
Advanced VLSI Design
Prof. Sachin Patkar

Department of Electrical Engineering
Indian Institute of Technology – Bombay

Lecture - 26
Single cycle MMIPS

Welcome again, in this lecture I will introduce a toy version of very popular pioneering CPU

called MIPS.

(Refer Slide Time: 00:37)

So, I am going to refer to this toy version of this MIPS as MMIPS, M probably standing for

mini MIPS or micro MIPS. So this MIPS is the pioneering RISC CPU, RISC stands for

reduced complexity instruction set computer. This complexity is in bracket it is typically read

out as reduced instruction set computer. The reduction is really not in terms of number of

instructions, reduction is in that sense of the complexity.

The instructions are quite simple and the simplicity of the instruction set leads to simple and

elegant micro architecture and micro architecture by that we mean the data path and the

controller which kind of define that CPU.

(Refer Slide Time: 01:25)

So later on in couple of subsequent lectures, we will describe a multi-cycle data path

implementation of micro MIPS as an illustration of the concept of a FSM driving the data

path, which we have already illustrated in the other simpler examples of GCD and shift add

base multiplication. A CPU micro architecture has always been an interesting and wholesome

example of digital system.

So that is what makes it kind of relevant in the context of this course also and VLSI of FPGA

implementation aspect of a CPU micro architecture, this is mu architecture micro

architecture, this forms an important component of pedagogue of VLSI design. So we will be

able to address in this couple of lectures some aspects of implementation issues and comment

on it at least and you will get some pointers to go further than this to go towards the more

specialized course in processer design or VLS's architecture design.

So there is a good reason for a good example of this kind which is a very standard example in

various courses, specifically on Mac computer architecture and digital system design.

(Refer Slide Time: 02:54)

So in micro MIPS, micro architecture, we will be focusing on a very small subset of the

instructions, although it is small subset, it would still illustrate most of the important

fundamental ideas in the micro architecture and implementation. So this MMIPS, micro

MIPS or mini MIPS, is a 32 bit architecture by that I mean the instructions are 32 bit wide

and data words are also 32 bit wide, okay.

The good amount of uniformity in this RISC processes which makes things simpler to design,

simpler to analyse, simpler to like, you know implement. So at the top level, at the behaviour

level a processer is described by its instruction set architecture we can understand what kind

of processer is capable of executing. And then the data path and controller are designed to

facilitate execution of those particular instructions with the help of components like ALU,

register files, multiplexers, shifters and so on so forth.

So even the small subset of MIPS which we call MMIPS is capable of very standard

arithmetic logic, data movement, and branch and jump kind of instructions. So I am just

saying some standard things. There is nothing yet to focus specifically on, so it is a standard

toy example of a standard CPU that we are going to consider here, although it is small it will

still illustrate most of the concepts.

(Refer Slide Time: 04:41)

So, for example, any standard CPU, I will draw it here again, a standard CPU should be

capable of executing an add instruction, arithmetic instruction. So typical example of

arithmetic instruction is add.

(Refer Slide Time: 05:02)

So MMIPS in particular has this like an instruction to which the arguments are the destination

kind of index which specifies the destination, I will tell you what exactly that $4 means, and a

pair of source indexes. And the MMIPS has one, micro architecture of micro MIPS has so

called register file which is a collection of registers, every register is 32 bit wide and there are

32 such registers.

This registers are going to be referred to as R0 or X0, R1 and so on R31, and in particular this

R0 it is really not a set of memory location, it is all hardware to ground, all zeros. So it would

look as if the register number zero always contains zero. The trick is to hardware it to the

ground. And other 31 registers are general purpose, I mean most of them are general purpose

and every one of them can be written to.

This is you cannot, R0 you cannot write to it always contains a constant. So now, coming

back to this instruction this four, three, six, they refer to the indices of this register in the

register file. So this particular instruction, the semantics of it is that these two indices specify

this source register from where the source operands will be to be read out they will be added

and then the result of the addition is going to be kept in the register with the index four.

