Broadband Networks

Prof. Karandikar
Electrical Engineering Department

Indian Institute of Technology, Bombay
Lecture - 10

Fluid Fair Queueing & Weighted Fair Queueing

So, we were discussing about fair scheduling algorithms, the design of a fair scheduling
algorithm and we have seen in the previous lectures what are the various attributes of such
scheduling algorithms. So, let us today discuss how we can design such fair scheduling
algorithms. So first of all to give you an idea how we can design the scheduling algorithms
which results in some kind of max min fairness, we first assume that the traffic to each of the
queues is fluid in nature. So, let us define the fluid flow fair queuing.

(Refer Slide Time: 1:24)

So, | will just define as fluid flow fair queuing algorithm. So, in fluid flow fair queuing
algorithm, we assume suppose that there are several queues and here is a scheduler which is
scheduling it onto the output link; so we assume that the traffic in each of the queues is fluid in
nature, traffic in each queue is fluid in nature and then the scheduler visits each non empty queue
in turn and serves an infinitesimal amount from each queue. It serves very small amount from
each of the queue.



So, what we are assuming that each of these queues have the traffic which is fluid in nature and
the scheduler will schedule, will serve each of the non empty queues and will serve very small
amount - an infinitesimal amount from each queue.

Now, if you schedule the packets in this manner, then this will result in the max min fairness. If
the different connections have different weights, then the scheduler will serve this infinitesimal
amount of the fluid in proportion to its weights. So, what we are saying is that the schedulers
serves an infinitesimal amount, very small amount from each non-empty queue. And, this will
result in max min fairness. Now obviously, the traffic which we are transmitting it in the
networks is not fluid in nature. So, this is definitely a theoretical assumption that we have made.
But let us first discuss the fluid flow fair queuing with its formal definition and then we will see
how we can have packetized versions of such fluid flow fair queuing.

Now, this fluid flow fair queuing we will also call it to be a generalized processor sharing or the
GPS. Now, | would like to give you a formal definition of these fluid flows fair queuing.
Qualitatively you have understood that each of the queues has a traffic which is considered fluid
in nature and the server will serve an infinitesimal amount from each non-empty queue in turn
and by this we will have some kind of max min fairness. So, let us have a formal definition of the
fluid flow fair queuing.

(Refer Slide Time: 5:05)

So, formally let us say that we are having as we have said N queues. So, this is let us say, a fluid
flow fair queuing scheduler. So, let us say that there are 1 to N queues and this is an output link
with the capacity r. Now, let us say that rho i is the rate which has been allocated to session i.
Now, let us define A ; (0, t) to be the arrivals, traffic arrivals from session i during the interval 0
to t. Now, if it is a packetized arrival if it is a packetized arrival, then the arrival time of the
packet will be determined by the reception of its last bit. So, for a packetized traffic, this arrival
function A will be considered as a step function, the staircase functions.



We will assume that some arrivals have occurred only when the last bit of that packet has entered
the queue if it is a packetized traffic. So, now let us define W ; (0, t) to be the amount of service
received by session i during O to t. So, this is the amount of the traffic fluid which has been
served and W ; (0, t), we consider it to be a continuous function; whether the arrivals are
packetized or whether the arrivals are fluid.

Now, let us define Q ; (t) to be A ; (0, t), that is the total number of arrivals that has occurred
minus the total fluid that has been served. So, then what is Q ; (t) in that case? The Q ; (t) will be
nothing but the total length of the backlogged traffic at time t. So, Q ; (t) will denote as the total
length of backlogged traffic at time t. So, we say that a session is backlogged; so a session i is
backlogged at time t if Q ; (t) is backlogged at time t if Q ; (t) is greater than 0. Now, W ; (t) is
the amount of traffic fluid that has been served. A ; (0, t) is the traffic arrivals that have occurred
during O to t.

So, A i (0, t) minus W ; (0, t); this is some sort of queue length, that is the total length of the
traffic which is lying in the queue of session i. Note that each of these sessions have independent
different queues. So, this is the total length of the backlogged traffic at time t. Now, we say that
this session, it is backlogged at time t if Q ; (t) is greater than 0.

