
Broadband Networks 

Prof. Karandikar 

Electrical Engineering Department 

Indian Institute of Technology, Bombay 

Lecture - 11 

Virtual Time in Scheduling 

So, we were discussing about the packet scheduling algorithms for providing fairness as well 
as quality of service guarantees in internet. So, what we have seen is that a fluid flow fair 
queuing or generalized processor sharing algorithm guarantees fairness to the traffic queues 
in the sense of maximum fairness. But as we know that a fluid flow fair queuing operates 
only on the traffic arrivals which are considered as a fluid and in practice, the traffic arrival 
will be in packetized forms; so then we were looking for the packetized versions of the fair 
queuing algorithms. 
 
So, we saw various versions. First is the round robin scheduling algorithms or the weighted 
round robin scheduling algorithm; then, we also saw the deficit round robin algorithms. We 
have seen one of the disadvantages of the weighted round robin scheduling algorithm is that 
it is unfair first of all over shorter time scales but more than that it requires knowledge of the 
mean packet length in advance if you have to make the weighted round robin scheduling 
algorithms to be fair. But even then it is unfair; it may be unfair over shorter time scales. 
 
The disadvantage of having to know the mean packet size in advance was addressed in the 
deficit round robin by maintaining some kind of credit. But then, even then the disadvantage 
of the deficit round robin continues to be that it is unfair, it could be unfair over shorter time 
scales. So, then we wanted to see that what kind of packet scheduling algorithms we can 
derive which approximates the fluid versions of the fair queuing algorithm that is the fluid 
flow fair queuing algorithms.  
 
So, we were working towards that and first we try to see that how we can keep track of the 
progress of the work done in the fluid flow fair queuing algorithms and accordingly then we 
take a decision of scheduling the packets in the packetized versions of the fluid flow fair 
queuing algorithms. So, we define a property called a virtual time of the system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
 



(Refer Slide Time: 3:02) 
 

 
 
So, that is what we are seeing that a virtual time is a non decreasing function of time t and it 
is a piece wise linear function with this slope d v(t) by d(t) is equal to r divide by summation 
over rho i’s where rho i’s are the rates which have been allocated to the session i and this 
summation over this summation is over the set of all sessions which are backlogged at time t 
and the r is the output link rate. So, we can see that the virtual time, the slope of the virtual 
time, it changes whenever the set of backlogged users changes. Essentially, the slope of the 
virtual time is inversely proportional to the number of backlogged users. 
 
So, first of all we will try to prove this result; how do we get this result. So, let us first prove 
this result. Now, for that let us consider any arbitrary subinterval of the busy period. Let us 
consider tau to t to be any arbitrary subinterval of the busy period.  

 
(Refer Slide Time: 4:10) 
 

 
 

2 
 



So, we say that consider tau to t to be any subinterval of the busy period during which no 
session changes states, where or during which no session changes state. If that is so, then by 
definition we know that v (t) minus v tau, the difference of the virtual time is by definition 
equal to the normalized service received by the session i where the session i is continuously 
backlogged during the interval tau to t. So, session i is continuously backlogged during 
continuously backlogged during this interval tau to t. 
 
So, we have seen that the change in the virtual time of the system is equal to the normalized 
service received by the session i which is a backlogged session. So, now multiply both sides 
by rho i and sum over all the sessions which are backlogged during this interval. So, we 
multiply by rho i and then sum it over all such i which are backlogged during this interval tau 
to t. 
 
So, if we do this then this becomes i belonging to b tau t where b tau t is the set of all sessions 
which are backlogged during the interval tau to t, rho i w i tau t.   
 
(Refer Slide Time: 6:35) 
 

 
 
Now, we have considered this interval tau to t to be an interval where no session changes 
state. If that is so, then we can also write to be this equal to i belong to the set of all sessions 
which are backlogged, rho i w i tau to t plus rho i w i tau to t over all sessions which are 
absent or non backlogged during the interval tau to t. 
 
