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Welcome to the lecture series on advanced VLSI design.  I am covering portion on VLSI

testing and today will cover design for test techniques. In last lecture, we discussed about

various difficulties in sequential test generation and we discussed that you need to unroll your

circuit multiple timeframes to generate a test sequence.

(Refer Slide Time: 01:00)

And so now if you look at the source of these difficulties, these difficulties are arising due to

poor initializablity of the circuit. So that means here it takes couple of cycles to initialize all

the flip-flops to some specific state. It has poor controllability and observability of the state

variable. So that means here you cannot directly assign any value to any of the flip-flops or

you cannot read directly it again take couple of cycles to take out the value from the state

variable from the output.

And then as the design is growing, the number of gates are increasing, number of flip-flops

are increasing hence the sequential depth of the circuit is increasing and hence you need to

unroll it multiple timeframes and your test generation would be more and more complex and

if you look at the complexity of the test generation problem in that case, you will find that

most of time cycles are main responsible to unroll circuit multiple timeframes.



Hence your circuit would be much more complex than your combination circuit and hence it

would be difficult to generate test factors.

(Refer Slide Time: 02:09)

If you look at that the how difficult these things are. Like here these are the four different

ISCAS89 circuits, so 1196 has 14 primary inputs, 14 primary output and 18 flip-flops and

about 529 gates. As 1494 is almost similar kind of circuit, which has 8 primary inputs, 19

primary outputs and only 6 flip-flops and about 600 gates, but this is cyclic circuit, this is

acyclic circuit.

If you look at the test generation, now you can achieve 100% fault efficiency for this acyclic

circuit and fault coverage is 99.8 so that means your remaining faults are redundant faults or

identified as redundant faults and it generates 313 test vectors 10 seconds whereas this circuit

has lesser number of flip-flops, but this is cyclic and so it generates about 559 test vectors and

the test  generation  time is  something about  20,000 seconds and still  you are not  able  to

achieve 100% fault efficiency, here it is 93.

So now you can see the huge difference almost three order of magnitude difference between

the test generation time for acyclic sequential circuit and cyclic sequential circuit. This can

give you the fair understanding that if your circuit is cyclic then test generation time would be

huge and this is for the circuit, which has only 6 flip-flops. In practice, we have millions of

flip-flops.



You can imagine how much time it will take to generate a generate test. Then here now the

question is if it grows like this what is the alternate? This may or may not be practical if we

go for millions of flip-flops then what to do with this?

(Refer Slide Time: 04:43)

So now here look at the problems, problems are due to the poor controllability and poor

observability. So that means here if we can enhance the controllability and observability of

the circuit, we can make it better test evolve and hence we can reduce the test generation time

and this is coming though.

(Refer Slide Time: 05:03)

Now here if you look at a sequential circuit, if you can look at a sequential circuit, it has a

combinational logic, a couple of flip-flops. So now it has some primary inputs, some primary

outputs  and then here the input,  which is  coming from the flip-flop is  known as pseudo



primary input and input which is going to the flip-flop is referred as pseudo primary outputs.

Now if I say that if I can assign any random value in these flip-flops, in that case my test

generation  complexity  would  be  almost  similar  to  this  test  generation  complexity  of  a

combinational logic.

So if I can assign any value and if I can read any value from here again here so now when

you can write any value here, you can read any value from these flip-flops at any point in

time in that case here test generation is as simple as test generation for combinational logic.

So the question is how I can do that? Is there any way? So one of the ways that we can use

would be say if I place one multiplexer here and one extra primary input, so this primary

input say I1.

So now here whenever I want to load anything here I can control this multiplexer and now

using this control I can assign any value here. So this gives me enhanced controllability. I can

control any value here in flip-flop. So that means here I need two additional inputs, but now

here the controllability is not enough, I have to enhance the observability as well right. So

now here how I can enhance the observability?

So in order to enhance the observability what I need to do is I have to take the output to the

primary output. So now here I need to have additional primary output. This is for one flip-

flop. Now here for another flip-flop I need to have another multiplexer and then one more test

control. So this is I2 and then again I have to observe this O2. So now here what I need is I

need three additional primary input output per flip-flop.