(Refer Slide Time: 9:00)

Now, we define something called as the normalized service which we define with respect to let
us say small w ; (t) is equal to W ; (0, t) divide by rho i. So, this is actually equal to the
normalized service by received by session i during O to t interval. Now similarly, we define as
we have said that a session i is backlogged at time t if Q ; (t) is greater than 0O, so let us define the
set of sessions which are sort of backlogged.

So, we say that B (t) denotes the set of all such sessions such that Q ; (t) is greater than 0. That
means B (t) is that set which includes all the sessions which are backlogged at time t. Similarly,
we define B (1, t2) happens to be the set of all such sessions such that Q ; tau is greater than O for



tau lying from t; to t,. That means B (t1, t2) consists of all the sessions which were continuously
backlogged during t;, t,. That means there Q was greater than 0 during the interval t; to t,.

Similarly, let us define as U (ty, tz) which are sessions which are unbacklogged as consisting of
all i such that the Q ; (t) is O for t; less than tau less than t,. That means during the interval ty, ty,
the queues were empty. So, such sessions, we can call it to be the sessions which are absent
sessions which are continuously backlogged. Then the important definition of the fluid flow fair
queuing is fluid flow fair queuing is defined as the server as the server for which the normalized
service received by 2 sessions let us say i and j which are continuously backlogged during an
interval is equal. That means, if you consider 2 sessions, any 2 sessions; during an interval and if
during this interval, if these 2 sessions are continuously backlogged, then the normalized service
received by these 2 sessions will be equal.

So formally, we will define as the fluid flow fair queuing is defined as is this is defined as the
server for which W ; tau t divide by rho I, so this is the normalized service received by the
session i during the interval tau to t. This will be equal to W ; tau t divide by rho j. This is the
normalized service received by the session j during the interval tau to t and both i and j sessions
are such that they are continuously backlogged during the interval tau to t.

So, because we have defined these B (1, t2) to be consisting of those sets which are continuously
backlogged during the interval, t; ty; so therefore, we have this B tau t is consisting of those sets
which are continuously backlogged during the interval tau to t. So, we take any such 2 sessions
and for this, we can show that the normalized service received by these 2 sessions will be equal.

In other words, we can also say that W ; tau t, this is denoting the normalized service will be
equal to W j small W ; tau t and the sessions which are during this interval tau to t are the absent,
they will not receive any service. So, for such sessions, the normalized service is actually 0. So,
we can say that for the sessions which are absent, the normalized service is 0.

(Refer Slide Time: 14:04)

A R AT ST




That means W ; tau t is O for i belonging to u tau t which comprises of all those sessions which
are absent during the interval tau to t. So, this is the formal definition of the fluid flow fair
queuing where we say that the normalized service received by the 2 sessions i and j which are
continuously backlogged during the interval tau to t that is equal. On the other hand, so how do
we serve this?

The traffic, we assume it to be fluid in nature and then the server will visit each non-empty queue
in turn and it will try to serve an infinitesimal amount of fluids from each of these queues. So,
having defined the fluid flow fair queuing in its formal way, now our question is however that
the traffic is not fluid in nature but the traffic is packetized in natures. So, how do we in that case
ensure the fairness for a practical case where the traffic is packetized in natures? So, let us say
that we implement a round Robin scheme. So, we call it to be let us say that we implement round
Robin scheduling algorithms and then we will try to see whether it is fair or not.

(Refer Slide Time: 15:32)

We will see what is wrong with the round Robin scheduling algorithms. So, now what is in the
round Robin scheduling algorithms? We have again these 1 to N queues. Traffic is of course
packetized in nature. So, round Robin scheduling algorithms is simple; you serve each packet
from the queue and send it onto the output link.

Now, the packets are of the fixed length. Now, note that in a packetized traffic, packet is a
smallest unit that can be transmitted. In a fluid traffic, you can serve an infinitesimal amount of
fluid. It is not possible to do in the packetized traffic. So, packet is the smallest unit. Now, if
these packets are of the fixed length and if you are using a round Robin scheduling algorithm,
then you serve one packet from the first queue, serve another packet from the second queue and
so on. This way you will result in fairness and this is the best that you can do.



