for computing the finished tags.

So, let us say now that the j'th packet of some lath session or the l'th packet of some j'th
session l'th packet of some j'th session is currently in service, let us say. Now, we find out
what is the finish tag of this packet which is currently in service. By finding out this
finish tag, we estimate the virtual time and if you estimate the virtual time and then
subsequently the finish tags of the i'th session, we can compute in the same manner in
which we were computing it in the weighted fair queuing algorithm.

Specifically, what we are trying to say is that we will tag the arriving packet, let us say
the k'th packet. Let us say that a k'th packet has arrived in the i'th session, then we will
tag the arriving packet with a finish tag of let us say F i k tilde. Now, this tilde denoting
that it is not the virtual finish time in the manner in which we had computed in the
weighted fair queuing but it is an approximation, approximate way of computing that and
then the finish tags will be computed as L i

k upon rho i plus max of F i k minus 1 tilde.
That is the finished tag of the k minus 1'th packet and the virtual time of the packet which
has arrived, estimated virtual time, so the tilde denoting that the estimated virtual time
when this k'th packet has arrived.

Obviously, our starting point is initial condition is that F i 0 is 0. So, we initialize this
virtual time and the server becomes ideal and similarly this finished tag of the queue that
is of the 0’th packet will start with the 0. The question now is how we estimate this
virtual time when the packet arrives.

 7

(Refer Slide Time: 23:39)

Now, we say that we set the virtual time at time t to be the finish tag of the l'th packet of
the j'th service which is currently in service. So, that means if the time t lies between…
for all the time which lies between the starting time of the packet in service, the time
when it starts its service in the packetized fluid flow fair queuing algorithm which is
denoted by s hat l j. That means this is the starting time of the packet for the service of
the L'th packet of the j'th session.

So, for the time t, for all time t lying between this start times and the departure times that
is d, for all these times; we will set the virtual time to be equal to the finish tag of the
packet which is F j l and after putting this we will compute we will compute the finish
tags of the i'th sessions packet.

Now, the situation is something like this that some l'th packet of the j'th session is
currently in service. Now, let us say that this packet starts its service at time s j and it
finishes its service at time d j. So, between all those times we will compute the virtual
time equal to the finish tag of this packet.

Now, some packet, k'th packet has arrived let us say in the i'th session. So a i k, what we
are tying so say that this a i k is the time which lies between this is let us say s j l and v j l.
So, if a i k lies between these times, then we will put this virtual time to be equal to the
finish tag of the packet which is currently in service. So, in some sense what we are
trying to say is that the computation of the finish tag is since determined from the finish
tag of the packet which is currently in service, so this algorithm is therefore called self
clocked fair queuing algorithm.

This algorithm, note that it does not require an emulation of the fluid flow fair queuing
algorithm, this algorithm does not at all require an emulation on the fluid flow fair
queuing algorithm which was required to be done in the weighted fair queening algorithm

 8

and that was the lead cause of the computational complexity of the weighted fair queuing
algorithm. This algorithm does not require any emulations, this is self clocked. So, that is
the reason this algorithm is called self clocked fair queuing algorithm.

Obviously, the question is same, that is the self clock fair queuing algorithm fair? So, for
this, Golestani introduced a notion of what is called as relative fairness. So, we will study
the notion of relative fairness later. But just try to understand the fairness notions
somewhat differently.

Now, note while computing the finish tag in the self clock fair queuing algorithm, we had
put this finish tags to be recursively computed by L i k upon rho i. Now, note that L i k is
of course the length of the packet and rho i is the rate which has been allocated to it. So
therefore, this is the transmission time plus we are adding these. So, the question
obviously that arises is that why we add this quantity like this? Why do not we do
something like this that F i k that is the finish tag, we compute as L i k upon rho i plus F i
k minus 1?

That is if we know the finish tag of the k minus 1'th packet which is the packet ahead of
us, then if we know the finish tag of that, then we keep on simply adding the length of the
packet divided by rho i that is the transmission time and then compute the finish tags. So,
what is the, what is the difficulty or what is the problem in having like this? The
difficulty is that suppose right now a packet is in service and let us say that its finished
tag is F. Now, let us say that there was one session when this session, when this packet
whose finish tag F was taken for service. Obviously, among all the packets which are
available, this must have been the smallest tag and that is why this packet has been taken
for service.