Now, note that the sessions which are absent during the interval tau to t, w i (t) is actually 0 
because they do not receive any normalized service. This actually is 0 for all the sessions 
which belong to this set. So basically, we have added 0 to this and this means that this is also 
equal to sum over all i rho i w i tau t where this sum is now over set of all sessions. 
 
 
 
 
 
 

3 
 



(Refer Slide Time: 7:25) 
 

 
 
Remember again, tau t to be an interval where no session is changing states. So, it is an 
interval where no session is changing state. So, if you now again see in this equation, then v 
(t) minus v tau becomes equal to rho. Now, what is this, rho i w i tau t? 
 
(Refer Slide Time: 8:19) 
 

 
 
It is the total work done in the system during the interval tau to t and therefore this will be 
equal to… Note that rho i, summation rho i w i tau t, this is equal to the total work done in 
the system, total work done in the system during this interval of tau to t.  
 
So therefore, this becomes equal to r into t minus tau and this tau to t - remember is a sub 
subinterval of the busy period and this is a work conserving scheduler. So, the scheduler is 
continuously working. This is the interval, this is the output link rate and therefore this is the 
amount of work which has been done by the scheduler and hence from the previous equations 
if you see, from these equations, this becomes now equal to r i into t minus tau.  

4 
 



 
So therefore, we get is v (t) minus v tau - this becomes equal to r of t minus tau upon rho i 
where i is the sum over the set of all backlogged sessions. So, this means that the slope d v (t) 
by d (t), this is given by r upon summation over set of all sessions which are backlogged, 
summation of rho i's over all sessions which are backlogged. 
 
So, you can see that remember tau to t is the interval where no session changes state. Now, 
during such an interval where no session is changing state; the virtual time, the slope of the 
virtual time is inversely proportional to the number of users which are backlogged and it is 
equal to r i into summation of all the rates which have been allocated to this different sessions 
over the set of backlogged users. So, it is equal to r upon summation rho i. 
 
Now, whenever this set changes, that means whenever one of these backlogged users 
becomes unbacklogged or one of the unbacklogged users become backlogged; then the slope 
changes. So, therefore the virtual time is actually a piece wise linear function and its slope 
changes whenever the set of backlogged users changes.  
 
(Refer Slide Time: 11:05) 
 

 
 
It is something like something like this that this is the slope and which is equal to r upon 
summation rho i's and if some users becomes unbacklogged, then slope increases if some 
users becomes ore backlogged and slope decrease and so on. So, it is a piece wise linear 
function. This could be an interval this could be an interval where no session is changing 
state. The users which are backlogged are backlogged and the users which are non 
backlogged are backlogged. 
 
Now, it is at this point some session changes state. So, then you go into another slope where 
the set has changed and so on. So this is therefore, the virtual time v (t) is a piece wise linear 
function. Now, we will try to define something called as the virtual finish times. What is our 
objective? Our objective is trying to define the packetized versions of the fluid flow fair 
queuing that is what our objective is. 
 

5 
 



What we have done now is; we have defined something called virtual time which is keeping 
track of the work done in the system. How? The virtual time increases in proportion to the 
normalized service received by backlogged session. Now in fluid flow fair queuing, 
remember that a normalized service received by all sessions which are backlogged is equal. It 
is equal at every instant of time; the normalized service received by all backlogged users.  
 
So therefore, the virtual time by defining the virtual time in this manner, the virtual time is 
keeping track of the total service which is being given by the scheduler or the server in the 
fluid flow fair queuing systems. So now, we will try to attempt defining the packetized 
versions of this fluid flow fair queuing. So, let us see.     
   
(Refer Slide Time: 13:24) 
 

 
 
Now, we define some quantity which we call it to be as the virtual finish time. Let us say that 
p i k is the k'th packet of i'th session, a i k is the arrival time of the packet p i k and d i k is the 
departure time of p i k in the fluid flow fair queuing. This is the d i k - denotes the actual 
departure time, it is the actual time at which the packet departs in the fluid flow version of the 
fair queuing algorithm.   
 