The problem arises when the packets are of variable length. Now, what do we do if the packets
are of variable length? If the packets are of the variable length or else if these connections have
different weights; in either of these 2 situations, we need to see how we can implement the round
Robin algorithms.

So, first 1 will assume in the round Robin algorithms that the packets are of the different length
or the weights are unequal. So, we say that let us say that the first case is that the weights are
unequal. An example, let us say that there are 3 connections. So, N is equal to actually 3 here.
So, this connection for example ... So, this is a second connection. So, let us say this connection
has a weight of 0.5. This connection has a weight of let us say 0.75 and this connection has a
weight of 1. So, the weights are unequal. What do we do?

So, the weights are unequal. We normalize the weights in such a manner that they become
integers. So, what do we do? We normalize these 2 weights, these 3 weights: 0.5, 0.75 and 1
such that they become integers. So, in that case, they become 2, 3, and 4. So, how do we
implement round Robin algorithms?

We serve 2 packets from this first queue, then the server will serve 3 packets, from the third
queue and second queue and then the server will serve 4 packets from third queue. So, that way
round Robin algorithm will be implemented. This will still be fair this will still be fair if the
packets are of fixed length. If all the packets are of fixed length, then of course each of these
queues were having different weights. So obviously, we were serving different packets.

Here, we were serving 2 packets, here we are serving 3 packets and in this, from this queue, we
are serving 4 packets. The problem is suppose if the packets are of variable length; so what
happens if the packets are of variable length? Now, if the packets are of variable length, then
obviously there is a problem. So, we in order to implement the round Robin scheduling
algorithms, we need to know the mean packet size in advance and then we will normalize this
weights with respect to the mean packet size.

So, if the packets are of variable length, we need to know the mean packet size. Now, suppose
we know the mean packet size; let us say we know the mean packet size of the connection 1, let
us say the mean packet size of the connection 1 is something like 50 bytes, the mean packet size
of the connection 2, let us say is the 500 bytes and the mean packet size of the third connection
let us say is the 1500 bytes. So, these are the mean sizes of the 3 queues — 50 bytes, 500 bytes
and 1500 bytes.

So, we normalize theses rates which were 0.5, 0.75, 1 with respect to these we divide them and
what really we get by 0.5 divided by 50, we get the weight of 0.01, 0.75 divided by 500 we get
the weight of 0.005 and of course 1 divided by 1500 we will get something like 0.00066 and so
on.

So now, we again make these rates to become integers and for that we will, this will turn to 60,
this will become 9 and this will become 4. So, as a result what do we do? This queue has a less
mean packet size of 50 and at a weight of 0.5 we serve 60 packets from this queue first and then
we serve 9 packets from the second queue and then we serve 4 packets from the third queue.



So, this way we can try to maintain the fairness. So, now this scheme therefore has the 2
disadvantages. One is we need to know of course the mean packet size in advance and then only
we can determine how many number of packets we need to serve from each queue by
normalizing the weight with respect to mean packet size. But even if we know the mean packet
size, the scheme is actually unfair over shorter time scales.

Just to give you an example how the schemes will be unfair over a shorter time scale, in the
sense that in this case, in this particular example that we had considered, where the scheduler has
to serve 60 packets onto this output link from this queue; now, when the transmission of these 60
packets is going on onto the output link, we are not serving anything from queue 2 and queue 3
and therefore over the interval for which the transmission is going on for the 60 packets, the
scheme becomes unfair to 2 and 3 and if the transmission time is little bit large, then the interval
over which this unfairness also increases.

Now, note that in the fluid flow fair queuing, we were serving infinitesimal amount of fluid from
each of these queues. So, the scheme was really fair over an instant of time. Of course, when the
traffic is packetized in nature, it is not possible to serve a bit from each of these queues or an
infinitesimal amount from each of these queues. But even then we would like to reduce the
unfairness interval, the interval over which the algorithm is unfair that should be reduced.

Now, in this case we have find that it could be unfair over a larger interval of time as well. So,
we are therefore we need to therefore look for different more algorithms. A variation of this
round Robin scheme could be or the weighted round Robin scheme that was suggested is called
deficit round Robin. So, let me just explain what is a deficit round Robin algorithms.