Now the question means is it a practical thing? So if you have say million flip-flops you need

to have 3 million additional primary input output that is impractical. So now here what is the

solution? But we want this  kind of functionalities  that  we can load any flip-flop by any

random value at any point in time and then we can observe any value, which is stored in the

flip-flop. So now what is the solution?

One thing that we can immediately look at is that here when I want to load in one flip-flop I

can simultaneously load second flip-flop hence your test  control input here we can share

among the flip-flop. So that means your same test control can be used to control all these

multiplexers. So now here I reduce this n number of control signals into single signal.



But now here still I need at least 2n, where n is the number of flip-flop in the design, 2n,

number of primary input outputs. How I can reduce that number to a reasonable number? and

one of the simplest approach that we can make use is that we can connect the output of one

flip-flop as input to the another flip-flop. In other word what I can say is that here we can

change these flip-flops like this.

This is here from here not from here. So now here I can change this so that means here what

it will give me, it will make a shift register like flip-flop 2 and then flip-flop 1. So now if I

want to load say value 10 in that case here in the first cycle I load value 1 that would be

stored in flip-flop 2 and then in the next cycle here that value would be transferred here and

then the another value I can load here in is 1 so now I can load any arbitrary value 10.

So now this is a shift register so whatever value it has that can be scanned out. This approach

was first proposed by people from NEC in early 60s and that was published only in Japanese

literature. So it was unknown to rest of the world until late 60s or 70s when IBM came up

with the alternate scan architecture and this design is known as scan design. So now here this

gives you flexibility or a way to load any arbitrary value in all the flip-flops.

(Refer Slide Time: 11:06)

So now here I can load any arbitrary value, I can read any value from these flip-flops, but

here what I need, I need at least one additional test control input that is the input that can

control all these multiplexers and now here you have to replace all these flip-flops by scan



flip-flop, scan flip-flop I mean a flip-flop with a multiplexer and now here we make the input

output as a scan shift register.

So now when you can arbitrarily load any value and read any value from the flip-flop now

here when you need to generate a test vector, you need to consider only combinational logic

not a sequential logic. Now the test generation problem or in other words the sequential test

generation problem is reduced to the combinational test generation problem.

(Refer Slide Time: 12:03)

So this is the design of a scan flip-flop wherein we use a master slave D flip-flop and a

multiplexer before that. So here you have the test control input, scan data input, this D input

from the circuit and then this is your clock.
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So now here as I said that we need three additional signals, one is the SCANIN, one is the

SCANOUT and another is that the test control or test clock whatever we say. So now here

this signal controls all the multiplexers associated with these flip-flops and then the SCANIN

and SCANOUT, provide you the shift path. So now you can load any value and when you

generate the test you need to generate test for the combinational logic.

(Refer Slide Time: 13:03)

So now here how you apply test? First look at the simple combinational logic, how we apply

test to a combinational logic? You have a combinational logic, you apply some input and then

here you need to apply the value from the state variable. So that means your pseudo primary

input and then primary input and then every cycle you are getting output then your output

may be at the primary output or that may go to the pseudo primary output and you are reading

that.

So this way we apply right. If it happens to be a plain combinational logic, but now it is not a

plain combinational logic, it has memory elements or pseudo primary inputs means loading

value to pseudo primary inputs take some time right because it is a shift register.
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So now here in place of having this vertical S2, S1 now you need to make it horizontal so that

that means here in couple of cycles you need to SCANIN the test vector in the flip-flops and

then in one cycle you apply input from the primary input, capture the rest ones and then here

you  read  the  test  response  directly  from the  primary  output  of  the  circuit  and  then  the

response is stored in the flip-flops would be shifted out while you are shifting in the next

vector.

So now here you have to shift out the response at the same time you can shift in the next test

vector. So this way you can apply the test. So now here the question is how many cycles it

will take?
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So if again I look at this problem say here if your scan chain length is n, so you need n cycle

to load test vectors then in one cycle you have to go in the functional mode that means you

have to change your test control signal from say 1 to 0 or 0 to 1 and then you capture the test

response and you SCANOUT the test response. This is for the first vector.

For the second vector, you have to again load the test vector, go to the functional mode, apply

primary input and capture the test response and then the captured test response from the three

flops you have to SCANOUT. This way you keep on doing. Now because this is shift register

in that case here you can do this operation in parallel so when you are scanning out the test

response you have to SCANIN the test vector for the next test vector okay.