Now, we define some quantity and this quantity is F i k.  This quantity is for the k'th packet of 
the i'th session and defined to be v of d i k. So, what it is? It is the virtual time of the system 
when the packet p i k departs. So, at the time of departure of the k'th packet of the i'th session, 
we see what is the virtual time and we call that virtual time to be F i k.  So, this we call it to 
be as the virtual finish time.   
 
Now, first of all note that if t2 is greater than t1, then v (t2) will be greater than v (t1). Virtual 
time is actually monotonically increasing. So therefore, if we schedule packets, therefore if 
we schedule packets in the increasing order of their virtual finish times, if you schedule 
packets in the increasing order of the F i 

k; then it is equivalent to saying that we are 
scheduling packets in the increasing order of their departure times in the fluid flow fair 
queuing. Because, if the departure time of let us say k'th packet of the i'th session is greater 
than say l’th packet of the j'th session that means if d i k happens to be greater than let us say 
d j l; obviously from the monotonousity property of the virtual time, F i k will turn out to be 

6 
 



greater than F j l. So, if I schedule l'th packet of the j'th session first, note that in the fluid flow 
fair queuing it will depart first because its departure time is less. 
 
So therefore, in the fluid flow fair queuing, it will depart first. So, if in my packetized version 
if I schedule this packet first, then I am likely to be fair. That is what I can assume. So, I am 
proposing a packetized version of the fluid flow fair queuing algorithm, where I am saying 
that I define something called a virtual finish time and the virtual finish time happens to be 
the virtual time in the fluid flow fair queueing system when this packet actually departs and 
then I am saying that I will serve the packets in the increasing order of their virtual finish 
times. 
 
Now, the first question of course is that if I schedule packets in the increasing order of their 
virtual finish times, am I fair? That is first question. Second question is that how do I 
compute these virtual finish times? Do I have some better ways, some efficient way of 
computing this virtual finish time? Is there any easy way of computing the virtual finish 
times? So, we would see that. We will answer these 2 questions. 
 
First we will try to see how it is possible to compute the virtual finish time in a very easy 
recursive fashion and then we will also prove that if we design a packet scheduling algorithm, 
where we are scheduling packets in the increasing order of their virtual finish times, this 
algorithm is likely to be more fair or closer in terms of fairness to the fluid flow version of 
the fair queuing algorithm. So, we will first see how to compute the virtual finish time in a 
recursive fashion.  
 
(Refer Slide Time: 19:20) 
 

 
 
So, let me just define, let me just answer this question that how to calculate virtual finish 
time. Let us answer this question first. Now, it can be shown that this virtual finish time of 
the k'th packet of the i'th session satisfies a very easy and nice recursive relations where it is 
given by L i k upon rho i plus max of  F i k minus 1 v of  that is the virtual time of the p i k - 
this packet for all sessions i is equal 1, 2 and the initial condition which is F i 0 is considered 
to be 0 and note that this L i k happens to be the maximum size packet maximum oh sorry this 
is the size of the this is not the max this is the size of the k'th packet of session i. 

7 
 



 
So, we can see that the virtual finish times can be computed in a very easy recursive fashions. 
All we need to know is to keep track of the virtual time is to find out the virtual time when a 
particular packet arrives and if a particular packet arrives and if we that time look at our fluid 
flow a fair queuing calculator and from that we determine, what is the virtual time when the 
packet arise. If we know that and if we plug into these equations, we can actually compute 
the virtual finish times of the packets. So, let us try to first prove this equation. 
 
Now, let us say, let us define a quantity b i k is defined as max of a i k and d i k minus 1. That 
is what is a i k? a i k is the arrival time of the k'th packet of the i'th session and what is d i k 
minus 1? d i k minus 1 is the departure time of k minus one'th packet of the same session, i'th 
session.   
 
Now, we define this b i k quantity to be maximum of either a i k or d i k minus 1. So, what is 
the significance of this b i k? 
 