(Refer Slide Time: 23:44)

So, this is a deficit round Robin scheme. So, deficit and also called as DRR. Now, in the deficit
round Robin what you are doing is that each connection has a deficit counter. So, each



connection has some kind of a deficit counter which is initially 0. So, this could be initialized to
0. And then, server will serve the packet. The first packet serves server serves the first packet; we
call it to be head of the line, HOL. The first packet from the queue, it serves if the packets length
is less than or equal to something called as quantum size plus the deficit counter value.

So, if the packet length is less than or equal to the quantum size plus deficit quantum, the deficit
counter; then only we serve the packets. Otherwise, the quantum is added to the deficit counters;
else the quantum is added to the deficit counter, else the deficit counter becomes equal to
whatever the value was - the old deficit counter plus this quant size. So, this way actually, the
principle of the deficit round Robin scheme is to avoid the difficulty of having to know the mean
packet sizes in advance in the weighted round Robin or in the round Robin scheme that we had
just considered. So, the deficit round Robin scheme works on the principle that we do not know
the mean packet size in advance. So, we maintain a deficit counter and then try to maintain the
fairness among the flows. Just to give you the example; again the previous example of 3 queues
we will consider.

So, let us say that there is a queue; there is a connection 1, 2, 3. Now, the connection 1 has a
packet and the connection 2 has another packet and connection 3 has another packet. This packet
is of let us say 1500 bytes and this first packet is of 800 bytes in the connection 2 and the third
packet is of 1200 bytes.

Now, let us say that quantum size that we had considered here, so let us say that the quantum
size that we have considered is 1000 bytes and the deficit counter initially is 0. So, deficit
counter initially was 0; so now if you see 1500 byte, the length of this packet is less than the
quantum size plus the deficit counter. So therefore, this packet is not served. This packet is not
served and this quantum size is now added to the deficit counter. So, the deficit counter becomes
actually 1000.

Now, you go to the second packet, second queue; 800 bytes is definitely less than the 1000. So
therefore, this packet is served. So, this packet is served. Third you come, here it is 1200 bytes.
Again, 1200 bytes is less than 1000. So therefore, you do not serve this packet. So, how you
come so, in the first round, in the first you have served only this packet of 800 bytes. Now, in the
second round, then when you come here in 1500 bytes; your deficit counter was how much?
1000, because that was earlier, it was added. So, in the second round you had here 1000 was the
deficit counter. You add again 1000 into the quantum size that becomes how much? 2000. So,
obviously, 1500 is less than or equal to the quantum size plus the deficit counter that is it is less
than that.

So therefore, this packet is served and so the deficit counter now becomes equal to how much?
500. So, the deficit counter 0 has become 2000 minus 1500 which is equal to 500. So, this is the
new deficit counters value, so new deficit counter value. Of course, this was of course 0, so there
was no queue, there was no packet.

Now, we come to third queue which has 1200 bytes of packets. The deficit counter was 1000
here again, add the quantum 1000 no 2000 minus 1200 and that becomes equal to 100 800. So,
this will be your new deficit counter value. The recommended quantum size, as you can see each



time when you are adding the counter is actually equal to the maximum packet size because
otherwise you can see here that if the maximum packet size was 3 connection itself was
something like 2000 bytes; then initially itself when the quantum size is 1000 bytes, none of
these packets would have been served. It was possible that none of these packets would have
been served. So therefore, the recommended value the recommended value of the quantum size
is always actually equal to the maximum packet length.

So, the principle of the deficit round Robin is that you serve the packet only if the packet length
is less than or equal to your credit. So, it is actually maintaining some kind of credit. So, if your
packet length is less than or equal to the credit that you have accumulated, then you serve the
packet. If it is greater, then you accumulate that credit and then you will be served only in the
next round.

Of course if a connection is empty, if a queue is empty, then your credit will be initialized to 0.
Otherwise, you will keep on accumulating the credits for having remained absent for a long time.
So, to prevent this you can initialize the deficit counter to O once your queue becomes empty.
Again, the disadvantage of the deficit round Robin is unfairness over a shorter interval of time,
over a smaller interval of time. That is actually the disadvantage.