So R4, register with the index four is going to be loaded with the result of addition on this

two operands, which two operands, the contents of registers at index three and register

number six, okay, so R3 and R6. So in this particular instruction the contents of R3 and R6

are going to be read out and the result is going to be somehow routed back to R4, something

like that.

So the data path is going to definitely have this register file which has 32 registers the data

path would also need to support, because the instructions there should be a support for

addition instruction. So there must be an adder/subtracter kind of ALU and there should be

some set of routers, like multiplexers which will help the things go, which will route a

register from appropriate register towards a ALU and result of the ALU back to the register

file.

There will be most things of this kind is required, so we will develop, we gradually kind of

evolve a picture. We can evolve this complete micro architecture by understanding the need

of each and every instruction of this kind. But this is kind of routine exercise, so I will be

covering this subject at a fast pace. Now specifically is that how the instructions are

represented, so let us get back to the same example.

(Refer Slide Time: 09:27)

An instruction like add, so clearly like you know recall what this means is R4, so this 4 is the

index of the destination register and three and six are the indices of the source registers, okay.

The encoding is as follows, as a remark every instructions in this CPU is going to be 32 bit

wide, okay. And then this 6 MSBs, most significant bit of this 32 bit from zero to 31 all to op

code of add, okay. Then we have 5 bits representing these particular 3.

That is the first source index. so this number 00011, so this is equal to 3, okay, that whatever

we are specifying one of the source operant. Then the second set of 5 bits is going to encode

this number six, which is to be interpreted as this second source index, and then the number 4

which is the index of the destination register for the addition operation and that is 00100. So

we are going to use 5 bits for every such index.

Because all these 3 indices in an instruction like add which operates on the contents on pair

of registers and puts the result back in one of the registers in the register file. So this is called

as a R-type of instructions, just purely working on the information on the register file, no role

of any data memory or anything else here, okay. So we require first, because there is 32

registers we require 5 bits to encode the indices of them.

And this triple of 5 bits is going to contain the index of the source, index of the source

another source and index of the destination. So up to here we have used 16 bits, 6 bits for this

and 10 bits for this and then this is 5 more bits. In the remaining 11 bits right, bit number 10

to bit number zero we have some extra information. In the context of add it will also, there

will be some, op code of add will not be completely describe by this 6 bits.

In fact, this 6bits couple with the, I think it is again 6 more bit. This bits and this bits together

is going to be is going to indicate this particular instruction is an add instruction. Working on

this pair of indices is describing the source operands and this particular index is describing

the destination operator. We will ignore, what this is, this is where some, for some shift

instruction the amount of shift is described here, again this requires 5 bits, 5 bits can specify a

number up to 32, 31, I think whatever.

In shift instruction this will be used as shift amount. We will not be bothered about that in fact

we are not bothered about these details at all. We just need to get an idea about how to in the

simple manner these instructions are encoded. So we add and we look at couple of other

examples and that would suffice us to get an idea about how the instruction looks like and

how the parts of the instruction are to be used for the processing in the micro architecture.

(Refer Slide Time: 14:30)

In general, add has the structure, to specify the index of the destination, to specify the index

of a pair of sources, and semantics, R[dst], R[src1] plus R[src2]. Similar to add instruction we

have subtract instruction with similar structure where this dst, src1, src2 are again numbers

from zero to 31 representing the indices of the registers. And other than these two arithmetic

instructions we have the pair of logical instructions for being bit wise OR and bit wise AND.

Again the same triple of indices, and there is one interesting instruction called set less than,

SLT, again which is. So this instruction is interesting, it has the semantics that all of, the

destination register is to loaded with one provided the content of the register indicated by the

first source index is less than the content of the other register, which is indicated by the

second source index in the instruction.