Now, let us say that there was a session which was empty. Now, suddenly it sends a burst
of packet which are back to back. Now, if you follow this method, then obviously in this
case as you know that F i 0 was 0. So, the finish tags of all these packets will start from 0.
So, F i 0 will be 0 and F i 1 then will be L i 1 upon rho i. So, that way it will increase.

Now, as a result, till the finish tag becomes equal to F, all these finish tags will be lower
than F. So therefore, these packets will be served as after F. All these packets will be
taken up for service and the other session which are anyway backlogged and which has
the right to transmit the packets, so called; they will be now starved, their packets will not
be transmitted.

What is happening? Why it is happening? This is happening because this particular
session which was un-backlogged and which were absent; suddenly when it transmitted
up some amount of back to back packets, then this session which was absent tries to
accumulate that credits or tries to get the service which is at which it has missed. And,
that should not happen. The normalized service missed by this session should not happen
and that should be added to that while computing the virtual finish time. So, that is the
reason, what we need to do is that we need to add we need to add on this F i k while
computing the virtual finish tags L i k upon rho i plus max of F i k minus 1 v hat a i k.

 9

(Refer Slide Time: 30:53)

Now, this is actually denoting that the normalized service which is missed by the session,
this v hat i k, the normalized service missed by the session should be added while
computing the virtual finish times. Otherwise, the sessions which are un-backlogged or
the sessions which are absent get an undue advantage by accumulating the credits for the
service which they have missed and then try to transmit now or trying to transmit more
packets and therefore become causing unfairness to the other sessions.

So, this is really the concept that a session will never get such service; the service, the
normalized service which it has missed while it was un-backlogged. So then, while
asking this question that whether the self clocked fair queuing algorithm is fair or not, it
was argued that we will introduce a notion of something called as the relative fairness.

What is the relative fairness? In the relative fairness, we will try to see what is the
difference between the normalized services received by 2 sessions. What is the difference
between the normalized services received by 2 sessions which are backlogged in the self
clocked fair queuing algorithms? And, not try to compare between the normalized
services received by this session in the self clocked fair queuing algorithm with respect to
the fluid flow fair queuing algorithm, no.

We will try to see what is the difference between the normalized services received by 2
backlogged sessions in the self clocked fair queuing algorithm itself. Now, the
philosophy is that note that the self clocked fair queuing algorithm is not based upon the
emulation of the fair queuing algorithm, it is not based upon… It is a packet based fair
queuing algorithm and our philosophy is that we are designing a packet based fair
queuing algorithms in such a manner that the normalized service received by 2
backlogged sessions, will if it remains bounded, if it remains bounded by a small amount
if it remains bounded by small amount; then obviously this algorithm can be said to be

 10

somewhat fair. That is that is how the definition of fairness is; that we should not unfairly
service other sessions at the expense of the others at the expense of some other sessions.

So therefore, the idea was that we will introduce the notion of the relative fairness which
will try to measure the difference between the normalized services received by 2 backlog
sessions in the self clocked fair queuing algorithm itself. Now, let us see, let us try to
analyze how much is this bound? So, to do that what we are trying to say is that there are
normalized service opportunity, the normalized service opportunity which has been
missed by a session while it was un-backlogged should also be taken into considerations.
So, that is the basic philosophy of defining this relative fairness.

So, let us define few terms and then we will state the result which will tell us that how
much is the relative fairness of the self clocked fair queuing algorithm. So actually,
therefore, what we are saying is that it is not fair just to compare the normalized service
normalized service received by 2 backlogged sessions but we should also see how much
is the service opportunity which has been missed by the sessions while it was un-
backlogged.

(Refer Slide Time: 34:45)

So, we will define. So, to do this fairness analysis, let us define the missed normalized
service, the service opportunity which has been missed by the session - u i s and s, I am
just denoting it to be for some packetized scheduling algorithms or any scheduling. s So,
if s equal to WFQ, then it will be indicating WFQ. If s is equal to GPS, then it will be
indicating the fluid flow fair queuing algorithm. If s is equal to SCFQ, then it will
indicate it for the self clocked fair queuing algorithm.