So, now we have seen 3 kinds of scheduling algorithms. One is the fluid flow fair queuing
algorithm where we assume the traffic to be fluid in nature and the server serves an infinitesimal
amount of fluid from each of queues and then maintains the max min fairness. We then see how
we can have packetized versions of the scheduling algorithms. One simple scheme was round
robin algorithms where you serve the queue in a round Robin fashions; pick up the packets from
each of the queues and serve the packets in a round Robin manners.

Obviously, if the different connections have different weights, then you need serve them in
proportion to their weights. So, you normalize these weights so that they become integers and
accordingly serve as many numbers of packets from each of the rounds. Now, this scheme can be
considered as fair, provided the packets are of fixed length. If the packets are of variable length,
then we need to normalize these weights with respect to the mean packet sizes and that is where
the disadvantages of this scheme comes in because then we need to know the mean packet sizes
in advance if you want to be fair.

So now, to avoid this problem, to address this problem that we need to know the mean packet
sizes in advance. The deficit round Robin scheme was proposed and the deficit round Robin
scheme what really you are doing is that you are trying to accumulate the credits and then serve
the packets only if you have enough credits.

Now, this avoids having to know the mean packet sizes in advance. The only thing you need to
you need to ensure that you will definitely serve even if the packets is of a maximum size, the
quantum size, the value of the quantum size should be at least equal to the maximum packet size.
So, this way you can ensure that you will always serve a packet even if it is of a maximum size.

Now, even though the round Robin algorithms and the deficit round Robin algorithms try to
maintain fairness, even then they cannot be called perfectly fair in the sense that they are still



unfair over a shorter time scales. Over a short time scales, they are still unfair. If you consider
over a long time interval, then they could be fair because over a long time you would have seen
that, you would have served the packets from each of the queues in proportion to their weights.
But on a shorter time scales, they are still unfair. They are still unfair in the sense that in fluid
flow fair queuing and fair, at every instant of time but in this packetized versions you are not still
fair.

So, the question really is that can we design packetized versions of the fair scheduling algorithms
which approximate the fluid flow fair queuing in terms of the fairness? Can we design, can we
do that? Now to do this, packetized versions of the fluid flow fair queuing was proposed which is
also called as weighted fair queuing, WFQ or which were also called as packetized generalized
processor sharing or PGPS.

So, let us study what is the weighted fair queuing scheduling algorithm.

(Refer Slide Time: 35:30)

So, we have weighted fair queuing WFQ or it is also called as packetized generalized processor
sharing. Now, the general idea of the WFQ or the packetized generalized processor sharing is
that it is also abbreviated as PGPS where the fluid flow fair queuing was called as GPS. So, what
do we do is that WFQ actually it simulates fluid flow fair queuing on side. It simulates the GPS
or the fluid flow fair queuing on the side. This is modeled as doing bit by bit round Robin
service.

So, what we are saying is that in a fluid flow fair queuing in a fluid flow fair queuing, we were
saying that we will serve infinitesimal amount of fluid from each of the queues. Now, what do
we do? We say that suppose we serve the bit, we serve these queues in a round Robin manner as
bit by bit round Robin that means you serve bit one from the first queue, then bit one from the
second queue; so, in each of these bits.



Obviously, in practice you cannot serve in this manner. But we are saying that suppose we are
having a simulator which is simulating this bit by bit round Robin manner, then what a WFQ
does is it determines when the last bit of a particular packet, when the last bit of a particular
packet would have been served, determine when the last bit of a packet would have been served
in the fluid flow fair queuing, in your fluid flow fair queuing simulation.

So, if you know that when if your simulation if you determine when the last bit of the packet
would have been served, you call this as the virtual finish time. This is not the actual finish time,
call it virtual finish time. WFQ, in your actual transmission, in actual WFQ, it will serve the
packets in the increasing order of virtual finish time. You serve the packet in the increasing order
of the virtual finish time.

Let me just again explain this. What we are doing is that in WFQ let us say that there are 1 to N
queues and you want to implement weighted fair queuing; what you do is on side by side, you
have a GPS calculator simulating this fluid flow fair queuing which is being implemented as
serving round Robin manner but bit by bit round Robin manner.