If OR of this, contents of register with this index is less than the contents of register with this

index, then the destination register is going to be loaded with one, that is we are setting the

destination register to one, setting means setting to one typically, otherwise, we are setting it

to zero or we are clearing it, otherwise. So, it looks bit funny or too specialise, but it has a lot

of use I means it is going to be very much useful in the comparisons, comparison based

branching.

Because we are going to restrict our attention to a very simple small subset of this already

reduced complexion instruction set. And that come instruction set should still be sufficient to

be able to do any kind of computation. So it is SLT in conjunction with a simple branch

instruction, conditional branch instruction called BEQ, which again has very similar but

slightly different but mostly register based format.

Branch equitex are a pair of register indices, source one and source two compares the

contents of this two register specified by these two indices. And if they are found to be equal,

then it would make a relative jump to an address specified by some constant specified here, in

the immediate field, this imm stands for immediate, read this as immediate just clarify it

soon.

Anyway I just quickly talked about BEQ, thought of mentioning it, because this SLT in

conjunction with BEQ is going to be a very powerful kind of instruction. So more about that

in any standard text on computer architecture especially many text books which use MIPS as

a vehicle to describe the concepts of computer architecture and organisation, standard books

one of the best book known is by Patterson Hennessey and so and so.

Many of you are might already familiar with it so I am not going to spend time on this.

(Refer Slide Time: 18:35)

So we have seen some R-type instructions like add, sub, OR, AND, SLT, they are the type

instruction the destination register specified and source, pair of source register specifies, that

is the format of this such instruction they could be more of this in the standard MIPS. Other

than this, we have so called I-type instructions, immediate type instructions, in which not

everything is from registers and going to the register.

But an example of that is immediate version of this is add instruction, this is to be read as add

immediate. So add immediate to format of that is this destination specify, because finally the

result has to go somewhere but what are the source operands, the source operands are not pair

of source register indices, but one of them is going to come from register specified by a

particular by the source index and the other source operand is going to come from immediate

field.

Now where is this immediate field? So again look at the recall the 32 bit instruction format.

For I, it was like 6 bits for op code and similarly the most significant 6 bits will be used for

op code of add immediate, then there will be 5 bits for the destination, 5 bits for the src1 the

first source specifier then the next 5 bits will be for destination. This particular dst

information destination index will be stored in the next 5 bits.

That cover 16 bits and remaining 16 bit will store a constant that is to be added to the content

of this register specified by src1 and result is to be loaded in to, stored in to the register

specified by dst.

(Refer Slide Time: 21:06)

So let us look at an example add immediate it is simple anyway. Add immediate say $4, $6,

and say 173 in decimal. So this is going to be 6 bit of op code of add I and then this is the

00100, sorry that is the destination right, so this will be the source and then followed by the

index of the destination register that is 00100 and 16 bit, this is an 8 bit number right less than

255, 00001, 128 plus 32, that is 160 plus, this is 13 plus 32, 45 plus 128 right.

So it will be the 16 bits, this is number 4 this is number, $4, $6. So the semantics is that this

R, register number 4 is loaded with the addition of contents of register number 6 and this

binary number which is this, which stored in this immediate this 16 bits here. Note that

compared to, if you compare it with the encoding of the add instruction, add instruction

required three register indices, two for source and one for the destination.

Here we require only one register index for source, because the other source operand is going

to come from this 16 bits here, and the destination which would have been in the third set of 5

bit indices now it is going to be over here. This 16 bits are going to be free for holding a

immediate, I mean holding a constant which is to be treated as a immediate operand, okay, so

this is the immediate operand, 16 bit immediate. This is the specifier of direct operand. This

is specifier of immediate operand.

(Refer Slide Time: 24:27)

And similar to add I there will be subtract I, with the same format. So this is an add I and

subtract I and similarly logical OR, logical AND immediate are examples of I-type

instructions, immediate type, I-format instructions, knowing their op code figuring out that its

instruction say subtract immediate or add immediate we know that the bits of the instructions

are to be interpreted as source index, destination index and 16 bit for immediate.