So now here if there are k vectors you want to SCANIN SCANOUT in that case here how

many cycles it will take? It will take means for all vectors it will take n+1 cycle, so n+1 cycle

multiplied by k and then here after application of the last vector you have to SCANOUT the

response of the last vector, so this would be n read, so now here total test time you need is

k+1 into n where n is the number of flip-flops and k is the number of test vectors.

(Refer Slide Time: 16:45)

So now here if you look in this expression in that case here, this is n combinational logic so

that means the number of test vectors + 1 into number of flip-flops + number of test vectors.

These many cycles it will take, so it will elongate the test time. The elongation of test time

directly results into increase in the test cost, but it greatly reduces the test generation effort.



And that is why though this  scan design was proposed in way back in 60s till  date  it  is

surviving. So almost all the industries are using the full scan design wherein all the flip-flops

are converted into scan flip-flop and then you apply test by loading that the test pattern in

sequential fashion. So now here the other thing that we have to take into account, this way if

you generate test for the combinational logic you can detect all the faults in the combinational

logic.

But what if the flip-flop itself is a faulty circuit? So if it is itself is a faulty circuit, you have to

test that as well. Now since flip-flop is a memory element it does a limited function hence in

its place of having fault model like stuck-at kind of fault model, we can use the functional

fault model for this and functional fault model is like it should either store 0 or store 1, so that

means  here  we have to  check whether  it  stores  0 or  stores  1 or  whether  it  provide  you

transition from 0 to 1 or 1 to 0.

(Refer Slide Time: 18:35)

So if I scan a sequence of 00110011 all through all the flip-flops in that case here I can say

that here means if I get out the same sequence from the scan chain I can say that it stores 0, it

stores 1, and it also allows transition from 0 to 1 and 1 to 0. Otherwise if assume 1 flip-flop

cannot store 1, that stores permanently 0 in that case after a while all the bit will be 1 because

here the entire bit stream is going through that particular flip-flop and after a while you will

get all bit as 0 so that means here that scan chain itself is faulty.

So in order to make sure you have to scan through a bit stream of 0011 and it will take the

number of flip-flop + 4 number of cycles. So first you have to scan through a sequence of



0011 that is also known as the sanity check of scan chain, once it is done you can apply your

test vector. So now here the number of scan chain + 4 number of test vector you are applying

from here and then as we discussed earlier that in order to apply the test vector you need

these many cycles.

So now here the total number of cycles it needs is the total number of test vectors + 2 into

multiplied by the number of flip-flops + test vector + 4. So these are the total number of clock

periods you need. So like here for example if you have a scan chain of 2000 flip-flops and

you want to apply 500 combinational vectors, if it happens to be only combinational logic

you need 500 cycles.

If it is a sequential circuit and you generate test using the sequential logic and assume that say

every fault may need a sequence of 4 vectors maybe you may need 2000 vectors and then it

may need 2000 cycles whereas if it is a scan design in that case, you can put this value 2000

and 500 in this formula you will get roughly about a million cycle. So you can see the impact

in terms of test time.

So this will increase the test time, but it helps you greatly in reducing the test generation

effort. Otherwise test generation may not be possible for a fairly large industrial design or if it

is possible it may take enormously long time that may not be affordable. Now the question is

so if you look at the various overheads then it comes with following overheads like you need

a multiplexer with every flip-flop, so that result into additional area.

You  need  to  have  a  test  control  signal  routed  all  through  the  chip  so  that  routing  area

overhead is also there.  Then because you are placing a multiplexer in the functional path

hence  it  will  result  into additional  delay,  hence  your  circuit  may operate  slow.  So it  has

performance penalty. Then it should have three additional pins, one is SCANIN, SCANOUT

and test control.

Now here because of the sequential loading of scan pattern it takes longer time. Now as I said

that here for a small circuit, which has about 2000 flip-flops and 500 test vectors it take about

a million cycle. Now what are the ways to reduce this time? Because this directly result into

additional test cost. So one of the way that we can think of is you have very long scan chain, I

can break that scan chain in multiple scan chains.