(Refer Slide Time: 22:35) 
 

 
 
Significance of this b i k is that the p i k, this packet that is the k'th packet of the i'th session, it 
cannot start service, it cannot start service before b i k. It cannot start service before b i k. 
Why? Either the packet has not arrived if its arrival time happens to be higher; so, either the 
packet has not arrived or if a i k is less than this d i k minus 1, then the packet has arrived. But 
the previous packet, k minus 1'th packet has not yet left. So, it is still in the queue. So 
obviously, the packet p i k, it cannot start service before b i k.  
 
Actually, it start service at b i k or later in some other system. But in the fluid flow fair 
queuing, as soon as the packet arrives and since it is a work conserving scheduler, it will start 
the service immediately.  
 
So, another thing is that all the previous packets of this session i must have left, must have 
departed by this time - b i k. So now, let us see, we define L i k minus rho i. So now, when 
this packet, the k'th packet of the i'th session that is a packet p i k, when it starts the service; 
the L i k is the length of the packet in bits and rho i is the rate allocated to it. So obviously, 

8 
 



this will be in a normalized service received by this session during the interval for which it is 
backlogged and what is that interval? That interval is extending from b i k to d i k, d i k is the 
time when this packet will depart.   
 
(Refer Slide Time: 25:03) 
 

 
 

So, I write this to be equal to that this is equal to the normalized service received by the 
session b i k, d i k. Note that the session i is continuously backlogged during the interval b i k 
to d i k. During that interval b i k to d i k, the session is continuously backlogged and therefore 
I can write this to be virtual time v, virtual time at d i k minus virtual time at b i k. Now since, 
now, what is b i k? So, I just write here at in the presence of b i k, b i k is the virtual time of 
max of a i k into d i k minus 1. 
 
Now since, we are considering during the busy period; since virtual time is a monotonically 
increasing function during this interval, during the busy period, since virtual time is 
monotonically increasing, monotonically increasing during busy period, so since it is 
monotonically increasing, I can change this operator max and v. So, what I get is that L i k 
upon rho i is equal to… what is v d k? v d k by our definition is F i k that is the virtual finish 
time minus if I change this max of, since virtual time is monotonically increasing, virtual 
time of maximum of this is same as first computing the virtual times and then taking the 
maximum quantity and what is this is F i k minus 1? So, we get this recursive equation that F 
I 

k is equal to L i k upon rho plus max of F i k minus 1 which is what, this is into v of a i k. 
 
Now, what does it mean is it means that the virtual finish times of the packet can be 
computed recursively. This is this equation is easier because by definition the virtual finish 
time of a packet is the virtual time when the packet will depart in the fluid flow fair queuing. 
Now, that time when the packet will actually depart in the fluid flow fair queuing system is 
actually difficult to determine.   
 
So, we have found a recursive way of computing the virtual finish time which states that the 
virtual finish time of the k'th packet of the i'th session can be recursively computed if you 
know the virtual finish time of the k minus 1'th packet of the i'th session and the virtual time 
when the packet actually arrives. When the packet actually arrives, you can easily see in the 

9 
 



fluid flow fair queuing system what is the virtual time that is currently going on and then plug 
that into this equations to time stamp a packet. 
 
So, the question really is that now if I schedule the packets in the increasing order of their 
virtual finish times, then am I being fair? So, I will just state the result without proving it and 
then if in the repeat in the next lecture, we will try to prove this result.  
 
 (Refer Slide Time: 29:16) 
 

 
 
So now, I am defining the packetized versions of the scheduling algorithms. So, what I am 
saying is that in packetized versions of this fair in packetized versions of the fluid flow fair 
queuing algorithm which I also call as the WFQ or weighted fair queuing or it is also called 
as PGPS as packetized generalized processor sharing; so what I am saying is that if I compute 
the virtual finish time, compute the virtual finish times of packets and then schedule the 
packets in the increasing order of their finish times, so I schedule the packets in the 
increasing order of their virtual finish times, it turns out that this algorithm is quite fair. 
 