Unlike in the case of the R-type instructions where we have to look at this, like you know

bunches of triple of 5 bits for two source indices and one destination index and the remaining

some of the bits can be ignored. There is no rule for immediate operand in the R-type

instruction like add, subtract, OR, SLT and so on. So I think SLT immediate is also available

in the MIPS instruction set architecture.

Now other than this these are arithmetic and logic kind of instruction that we have seen so

far, and I will also mention to you about branches equal to instruction that will have a pair of,

there is no role of destination as such, there is a pair of source indices src1, src2 and there is

an immediate field. So here the encoding op code of BEQ will be here in this 6 bits and then

src1 will be here in this 5 bits src2 will be next 5 bits and this 16 bits will be used for

specifying a constant.

What is the meaning of this semantics of this instructions, the program counter which stores

the instruction address of the next instruction is going to be updated with current program

counter plus four, okay, we will just come to this plus four ignore it for a while, the main the

role of the immediate is this program counter is essentially updated with, this is treated as a

relative offset, and this 16 bit number is treated as the word offset.

Remember that I mentioned that this CPU is 32 bit wide, okay. But we are using the

addresses at the byte level. Next word of 32 bit is going to be four bytes away and this

immediate field is been interpreted as the number of words like, relative offset in terms of

number of words. So this is the offset which is to be added to the program counter to get the

next value of the program counter that is where the next instruction is supposed to be.

So this is the conditional jump which is of the relative jump kind and but the main thing is

that this word offset has to be multiplied by four, so shifted left by two, shifting it left by two

will have the effect of multiplying it by four. So this multiplication by four will convert this

word offset in to a byte offset, okay, immediate offset in terms of byte address. So assume

that the memory can refer to individual byte so the address is referred to different bytes.

So if you want to go to the next word, then you have to change the address by four. This plus

four, you ignore it for a while we will talk about it later, it is just one of the subtle features of

not too important. MIPS have taken a part of the architecture it was decided that the relative

offset would be added to PC plus four. So PC plus four is the default next program counter

right, default value of the next program counter.

But so instead of the default is going to updated by the offset, so the compiler or the

assembler should make sure that if you try to encode that is of jump address, then it should be

just the difference between the address of that place to jump. And correct instruction but

rather the difference between the location where to jump minus PC, the address of the next

instruction the default next instruction which is PC plus four, that is why this funny thing.

So very quickly we will just windup the couple of other instruction. In fact important

instructions that are left are load and store. So for the instruction that we are seen have been

of the type arithmetic, logic or the control flow, branch jump is also there, unconditional

jump. But let me just ignore it for a while, I mean it is not an very important, we can easily

extrapolate by understanding the architecture for this instruction what will be happening for

jump, okay.

(Refer Slide Time: 30:37)

So let us look at the instructions which work with the memory, so load and store, these are

memory based or other memory access instruction. This is absolutely necessary right, just by

providing the ability to do arithmetic and control branch and jump. You are not going to be

able to get data or archive data in places, registers are there 32 of them, plus 20 for lots of

applications but not in general situations like where you might require lot of data, that will

have to be stored in the arrays.

Arrays could be much bigger than the number of registers you have, so you need to make use

of data memory and that is why you need to have couple of instructions to provide for that.

And one such is load, this will load something from the memory, the syntax is load, specify

the target index, index of the register in which you are going to load something. What you are

going to load is specified over here, I am just using different kind of names which will

suggest the purpose.

So the semantics is the register whose index is given by this target, target index between zero

to 31. So this specifies the register from the register file that register is going to be loaded

with contents of data memory at appropriate location, which location at appropriate address,

that address is calculated by reading out the contents of the register specified by this base and

again we have the shifting left by two, okay.

So the encoding of this instruction, load instruction is going to be like this. This is 6 bit op

code for load, 6 bits, then you have 5 bit representation of this particular like you know the

base specifier, base register specifier, then 5 bit for specifying target and that leaves us with

16 sixteen bit, okay.