So, define u i s to be equal to 0 at time 0 and u i s (t) minus u i s (tau) to be equal to 0 if
the i'th session is backlogged in that fair queuing algorithm between tau to t and this is

 11

equal to v s (t) minus v s (tau) if this session is un-backlogged. So, what it is trying to say
is that the normalized service missed by the session during tau to t, that is equal to 0 if
this session was backlogged. Obviously, this session was backlogged; the session was
receiving some service. However, this is equal to the difference between the system’s
virtual time if the session was not backlogged.

What it is trying to say that system’s virtual time is keeping track of the work done by the
system. So, if this session was not backlogged during an interval of tau to t, then in that
case the normalized service opportunity missed by it will be equal to the increase in the
virtual time, the system virtual time that has occurred. The second thing is that we now
define that so obviously, the interval tau to t is any subinterval of the busy period whether
this where the session i is either absent or it is backlogged.

Now, the virtual time, so we define this quantity which is called virtual time of session i.
What it is trying to say? The virtual time of the session i is given by the normalized
service opportunity missed plus the normalized service received by the session. So, it is
the sum of these virtual time of the session i. Obviously, the session is backlogged at time
t, then this quantity will be 0 and it will denote how much is the service that the user has
received; otherwise, it will be equal to the normalized service opportunity missed by the
session i.

(Refer Slide Time: 38:33)

Now, one thing that should be noted is that in so session’s virtual time if you see what we
are trying to say is that this v i s (0) is 0 at time t equal to 0 and v i s (t) minus v i s (tau)
that is the difference between the session’s virtual time will be equal to the normalized
service received during the interval tau to t if the session was backlogged and it will be
equal to the system virtual time if this session was not backlogged. So, session’s virtual
time, the session’s virtual time will be equal to the normalized service received if the

 12

session is backlogged. Otherwise, it will be equal to the system’s virtual time if it is not
backlogged.

We define now the service lag. We define the service lag of the i'th session in the
scheduling when the packet scheduling algorithm is s to be the difference between the
system’s virtual time and the session’s virtual time. It actually indicates how far behind
the session i is with respect to the systems virtual time that is the progress of the actual
work done in the system. So, that will indicate how much session i is lagging behind
service.

Now, let us look at the specific example of the GPS or the fluid flow fair queuing
algorithm. Now, in the fluid flow fair queuing algorithms, the session’s virtual time that
is v i s (t2) minus v i s (t1), the difference between the session’s virtual time that will
always be equal to the system’s virtual time for all sessions i, it will always be equal to
the system’s virtual time. That means what we are trying to say is that in GPS server, the
session’s virtual time, the session’s virtual time is always equal to the system's virtual
time. In the GPS server, the session’s virtual time is always equal to the system’s virtual
time. That means the service lag, the service lag of the session i in the GPS server is
always 0. So, in GPS server, the service lag of a session is always 0, the service lag is
always 0.

(Refer Slide Time: 41:50)

So, the session’s virtual time is always equal to the virtual time of the system in the fluid
flow fair queuing algorithm and this leads to the service lag of the session, the service lag
of the session being always 0 in the fluid flow fair queuing algorithm. Note that this is not
true in the packetized versions of the fair queuing algorithm.

And, why the service lag is 0? Because, the session’s virtual time is always equal to the
system’s virtual time because system’s virtual time is increasing in proportion to the

 13

normalized service received by the backlogged users and the sessions virtual time is also
increasing proportional to the normalized service it receives if it is backlogged so
therefore and the normalized service received by all backlogged sessions are equal. So
therefore, the sessions virtual time becomes equal to the systems virtual time. Now, this
is not true in the case of other packet based fair queuing algorithms like in the SCF
queuing.

Now, it can be then proved. So, the important result that can be proved, even although we
will not try to prove but let me just state at a lemma that in self clocked fair queuing
algorithm; it can be shown that the service lag that is the w i SCFQ I will write, that is the
service lag which is equal to the difference between the session’s virtual time and the
system’s virtual time which is equal to the v of SCFQ t minus v i of SCFQ t that is the
difference between the system’s virtual time and the session’s virtual time, this is the
service lag is bounded by L max, the maximum sized packet of the i'th session by rho i.