So like here say these 2000 flip-flops in one scan chain, I can chop off in say 10 scan chains

and every scan chain will have now 200 flip-flop and I can load these 10 scan chains in

parallel, but for that I need 10 additional primary inputs and 10 additional primary outputs, so

that means here in all I may need 21 additional input output pins that we may not have. So

then what is the solution? 

One of the solution could be because when we are loading this scan pattern in the scan chain,

we are not using primary input and primary output. So what we can do is we can multiplex

these scan input and primary input and we can reduce this requirement. So that means here by

multiplexing we really need one additional pin and that is your test control that can control all

these multiplexers associated with the flip-flops.

So now here whenever you are in the test mode, it will not take input from the combinational

logic or from the primary input and when it is in the functional mode, it will not shift the

value from one flip-flop to another flip-flop. So now here that can solve our problem up to

certain extent we can reduce. Then here the question is how many scan chain I can afford to

and the answer of that is max number of inputs and number of outputs because here for every

scan chain I need to have one input and one output.

So say your circuit may have 10 inputs and 8 output in that case here maximum I can have 8

parallel scan chains and that directly reduces test time by eight times okay.
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So if you look at the effort in that case here say you have circuit, which has number of gates

about  3000  and  number  of  flip-flops  about  179  and  so  if  you  use  the  sequential  test

generation in that case you may achieve something like 70% fault efficiency in about 5500

seconds whereas if you cannot or flip-flop into scan flip-flop in that case here you need to

generate test for combinational logic and it can achieve 100% fault efficiency in 5 seconds.

But now if you look at the test application, here if you generate these test vectors by using the

sequential ATPG in that case you may generate say 414 test vectors and in order to apply this

you need 414 cycles only, whereas here you generate 585 test vectors and in order to apply

that you need about 1 lakh cycles and so now you can see the overhead in terms of time and

this is recurring cost.

But as I mentioned you earlier that this can greatly help you the test generation here again we

cannot directly compare this time this is almost 3 order of magnitude higher than this time,

but  if  you look at  the  fault  efficiency  here  we achieved  100% efficiency  here,  the  fault

efficiency is 70% only. If you go to 100% in that case here this time will exponentially grow

and then this may go unreasonably large number or impractical.
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So now in general, the scan design flow is more or less automated today so when you start

your design flow from RTL you synthesize your circuit to gate level netlist, once you have

gate level netlist in that case here there are two things you have to do, one thing is because

you have gate level netlist you have combinational logic in this, you start to generate the test

vector from the combinational logic.



At the same time here you can insert the scan chain so insert a scan chain means here you

have to convert all flip-flop into scan flip-flop and then you have to shift these scan flip-flop

in a shift register. So now here once you have shift register in that case here you know the

layout of the chip and you know that how this flip-flops are connected. Based on that, here

you have to generate the test sequence.

So the test sequence is generated and now here the mask and the test program you have to

send to the fab wherein they applied at. So now when you have the gate level netlist, it has to

follow certain rule in order to insert the scan cell in the circuit.

(Refer Slide Time: 28:26)

So what are those rules which this need to follow? Some of the rules are like here we have to

use only clocked D-type flip-flops. We discouraged to use any other type of the flip-flop like

SR flip-flop, JK flip-flop, T flip-flop. So now practically all the circuits are built or designed

using clocked D-type flip-flop. At least you should have one primary input pin available for

the test that is that the test control pin, which is used to control the multiplexers associated

with these D flip-flops.

And third thing is that all clocks must be controlled from the primary input so that means

here the clocks should not be gated. Clocks are controlled by primary inputs only and clocks

must not feed data input to the flip-flops. So these are some of the design rules you have to

follow if you want to insert scan. So that means here once it is followed, you can directly

replace the flip-flop by scan flip-flop that means a flip-flop with a multiplexer.
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So like here for example if this is the circuit wherein you have one flip-flop and then the

clock is gated and sometimes it is very easy to design this kind of gated clock circuit. So now

here clock will depend on the clock and D input so that means here whenever D input is high

and clock is high, it allows the value to change in this flip-flop. Now when I do not want this

or we do not allow gated clock what we need to do?

We have to convert this gated clock input into non-gated clock input, so now here the same

functionality we can achieve by this circuit. So you have to convert if your circuit is designed

by like this you have to transform your circuit or convert your circuit into this design wherein

the clock is clean that is controlled by primary input that is not controlled by the data input.