So again now this immediate is going to be regarded as an offset, because this is address

calculation right, this is calculation of a address of some location in the data memory and

since we have this 32 bit registers, register, if it is to be loaded with something it has to be

loaded with 32 bit content. And that has to be like you know a word from memory, 4 byte

word. So this immediate, 16 bit immediate field, you treat it as a word offset.

Offset with respect to the base which is specified in this in the register with this particular

index, okay. So this is as you can easily imagine that this facility is provided for array kind of

indexing, okay. So this is also an I-type instruction, because there is a role of immediate field

and complementing load we have a store instruction whose syntax is similar and index

specifying the register, and index specifying the another register.

And the immediate field but this semantics is, storing something from a register file in to data

memory, so data memory at certain location is going to be updated with the contents of RT.

The register with the index RT and which location in data memory, just the way it was done

in the case of load. So address calculation is same as that for load instruction. This is going to

be the base address that is why we call this register base register plus immediate.

I was just prompted that I missed one point in describing the branch instruction.

(Refer Slide Time: 35:40)

This is branch is equal to, the syntax of this is, it takes a pair of source indices describing the

registers, which are to be used as source opponents and specifies an immediate field as an

offset for relative branch. So meaning is that PC is to be updated with PC plus 4 plus,

conditional right, if the contents of resistance at indices source1 and source2 are equal. So

this is the work offset.

We may convert it and to be shifted by 2, left shifted by 2 and this PC plus 4 is the default

next program counter that is updated with this offset. So if this is done if the equality holds,

you know, the content of these two registers are equal. Otherwise PC is going to be updated

with the default, again this plus 4 why, because the instructions are 32 bit wide and address is

referred to bytes.

So to refer to the next word, the next instruction we have to add 4. Address of next

instruction word. Instruction is word long, right 32-byte long. It is a 32-byte architecture. We

can study the variations of this anyway, but right now for simplicity of the presentation, we

are assuming data instruction to be 32 bit, but we can explicitly convert the word address to

byte addresses because the address is referred or mentioned at the byte level.

Alright so that was just for it. So missed that point while describing BQR instruction in RE.

Let us quickly look at the use of this memory instructions, so memory access instructions

provides and this immediate field and the source index has to be treated as the base.

(Refer Slide Time: 38:31)

So here on this slide, you have seen some typical like, you know, kind of C code statement

where you have an array A that contains of the 8 location of array A is to be added with the

variable h and the result is to be put in variable g. So let us say it as the compiler has a kind of

associated g with register number 1, associated variable h with register number 2 and the base

address of A is stored in the register number 3, okay.

Now, is this particular c statement is going to be compiled into a MIPS code, then the index A

is referring to the eighth word, right, of the array A. So eighth word is going to be at offset of

32 bytes, okay because there are 4 bytes per word. So that statement is going to be converted

or compiled into this pair of statements, of course one is for loading something from the data

memory.

Because the array A is going to be stored in memory, okay. Only the base address of the array

A is stored in one of the registers, specifically the register number 3. Now here this lw stands

for the load instruction, sometimes you might have variation called load single byte, but

default load instruction is load word, lw stands for load word. We are going to focus only on

load word instruction in this particular lecture.

So look at the syntax. It is saying that $4 is specified as a target address that is index of the

register in which the data memory word has to be loaded into. So why number 4? That seems

to be some temporary location. So you load something from data memory, which is at offset

of 32 bytes from the base address stored in register number 3 that is 32$3, 32 is going to be

stored in the immediate field of the instruction.

$3 refers to the base register that means #3 is going to be stored in the SRC one field of the

first bunch of 5 bits in the load instruction and coding and this number 4 refers to some

register, which we are going to use it as a temporary location storage for the eighth word of

array A, which we have loaded into, which we arrayed from the memory, okay.