How fair? Let me just state this by a result. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 
 



(Refer Slide Time: 31:24) 
 

 
 
So, let us say, so the question really is that how fair is WFQ? Let us say we define as dk to be 
the time at which some packet let us say the k'th packets departs from fluid flow fair queuing. 
dk is the time at which the packet departs under the fluid flow fair queueing and let us say we 
define dk head to be the time at which this packet departs, this packet departs from our WFQ. 
Then it can be shown that dk head minus dk that is the difference in their departure times will 
be bounded by L max by r, where L max is the maximum size of the packet. 
 
So, what this algorithm? What the WFQ can do is that that the difference between the 
departure times of this WFQ and the departure time had this packet been served in a bit by bit 
round robin manner that is the fluid flow fair queuing, then the difference between this 
departure is actually bounded and it is bounded by L max by r, where L max is the maximum 
size of the packet. 
 
So utmost, the difference in their departure times will be L max by r, where L max is the 
maximum size of the packet, not more than that. So now, here you can see that the algorithm 
is likely to be let us say unfair over an interval which is shorter than let us say L max by r. But 
otherwise, the algorithm is likely to be fair. I mean roughly speaking; this is what this result 
is trying to say that over an interval less than L max by r, this algorithm is unfair. But then we 
can do nothing more than that in a packetized versions of the fluid flow fair queuing 
algorithm. 
 
In a fluid flow fair queuing algorithm, the normalized service received by backlog sessions is 
equal at every instant of time. This you cannot make it equal in the packetized versions 
because packet is the smallest entity that you need to serve. Now, we come back to our again, 
implementations of the WFQ and try to see are there any complexities in terms of 
implementing the virtual finish times. 
   
 
 
 
 

11 
 



(Refer Slide Time: 35:02) 
 

 
 
So, now what do we see in terms of computing the complexity in the virtual finish time is that 
since in the WFQ essentially what it means is that you require the computation of the virtual 
time that is the v (t).  Now, you can see that this v (t), it changes slope whenever the set of 
backlogged users changes. So, it changes its slope whenever the set of backlogged user 
changes whenever the set of backlogged users changes. 
 
So, computing the virtual time means that you need to keep track of the backlogged users 
which is not so difficult because what is happening really is that a virtual time is 
monotonically increasing and whenever the set of backlogged user changes, the slope of the 
virtual time changes. But the difficulty is that suppose, right now, a packet is in service, this 
packet starts service at time let us say t1 and it finishes the service at time t2. During this 
interval t1 to t2, some more packets may arrive. Now, remember that we need to compute, we 
need to know the virtual time at every packet arrival. From this if you see, we need to know 
the virtual time at every packet arrived. 
 
Now, what may happen is that during this interval t1 to t2, when that particular packet is 
served, it might be possible that the set of backlogged users during any arbitrarily small 
interval say t1 to t2, the set of backlogged users which may change may be of the order of the 
total number of sessions also because it may happen that in the fluid flow fair queuing, all 
sessions or a large number of sessions may finish service simultaneously. If that happens, 
then this set of backlogged users changes; if that changes, the slope of the virtual time 
changes. 
   
So therefore, during in any arbitrarily small interval of time, it might happen that the number 
of backlogged users, the change in the number of backlogged users may be of the order of the 
total number of sessions. So, the break points in your virtual time slopes may be arbitrarily 
very large approaching the total number of sessions and in a typical remember that this 
packet scheduling algorithms you are implementing in a router and in a typical router the 
number of flows may be as large as 1,00,000 or even if 10000; then in order to compute the 
virtual time, we actually then the complexity of computing the virtual time, if it approaches 
the total number of sessions, then the number of computations that may be required may be 

12 
 



very large during a small interval of time and as a result what may happen is that we may not 
be able to compute the finish tags or the virtual finish tags of the packets in a fast manner and 
therefore our packet scheduling algorithm may not work at high speeds So, this is the major 
problem. 
   
So therefore, now we are saying that the virtual time changes it slopes and whenever the set 
of backlog and users changes and the number of break points therefore, the number of break 
points in the v (t), the slope v (t) can be as high as the total number of as high as the total 
number of sessions and therefore this may lead to the real time computation, may be the real 
time computations of v (t) can become a problem.  
 