So now, if the traffic which you have fed to your actual WFQ scheduler, you also feed it through
your simulator, GPS simulator and that GPS simulator is serving the packets in a bit by bit round
Robin manner. Now, you determine in the GPS simulator, when the last bit of a particular packet
would have been served if you are serving in a bit by bit round Robin manner? Call this as the
virtual finish time and then in your actual WFQ, serve the packets in the increasing order of the
virtual finish times.

(Refer Slide Time: 40:25)

Just to give you a simple example, let us say that you have 3 queues. Let us say that your output
link capacity is 1 bit per second. So, let us say this packet has 5 bits packet, this packet has 10
bits packet, this packet has 2 bits and 5 bits. So, this packet is 5 bits, this packet is 10 bits and
this packet has 2 bits and 5 bits.



Now, if you implement in a bit by bit round Robin manner, so what will happen? One bit you
will take, it will get transmitted; another bit you will take it, another bit you will take it. So, if
you, if you really see in a time instant, the first bit of this gets transmitted. Let us say as A, then
the first bit of the second this has to be transmitted. So, this becomes B and the third bit of this
has transmitted, so this becomes C. So, 3 time units. Then again A is transmitted, then again B is
transmitted and this C is transmitted.

Now, note that this at this point, these are ABC, so there are only 2 bits. So at this point, this
packet has been transmitted. So, this is the first packet to get transmitted. Now, this has happened
in the second round. First round comprises of 3seconds, the second round comprises of 3
seconds. So, here the second round finishes. So, we call this as a virtual finish time. So, the
virtual finish time of this pack, the queue number 3, this first packet is 2.

Then again, now what happens is that you will transmit A again, B again and C again. But this is
now this packet. Then, it will go on things like this. So, the virtual finish time of this... so this is
like in the third round, this will happen ABC and again fourth round, it will happen ABC and in
the fifth round, again it will happen ABC. So, if you see the fifth round, this packet would have
been served. So, this is for the C’s. So, first is like C’s packet having 2, then A’s packet having 5
bits and then after that you will serve again C’s packet having 5 bits and again B’s packet having
10 bits. So, this way...

So now, what happens is so first in actual WFQ, you will serve this packet first. So, the server
will pick up this packet. Then, it will pick up this packet, then it will pick up this packet and after
that it will pick up the last packet. So, you need to determine the virtual finish times of the
packets that means you need to determine when the last bit of a packet would have been served
in the fluid flow fair queuing simulations and that you call it to be the virtual finish time and
serve the packets in the increasing order of the virtual finish times.

Now, in this particular example, it was very easy to visualize because what we assumed is that
all the packets are there and then after that no further arrivals are there. But when the further
arrivals are there, the situation is little more complicated and we need to actually determine the
virtual finish time of the packet. So, we would therefore like to formalize this. I am just to give
you an example here again; note that we had assumed here that this packet of length 2 and this
packet of length 5. They are available at time 0 only.

Now, it is possible that this packet of length 2 and this packet of length 5 arrives only after
sometime in the actual traffic arrival systems. But if you are doing the scheduling in a bit by bit
round Robin manner, it is possible that even then this packet would have left earlier than this
packet. That was possible. But see, this packet has not arrived you might have decided to
transmit another packet on the queue.

So therefore, we need to carefully determine what will be the virtual finish time of a packet and
towards that we need to formalize the definition of computing the virtual finish times. So, let me
just formalize that so that we then know how to determine this virtual finish times and how to
serve the packets. | will again explain that with an example so that this thing becomes cleared.



So, let me just define some few definitions for formalizing the weighted fair queuing. So, we
define this definition in terms of a virtual time.

(Refer Slide Time: 45:46)

So, but first we define the busy period of a server. So, busy period we define as any maximal
interval of time during which the server is busy without any interruptions. This is called a busy
period. Now, note that for the work conserving scheduling disciplines, since both the fluid flow
fair queuing as well as the weighted fair queuing, both of them are work conserving; their busy
periods will actually coincide. So, that is what the definition of the busy period.