Now for the next instruction what we need to do is we just need to add to h, this memory

contents that we arrayed out, h is bound to register number 2, right that we are assuming. So

we need to add the contents of register number 2 and register number 4 because that is where

we have just, previous instruction, the data has been loaded into. So the add instruction is

specifying that in updated destination register number 1 with the addition of register number

2 and register number 4, okay.

These two pair of instructions together is equivalent to the statement g equal to h plus 8,

okay. This is a simple illustration of how the immediate field is used, the offset is calculated

by shifting by 2 and the base of this stored in one of the registers and offsets are specified in

the immediate field.

And so like, you know, this shows that such a simple small instruction can also take care of

your need of working with arrays, which is the most elementary data structure, but powerful

enough to mimic any kind of advanced data structure. So in principle you can write any kind

of program with this kind of simple instructions in the sense to complete without need to go

into that.

But it will suffice not only for our explanation of fundamentals, but also it is a complete CPU

by itself, although tedious to program. We will have to execute a lot of instructions of the

simple kind to do something routing, okay. So this was the base instruction 32 is the offset.

(Refer Slide Time: 42:58)

And similarly we can look at a couple of other examples, but I leave it to you to study it on

your own. Registers are used compared to the data memory, because they are much faster for

access than memory, typically in the single clock side, you can access a register, but for

accessing a S-RAM or D-RAM, we require longer time, so we would not go into that again,

but just a small point is if you want to operate on data that is stored in memory.

Then first you have to load it into registers, operate on it using an arithmetic or logic

instruction and put the result back in register and then store into memory using the store

instruction, so load and store would be required other than the arithmetic instructions or

logical instructions, so if you want to operate directly on memory, if you want to operate on

data and memory locations, then you have use a complimentary pair of load and store also.

So more instructions need to be executed, so it is quite important that comparatively make

sure that much of the computations were arithmetic, happens on data, like, you know, most of

the data that is required repeatedly, frequently is bound to registers rather than stored in some

arbitrary locations in the memory. Arrays obviously have to be stored in memory because

arrays are typically large and you do not have large enough state of registers to store big

arrays.

But local variables they are to be like, used frequently. It makes better sense to use them in

good bind them to registers. Similarly, there is a role of immediate opponent and so on. We

have already discussed that

(Refer Slide Time: 44:52)

Steps in instruction execution, what are they? Like you know during a single clock cycle, in

which one instruction executes. We will be assuming that our CPU is simple enough that in

one single clock cycle and single instruction will completely execute. Next clock cycle, the

next instruction will execute, which would have been fetched by using the address in the

program counter and so on so forth.

So in the beginning of the instruction execution, program counter will supply its contents as

an address to instruction memory. Now there is something called instruction memory and

there is something called data memory. So why these two things are to be separate, we will

remark on that a bit later. So once the program counter supplies an address to the instruction

memory, sometime during the same clock cycle after a bit of delay.

The memory is going to supply its content at that particular location and that would be the

instruction, which is to be now processed. So by this time, we can say that we have faced the

instruction, okay. Next, looking at the 32-bit instruction, we identify depending on different

types of formats of instruction, we identify which of this parts of instruction refer to register

indices, source of destination, look at source indices.

Supply them to register file and some mechanism there be like, you know, locate and read out

the appropriate registers and bring them on at output of the register file, okay. Now

depending on the instruction class, we will use the ALU to calculate either the arithmetic

result of what we have just read from the register file, or we will treat the information that we

have read from the register file and some part of the information from the instruction itself.

Namely the immediate field and use it to calculate the memory address that is required for

load or store. We have seen that immediate field and the source index they together cannot

specify the address of the memory location in the data memory, okay. So one part of the

address, which is the base address, has to be read, found the register file and the offset is to be

obtained from the instruction itself for low as 16 bits of instruction, which are left shifted by

2 bits.