So, even though it appears that to compute the time stamp of the packet that is the virtual 
finish time, we have found a very simple nice recursive algorithm, where the virtual finish 
time of the packet can be computed recursively by knowing the virtual finish times of the 
previous packets and the virtual time of the system when the packet arrives. So, we have 
found a very nice recursive way. Even then we find that computing the virtual time itself 
could be a difficult task because the number of break points can be as large as the total 
number of sessions and the total number of sessions themselves can be quite large and 
therefore the computation of the virtual time can be a problem. 
 
Otherwise also, the computation of the virtual time is not so much of a tough task. All we 
need to know is that we need to keep track of the number of backlogged users; virtual time 
otherwise increasing monotonically and whenever the set of backlogged users changes, the 
slope changes. But the problem really is that the set of backlogged user, the change in the set 
of backlogged users can be very large and therefore the breakpoints could be very large and 
therefore the real time computation of the virtual time could become difficult.  
 
Now, before we go to address this problem, let me just give you an example of how actually a 
weighted fair queuing algorithm will work by giving you an example and computing the 
virtual finish times. So, let us see with an example. In this example let us consider, a very 
simple example where we are saying that there are 3 sessions; now, session 1, 2, 3. 
 
(Refer Slide Time: 41:25) 

 

 

13 
 



 
Let us say the output link rate is for the time being is 1 bit per second, this session gets a 
packet of 1 bit, this session gets a packet of 2 bits, this session gets a packet, all at time t is 
equal to 0. Then, we will assume that a packet of session, 2 bits arrived at time t equal to 4. 
Now, if you compute the virtual finish tags of these packets, so how do we how do we 
compute the virtual finish tags of these packets? F 1 

1 as by giving this example of F 1 1 is 
assume the allocated rates of this row i's are all equal for them. 
   
So, the weights are equal which becomes equal to let us say 1 plus max of 0 which becomes 
equal to 1. Then, F 2 1 which is equal to 2 plus max of 0 and this becomes equal to the 2. 
Then F 3 1 which becomes equal to let us say 2 plus… 
  
So, now we need to schedule the packets in the increasing order of their finish times and we 
schedule the packets; first packet of this session 1, second packet of this session 2 and the 
third packet of this session 2. 
 
So essentially, this packet gets served. So, if I serve these packets, this will finish its service – 
1 bit per second at the time 1. If I serve this packet then this packet will finish its service at 
time three and this packet will finish its service this third packet of time 5 because there is a 
tie between these 2. So, we can choose any arbitrary packets. So, the session 1 packets get 
served here. So, this is session 1, this is session 2, this is session 3. 
  
Now, note that at 4, the session once this packet arrives and that time I need to know what is 
the virtual time. So, I need to know what is the virtual time at time 4. Now, this I need to 
compute so let us say what is happening in the fluid flow fair queuing. So, if you see in the 
fluid flow fair queuing, it is 1 bit per second one third, one third, one third for bits will be 
taken up from each of the from each of the flows.  
 
(Refer Slide Time: 44:53) 
 

 
 
So, the virtual time actually increases something like this that this is 1, 2, 3, then 4, then 5, 
then 6 and then 7 and so on. So, if you see here let us say 1, 2 and 3 and so on. So, if you see, 
so the slope of the v (t) is one third and this at time t, if you are serving in a fluid flow fair 

14 
 



queuing, then the virtual time slope is one third. And, if you see at time 3, in the fluid flow 
fair queuing, the session 1, the sessions one's bits would have been served. 
 
Now, at time 3 since the session one's bit would have been served, this session would have 
completely served, now only 2 sessions - 2 and 3 are backlogged and therefore this it changes 
its slope. So now, it becomes half. It becomes half till about 4 so till about four and at that 
time, the value of the virtual time therefore so note that this slope is one third of the virtual 
time. So, the slope here is one third. Now, this slope changes and this becomes, the slope 
becomes half. 
 