Sometimes though here means it is discouraged to use the gated clock.

But sometimes in order to optimize your circuit you feel it is better to do the clock getting

rather than optimizing using any other way. So one must be careful means while you are

designing if you want to go for a scan design. Now here as I said that the scan design comes

with some of the overhead those are like here additional area, additional performance penalty,

then additional pins, but it reduces test generation time and test generation effort significantly.
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So this was wonderful technique, which was ever proposed in VLSI test and that is why it is

surviving for last five decades, but there is a famous quote by George Bernard Shaw, which

says that science is always wrong, it never solves a problem without creating ten more.
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And  scan  design  is  not  an  exception  to  this.  This  solves  a  very  important  problem  of

sequential test generation, but it creates some additional problems and then we have to solve

those problems. In some sense, it gives you some additional problems to solve. So now here

what are those additional problems we may have?

So one of the problems that I mentioned you earlier is that here your test application time will

significantly increase and it will directly translate to the test cost. Another problem is test data

volume. What does this mean? Like here if you apply sequential test in that case here you



need to store only a few vectors and then you have to apply those from the primary input and

number of primary inputs are pretty small.

So say you have 10 inputs and it means there are 100 test vectors you want to apply, so in that

case here you may need to store only 100 bits. Now assume that you have 10 inputs and you

have 1000 scan cells and you may want to apply 100 inputs, so now here how many bits you

want to store? You may need to or you must store 1000 + 10 input per vector. So that means

here it is the number of bits that you may need to store would be 100 multiplied by 1000 +

10.

And so you may need to store now here almost 1000 times additional test vectors that needs

the memory on the tester.  In the same way, you also need the golden response from the

primary output as well as the values in the flip-flops. So now here your test data as well as

golden response will also increase several order of magnitude and assume you have a circuit

with millions of flip-flops and several millions of test vector.
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You need enormous used memory so that means the storage of the test data is also a problem.

So that is additional problem that we have. The very important problem nowadays is the test

power, which was not there earlier. Though here the test data volume was also not very big

problem initially because at the time the circuit complexity was not that much or the circuit

was too small.
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Now here what is the source of test power? So say easily you may generate a test vector

wherein you may need to load a test data like here 101010 sequence because this sequence

you are generating from the combinational logic. Now when you load this sequence in flip-

flops what will happen because there are different adjacent bits, so in every cycle when these

bits will shift every flip-flop will toggle.

So  that  means  here  large  number  of  switching  will  happen  in  the  flip-flops  and  these

switching will also reflect in the combinational logic and see this happens only in the test

mode because here in functional mode you may not need to shift this test vector, but because

here in the test mode I want to load these bits in the sequence cells  shift  fashion here it

creates switching in old flip-flops in all the cycles.

And that switching also reflects  to the combinational  logic,  combinational  logic will  also

switch and now here the total power that would be dissipated during this period may go very

high and practical observation says that in some of the cases peak the average power can go

three to four times than the normal power and peak power may go 30 times than the normal

power.

What are the implications of this? If average power exceeds beyond the limit then your chip

may burn out, so that means here you may damage a good chip and that will result into yield

loss because of your bad test methodology. If peak power exceeds beyond certain limit, your

circuit will start to drove large current all of sudden from your power grade. Power grade

may not support that and hence there would be a drop in VDD.



If there is a drop in VDD then transistor start to switch slower, hence your response may not

be  able  to  propagate  or  the  effect  of  application  of  one  test  vector  may  not  be  able  to

propagate to the output within the given clock period and hence here you may classify your

good chip as bad chip because you will receive a random response out. So again here it will

lead to the yield loss.

So these are the important problems those appeared in or past 2000 so now here there must be

some solutions to these problems if you want to continue with the serial scan. These problems

appear due to serial scan shift nature of the test vector. So now here what are the solutions? I

may describe a couple of solutions in brief. You can look at literature there is large body of

literature available targeting these problems.

(Refer Slide Time: 39:28)

So like here some of the efforts, which are being made like one of the effort is while you are

generating the test you can generate test because as we discussed earlier that one fault may

have multiple tests. So you can select a test, which can dissipate less power and when you are

generating test, it generates large number of access so that means here the propagation of

fault effect is not impacted by those primary inputs or pseudo primary inputs.