So, the service lag in the case of SCFQ will lie between 0 and L max by rho i. So, that
result can be proved. Note that in the case of a fluid flow fair queuing algorithm, the
service lag is 0. In the case of self clocked fair queuing algorithm, the service lag is not 0.
The session i may lag behind, one particular session may lag behind the work done in the
systems but that remains bounded and that is what this result is trying to prove.

So, let us define now the differential service lag. So, one corollary of this is that w i
SCFQ which is defined with this we call as a differential service lag is a difference
between delta i sorry SCFQ t minus del i of SCFQ of tau.

So, the difference between the two service lags which we are calling it to be the
differential service lag which will be equal to v of, that is the virtual time between tau to t
minus v of v i between tau to t. So, it follows that the differential service lag; it will be
bounded, this differential service lag will be bounded by del i SCFQ tau t - that will be
bounded by Li max by rho.

 14

(Refer Slide Time: 46:33)

This result, we can prove it from this. Now, which means for a session i which is
backlogged between tau to t, if you look at this result; then note that the session’s virtual
time, the session’s virtual time if the session is backlogged that is equal is to the
normalized service received by it.

So therefore, this indicates that this result will state that because this is the differential
service lag, the differential service lag is the difference between the system’s virtual time
t tau minus the session’s virtual time tau t. Now, the session’s virtual time that is equal to
the normalized service received. That is what we have replaced it. Now, this means if
there are 2 sessions; i and j which are backlogged, continuously backlogged in the SCFQ
during this interval, then from this result we will know that the difference between the
normalized service received by these 2 sessions is bounded by Li max by rho i plus Lj max
by rho i.

Now, this is an important result which is actually trying to prove the relative fairness of
the 2 sessions which are continuously backlogged during this interval in the SCFQ. What
we have actually stated is that the difference between the normalized service received by
2 sessions which are continuously backlogged will be bounded by the transmission time
for the maximum size packet of the i'th session plus the transmission time of the
maximum size packet of the j'th session for the these 2 sessions - i and j.

Now, this indicates how much is the fairness of the self clocked fair queuing algorithm?
So, this is the result that we have proved in terms of the fairness of the fair queuing
algorithm.

Now, this is obviously as I have already told you that in this case we are not trying to
compare the fairness of the self clocked fair queuing algorithm with respect to the fluid
flow fair queuing algorithm. This is some kind of a relative fairness notion that we have

 15

introduced. The reason being that we are not doing, and the philosophy was that we are
not doing any emulation of the fluid flow fair queuing algorithm here.

We are having a straight packet based queuing algorithm and we hoped that if the
normalized service received by 2 backlogged sessions in this packet based queuing
algorithms if it can be bounded by a small amount; then we have done the job, we are
almost fair.

(Refer Slide Time: 50:37)

So, the question obviously is that what is possible in any packet based queuing
algorithm? And, there is a result which states that for any packet based system; the
normalized service, the difference between the normalized service received by the i’th i
and the session j will be less than or equal to some quantity - F (i, j) which is not a
function. Note that this is not a function of the interval tau to t. The times tau to t, it is just
a function of the sessions i and j and where this F (i, j) will be greater than or equal to
half of Li max upon rho i plus Lj max upon rho j. So, this quantity where F i

Now, note that the self clocked fair queuing algorithm achieves this - Li max upon rho i
plus Lj max upon rho j - this is also we can see that the self clocked fair queuing algorithm
is almost optimal. It is almost optimal by a factor of 2. So, we can say that as far as the
packet based queuing algorithms are concerned; the design of a packet based queuing
algorithm with the concept of this relative fairness, here we are trying to bound the
difference between the normalized service received by 2 backlogged sessions, the self
clocked fair queuing algorithm is almost optimal.

So, that is an important result that we have proved and interestingly turns out that the self
clocked fair queuing algorithm does not require any emulation of the fluid flow fair
queuing algorithm and therefore it is computationally very efficient. All you need to do is
that to know, to keep knowing the progress of the work done in the system, you just need

 16

to know the finish tag of the packet which is currently in service. So, this way we have
designed a fair queuing algorithm which is quite optimal with respect to the relative
fairness notion.

(Refer Slide Time: 52:56)

 17