Now, we look at the definition of what we called as the virtual time. Now, consider a busy period
of the fluid flow fair queuing system of a fluid flow fair queuing system. Now, let us define V (t)
as the virtual time. Now, this is defined as the function which satisfies is defined as the function
which satisfies the following property; V, is 0, so at time t, the initial time t, and V (t) minus v
tau will be equal to W ; tau t for i belonging to the backlogged sessions during the interval tau to
t.

So, what we are saying is that the virtual time of the system the virtual time of the system
increases in proportion to the normalized service received by any backlogged session. That is
what it is. Now, note that the normalized service received by sessions which are all backlogged
during an interval will be all same. So, the virtual time of the system is actually is indicative of
what is the work done by the server.

So, the virtual time increases in proportion to the normalized service received by the sessions
which are backlogged during an interval. So, let us now so this interval tau to t is any sub-
interval for this busy period. So, tau to t actually lies in the busy period is any arbitrary sub
interval of busy period. Now, having defined like this, the busy period; we would like to see
what is the definition of this, what are the properties of this virtual time.



Now in general, the virtual time is a non decreasing function of time t. It is in general, it is a non
decreasing function of time t because the virtual time will never decrease of the system as it is a
representative of the total work done by the systems. So, the way we have defined here the
virtual, the manner in which we have defined here is actually a monotonically increasing
function of the time t. Second thing is it is a piece wise linear function.

(Refer Slide Time: 50:21)

So, the properties of the virtual time is a non decreasing function of time t. Properties of the
virtual time, it is a non decreasing function of time t and it is a piece wise, it is a piece wise linear
function and this with the slope, this has the slope that is d V(t) by d(t) this is equal to r upon
summation of rho i where rho i belongs to the sessions which are backlogged.

So basically, what does it mean is that virtual time will change its slope whenever the set of
backlog session virtual time slope changes whenever the set of backlogged session whenever
B(t) changes, whenever B(t), a set of backlogged session changes.

So, again let me just explain. What we are assuming right now is we are assuming that it is a
fluid flow fair queuing system fluid flow fair queuing system where we are implementing bit by
bit round Robin fashions. Now, we would like to keep track of the actual work done in the
system and in the fluid flow fair queuing system, actual work done in the fluid flow fair queuing
system and that is why we define certain quantity which we will call it to be virtual time. Now,
we say what are the properties of this virtual time. The virtual time is initialized to 0 and after
that the virtual time increases in proportion to the normalized service received by the sessions
which are backlogged during any arbitrary sub interval of the busy period.

So, it increases and the slope of this increase - the virtual time is actually equal to, is inversely
proportional to is inversely proportional to the number of sessions which are backlogged. So, if
this number of sessions which are backlogged increases, then obviously the slope decreases. If
the number of sessions which have become unbacklogged which have gone absent; then the



slope in that case will increase, otherwise the slope decreases. So, the slope of this virtual time is
inversely proportional to the number of backlogged sessions and we can show that this slope is
actually given by the output link capacity r divide by the sum of all these rho i’s were summed
over the set of backlogged sessions and the rho i’s are the rates which are allocated to the session
i.

So, we will try to first prove this result and after proving this result, then we will try to relate it to
how to derive the virtual finish time numbers and then determine the virtual finish time so that
the packets can be served in the increasing order of their virtual finish times in the and the actual
implementation of the weighted fair queuing. And, we will also illustrate with an example what
is the importance of computing this virtual time in this manner.

So, that discussion will tell us that how we can keep track of the actual work done in the fluid
flow fair queuing systems and relate it to the scheduling of the packets in the actual packetized
versions so that we are as fair as or as fair in as the or, or at least try to be as fair as the fluid flow
fair queuing or generalized processor sharing or the GPS algorithms.

(Refer Slide Time: 55:10)

REFERENCES

S. keshav An Engineering approach
to computer Metworking
Addison Wesley 1997

A, K. Parekh & R G. Gallager
* A Generalized Processor sharing
approach to flow control in Integrated
services Network : The single Node case
IEEE / ACM Transactions on
MNetworking, June 1993
Vol | No3 pp 344-357