So now you can feel these access by any value and typically people use three approaches, one

is all access are filled by 0s or all access are filled by 1s or all access are filled by looking at

the adjacent specified bit. If it is 0 in that case it should be filled by 0, if it is 1 in that case it



should  be  filled  by  1  that  is  known as  minimum transition.  So you want  to  reduce  the

transition.

So there are couple of approaches. So now here if you want to select a test vector that can

consume or dissipate lesser power that means it has to create lesser transitions or activity in

the circuit. If it creates lesser activity in that case here that may not able to detect multiple

faults. Hence you may need more number of test vectors, hence this can solve your problem

of test power, test power can be reduced, but here test length will increase.

Other possibilities when you are scanning in you can reduce the test clock, so that means here

you can operate your circuit slower hence you can reduce the average power. In practice, scan

shift operation happens almost five times slower than the rated clock frequency. So now here

you can reduce the test power, but now when you reduce the clock frequency in that case

your test application time will increase, hence your test cost will increase.
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The other way is like here you can reorder these scan chain and reordering mean here say if

you want to SCANIN the pattern 101010 and so now here you have 1 in flip-flop 1, 0 in flip-

flop 2, 1 in flip-flop 3, 0 in flip-flop 4, 1 in 5, 0 in 6.  If I can stich this scan chain in different

way like here 135246 in that case here how I need to SCANIN, I need to SCANIN 111000

and hence I can reduce the number of transitions because now in every cycle there would be

only one transition here.



So this can reduce the test power and test time, but here now you need to modify the scan

stitching and that needs some design effort and hence design time will increase.
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Then in order to reduce the test time or test data size here you can do the compression at the

primary  input  and at  the primary output.  Compaction  or  compression is  the widely  used

technique, but here again it has limited capability so these are some of the effort, which were

proposed by people to take care of the additional problems, which are coming from the serial

scan design.

There is a alternate approach that we can get away from the serial scan and then now in place

of serial scan we can have random access scan like we have random access memory, so that

means we can load or unload any flip-flop whenever we want. We do not need to serial shift

everything that can also help you in targeting all these three additional problems. You can

look at various papers published for random access scan.

Okay so here I complete the scan design portion. I discussed about why we need scan design

and what are the advantages of scan design and what are the overheads it comes with, what

benefit it gives you and what are the additional problems we are getting due to serial scan in

current designs and what are various solutions we have. So in nutshell, I can say that here if

we have serial scan design, we can convert every flip-flop into a scan flip-flop.

And then we can go to ATPG generate test using a combination of the ATPG and then we can

apply the test, but you need an expensive tester to apply these test vectors and you can test



these shifts just after manufacturing or at the fab house or in the design house if you have

expensive tester. Some of the devices are very safety critical devices and you would like to

monitor the health of those devices while they are operating in the field as well.  So that

cannot be done if you are testing a chip using external very expensive test equipment.

If it happens to be a small equipment or very inexpensive equipment, you can still test it. So

now if you want to build capability of field test you have to think about some other alternate

that is one of the problems. Second as I said that here it has some cost implications in terms

of like when you put your cheap on tester it cost you somewhere 5 to 10 cents per second. So

it is expensive.

Then it  was thought that can we build a test capability  in chip itself,  so that means is it

possible that chip can test itself that can help you in testing your chip at speed so that means

here you do not need to slow shift your test vector, apply the test in the functional mode and

SCANOUT the rest ones.
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That can also give you the flexibility to diagnose your chip and so that technique is known as

built-in self-test. It may not sound well if you say that chip test itself so that means here I

need to have all these kind of test resources on chip that means here you have to have a test

generator on the chip, you have to have a test response collector on the chip, you have to have

some  mechanism  that  can  check  with  the  golden  reference,  the  collected  reference  and

collected response and then make a decision whether chip is good or bad.
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But as I said that here field test is important for some of the devices like nowadays when you

power on your laptop it generally do some kind of self-test for the memory, sometimes for the

processor as well in order to monitor the health of your system whether it is good. Generally

for that the diagnoses here we use the software test, but if you use the software test in that

case here the hardware fault coverage is pretty low that maybe something like here 20%, 30%

after application of large number of hardware test vector like here you boot the operating

system or you run some application on that.