So, at time 4, the second packet at the session 1 has arrived and at that time, the value of the 
virtual time will be 1.5. So, we wanted to know what is the virtual time at time 4. So, this is 
actually we determine that 1.5. So, if it is 1.5 and if you wanted to calculate F 1 2 that is the 
finish time of the second packet of the first sessions; that becomes equal to a packet of length 
2 arrives. So, 2 plus max of the finish time of the previous packet which was 1, 1.5.  
 
So, this becomes equal to 3.5. So obviously, this is less than the finish time. So, this is greater 
than sorry this is the greater than the finish times of either of these that is the third session. So 
therefore, this packet only is likely to be served in the packet scheduling algorithms. 
 
Now, let us look at again, after this what happens, the packet has arrived in the first session 
also, so the slope changes again and the slope now becomes equal to one third and at this 
point, it becomes one third again and at this point at 5.5 here both the sessions that is session 
2 and session 3; they are completely served and after this the slope becomes 1 because only 
the user 1 is now backlogged. 
 
So at this point, the slope again becomes one third from 4 to 5.5 and then at this point 
remember that both the sessions that is the session 2 and 3, they have been served completely, 
their both bits and then only this session is remaining backlogged with the packet 2. So 
therefore, this slope becomes now slope is 1 and this packet finishes service at 0.7. So, this 
way this slope is 1.  
 
(Refer Slide Time: 49:14) 
  

 

15 
 



 
So, we can see that this way the virtual time changes its slope whenever the set of backlogged 
users changes. So here, I just wanted to clarify here that even though in our previous 
equations that we had considered that a virtual finish time is given by L i k upon the rho i 
where rho i is the set of, is the allocated rate is the allocated rate. But in computing this 
virtual finish times here, I have taken this rho i's of all the 3 users to be 1. Essentially, they 
are considered as the weights, so I have given them the weights of 111 which means that all 
the 3 users have been allocated equal rights. 
 
So, I have considered the specific values of rho i’s in place of rho i’s you could also consider 
the weights, the different weights which have been given to the 3 individual sessions. So, I 
mean that is the minor point that I want to make here because of the particular example that I 
have considered, really I have illustrated it by considering that a different weights have been 
given to them and they are not actually in terms of the allocated rate. So, weights I have 
considered, so the weights and the rates; they do not make a sort of much distinction in terms 
of computing the virtual finish times. 
 
So, this gives an example and also an idea how to compute the virtual finish time. So, I again 
want to reiterate that what we were discussing is what we thought is that we wanted to have 
an algorithm which approximates the fairness characters fairness character of the fair queuing 
algorithm. So, we considered both the weighted round robin and the deficit round robin and 
found them to be approximate versions of the fluid flow fair queuing algorithms but not so 
fair as we would like to be.  
 
Then we considered this packetized versions of the fluid flow fair queuing algorithms which 
we called as the weighted fair queuing algorithms and we saw that we can derive a fair 
version of the packetized fluid flow fair queuing algorithm provided, if you keep track of the 
actual work done in the system of the fluid flow fair queuing and then schedule the packets in 
the order of their virtual finish times and we can see that this algorithm is fair, in the sense 
that there is a difference between the departure times in the packetized versions and the fluid 
flow fair queuing versions will remain bounded by the maximum size of the packet divided 
by the output link capacity.  
 
So, it turns to be very close to the fair queuing algorithm in terms of fairness. But the problem 
remains that we need to compute the virtual time for the implementations of the weighted fair 
queueing algorithms and computing the virtual time actually requires keeping track of the set 
of the backlogged users and that can pose a problem in terms of the real time computations. 
 
So, we should look for algorithms which can address these problems in the sense that the real 
time computation of the virtual time can become easier and at the same time we retain the 
basic characteristics of the fairness of the packetized versions of the scheduling algorithms. 
So, that we will address in the subsequent lectures. 
 
 
 
 
 
 
 
 

16 
 



(Refer Slide Time: 52:37) 
 

 

17 
 