Of course with the sign extension like keeping the polarity of the offset same. so either it

could be used for arithmetic result or for calculating the address of memory location for load

store, also as best seen in the case of branch instruction, branch equal to target of the branch

that address has to be calculated, again by this same ALU, okay. Fortunately, like one main

ALU is going to be used in one clock cycle depending on whether the instruction is

arithmetic or whether the instruction is load stored or whether the instruction is branch for

one of this purposes.

So we do not need three separate ALUs for these three. At any given clock cycle, only one of

this kind of activity will be happening. Of course we require a couple of other ALUs that will.

I am sorry. This is completely wrong what I said. In fact, we are going to begin with a single

cycle CPU and we will be requiring multiple ALUs, just the way we just entered at something

called instruction memory and something called data memory.

Two separate blocks of memory. This will require multiple ALUs, okay and the reason is that

in any given instruction, even if it is arithmetic kind of instruction, we will require to do ALU

to do arithmetic at the same time, we will require some other ALU to do calculation of the

next instruction PC plus 4. If it were a branch instruction, then we will require one more ALU

to add in the same clock cycle, will require one more ALU to add to PC plus 4 the offset.

Offset left shifted by 2. So we will require multiple ALUs. We will soon get a clear picture of

that, okay. After we have calculated the address in case of certain memory instructions like

load and store, we will actually access the data memory by supplying that address and either

taking the data from the data memory from the load instruction or storing some data into the

data memory that is on behalf of the store instruction, okay.

In the meanwhile, during the clock cycle, one of the ALUs would have computed PC plus 4

that is incremented PC, this will be of simple ALU, which will essentially be adding constant.

It might be optimized added and the result of that is going to be kept ready to be loaded at the

end of the clock cycle in to the program counter. So PC is going to be updated with the target

address or PC plus 4.

PC plus 4 is a default and in case of branch address, if the branch condition is successful, then

another ALU would have added offset to PC plus 4 and that result would be ready to be

loaded into PC, okay.

(Refer Slide Time: 50:28)

We will soon see what kind of components will require in the data path, will require a

program counter or register, which will be updated at the end of every clock cycle either with

PC plus 4 or with a target address or destination address in case of unconditional jump.

Definitely, we require memory, but here we see that we require instruction memory as well as

data memory, separate blocks. We will see the result for that.

More or less obvious, I will just mention it in a minute or so, then we require a collection of

registers, organized in array of registers, which in a standard terminology, we call it reg file,

then in ALU we will require more ALUs as we will see this soon.

(Refer Slide Time: 51:13)

We can mention some more things about individual components a bit later. This is how

abstract a simple picture of the micro architecture will look like. Note that this is only data

path. The controller will describe shortly a bit later. Again you see the role of program

counter, instruction memory, register file, ALU data memory. In addition, you see two more

ALUs, which are more specific.

One of them is a very specialized add up, which is adding 4, the one on the top left portion of

this slide, and evidently that computes PC plus 4, which is the default next program counter

address, but in case the instruction is branched, then there should be a facility of updating this

PC plus 4 by adding the part of instruction, the immediate field shifted left by 2 that by

another adder and that should be routed back to PC.

This is just a picture. We are not yet looking at a data flow. We will soon look at it over the

next couple of slides, but you see the wiring here, the contents of PC will be going to the

specialized adder, which is adding 4. PC is going to be at the input of program counter, we

have either the contents of the specialized adder, which is adding 4 or the next ALU, which

would be adding a part of the immediate field offset.

At the output of instruction memory, we have a couple of wires, a few wires going to the

register file, which are basically 32 lines coming out of instruction memory because we are

reading our instruction, which is 32 bit long, a few of the bits going to the register file,

specifically, those three lines that you see are like 32 bits of instruction are coming out over

here.

Evidently these three sets of wires are basically bunches of 5-bits specifying the source

indices, source 1 and source 2 and third optional cases like register type indices another

bunch of 5 bits, which we have seen in certain instruction, there is a role for it. The green

ovals are multiplexors drawn in this funny way. This is some standard convention used in a

book by Patterson Hennessy.