Diagnostic resolution is also very low, it is very slow process so that means here if you use

the hardware built-in self-test in that case here you may have lower system test effort you can

use the same built-in self-test after manufacturing and then in the field, it can improve the

system maintenance and repair. It can improve the component repair and then it gives you the

better diagnosability.
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It also alleviate some of the test problems, which are coming from the expensive tester so

some of the problems are like here in today’s design the logic-to-pin ratio is very flash so that

means  here  you  have  flash  logic  and  then  there  are  only  few  pins  so  the  pins  are  not

increasing as per more slow, but here logic is doubling almost every 18 months, so now here

it is very hard to observe some internal points.

So observability is very difficult then the density of device is increasing and then here clock

is becoming faster the test application time because the number of flip-flops are increasing

then test application time is increasing, the number of test vectors are increasing and like here

more  slow  the  test  vectors  are  doubling  almost  every  13  to  16  months  and  you  need

expensive test vector and then here it is very hard to insert some test points in the circuit

because here this may impact the timing of the circuit.

Of course here industry faces the shortage of test engineer so that is why also we need built-

in self-test kind of test mechanism. Other thing is like here for the design point of view, it is

easy to partition the circuit and do design in parallel, but here it is very, very or extremely

difficult to partition the circuit for the test point of view. So these are some of the problems,

which are alleviated by built-in self-test.

So now here built-in self-test means a chip is supposed to test itself. So that means here you

need  to  have  a  hardware  pattern  generator,  you  need  to  have  a  response  analyzer  or

compactor that can compact, collect the response, compare with the golden response and say

go now go.
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And then here in order to control all these activities here you must have a test controller that

can control that means that can excide the test better and generator and analyzer at different

point in time and then here you need to have some methodology to test that built-in self-test

hardware. It also comes with some pin overhead so that means here at least you must have

one additional pin that can say you that here now it is the time for built-in self-test.

So now you have to run the test, so you need additional pin for that because here we are

inserting  additional  hardware  for  the  test  pattern  generator  and  analyzer  and  then  test

controller in that case here some of the additional gates may be being inserted in some critical

path  and  due  to  that  here  performance  may  reduce  because  we  are  putting  additional

infrastructure in the circuit.

Then the area will increase if area increases in that case here the number of faults may likely

to increase hence the yield may be low and then because of the additional area the reliability

of the system also reduces and then here the built-in self-test hardware complexity will also

increase when you want to make that additional circuit as a testable.
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So now here if you look at what kind of faults your built-in self-test can detect? These are

like here all single faults in the combinational or sequential circuit, all the delay faults, single

stuck-at faults in the built-in self-test hardware or architecture. What are the benefits of this?

It reduces the maintenance cost, it generate the test at lower cost, it reduces the storage or

maintenance of test  vectors,  it  is  simpler  and less expensive,  automatic  test  equipment  is

needed.

Because here you need to say only that here now you start the test and now you stop the test

that is it. It can test as many units as possible in parallel because now you need a very small

board that can tell a chip that now you should start to test the chip and these are all very

inexpensive board. So you can test large number of chips in parallel and so now here the test

application time would be shorter and now here you can apply test at the circuit speed in that

case, your at speed test is enable.
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So if  you look at  the  built-in  self-test  architecture  what  you need,  you need a  hardware

pattern generator, you need hardware response analyzer, you need to have some place where

you store or the golden reference input and then you need to have a comparator that can

compare you or collected response with the golden response and it will say that chip is good

or chip is bad.

Now here this is your circuit under test so now where you need to apply the test, you need to

apply the test at the primary input right, so that means here you have to multiplex the output

of hardware pattern generator with the primary inputs and you have to take output from the

primary output of the circuit  and in order to do all  these things you need to have a test

controller that can generate the control signal for all the test patterns.

So now here this approach can test all the faults, which are in the circuit under test, all the

faults which are in the built-in self-test structure except the faults, which are present at the

primary input of this multiplexer because here when you are testing your chip you are not

exercising this path and primary output so now here if there is a open in that case here you

may not be able to exercise that and you may not be able to test.

So these are the faults, which may remain uncovered if you use built-in self-test. So now

describing  this  built-in  self-test,  I  stop  here  today,  we  will  continue  with  the  various

components of built-in self-test in the next lecture. Thank you very much for patience for

listening. Good day.