We will have to get used to it. Just to keep this diagram less cluttered and more abstract, so

we will come to that in a way. This blue blocks are left shift by 2 because we know that we

have to take some portion of this instruction, 16 bits, namely the lowest 16 bits, they have to

be left shifted in certain situations when we have to use them as word offsets in case of

memory at this calculation for load store or the branch target calculation in case of the

instruction like branch equal to.

Then, the output of register file corresponding to the two source indices, the two of the

registers are read out and they typically are used as inputs to this ALU, okay. So this one is

used as a first input and this one is typically used as a second input, but there is a multiples

are here and that tells us that the second input to the ALU can come from where. It can come

from the left shifted version of part of the instruction, which is for the purpose of shifting the

immediate field by 2 bits and using it as a second opponent to ALU.

This will be apt in case of you can see load and store instructions, okay. Similarly, this left

shifter will be used for calculation of the branch target arrays adding the offset immediate

field shifted by 2 to PC plus 4 that has already been completed by this particular ALU, okay.

When you see that disk multiplexer will optionally late either the PC plus 4 or this branch

target address calculated with the help of immediate offset.

So this multiplexer is going to be controlled by this situation in the instruction, whether the

instruction is branch, whether the branch condition has been found to be successful or not,

depending on that disk multiplexer, we will choose whether this one to be set through or this

one is to be set through, okay. Coming back to the ALU, this is the multiplexer.

At the second input of the ALU, I have not drawn the complete picture, there are couple of

other sources. In fact, this picture is a bit incomplete because it shows that the immediate

field has to be left shifted by 2, but that is for the load and store instructions, for address

calculation, but for add image instruction, 16 bits of this instruction have to be directly sent

over to the second port of ALU. They should not be shifter left by 2.

So another alternate possibility to reach the second input of ALU, okay. In this manner, we

can describe the wiring of the data path components. For example, ALU output is to be either

routed back as data input to the register files with that data, which is the result of the ALU

computation, say on behalf of add instruction or subtract instruction or all instruction are

brought in here and it is going to be stored in the register specified by this 5 bits, okay and so

on so forth.

(Refer Slide Time: 57:26)

Anyway instead of showing vaguely, we can look at more specific pictures for different

instructions. For example, here in this slide we have marked thick red, flow of data on behalf

of some instruction and you should be able to guess for which kind of instruction, this kind of

flow of data occurs. So see what is happening over here, what is being depicted is that from

program counter, the address is going to the instruction memory.

The program contents also going to this adder, the constant 4 is going to this adder and the

result of this adder, that is the one which is going to be routed by this multiplexer, back to

program counters. That means at the end of this clock cycle, the program counter is going to

be updated with PC plus 4. Apparently in this particular scenario, there is no role of this

particular adder. What it does is of no interest to program counter.

Let us look at other part. Program counter is going as an address to instruction memory. The

contents of instruction memory are coming out here and 5 bits of them fed over here, 5 bit are

fed over here, there is an interesting multiplexer here. We will talk about it a bit later and

what we see that corresponding to this 2 bits, this pair of 5 bits, the register file realises,

which pair of registers are to be read out on this 32 lines and on these 32 lines.

These two pair of 32 lines act as source opponents to this ALU. ALU will work on the

contents of registers, which have been laid out here on this lines. The result of the ALU is

going to be sent back through this multiplexer back to the register file. Again, you see that

there is no role of anything coming out of data memory. It is not going to be routed by this

multiplexer to some. So what do you guess?

This is some kind of data flow that is happening on some data processing that is happening in

the ALU, a flow of data through these multiplexers from appropriate sources. Many of this

data lines are inactive in a sense that they do not seem to matter, so what could be the

instruction, which is causing this data movement and data processing. There could be

multiple options.

In fact, clearly, it looks like definitely not a branch instruction because they otherwise would

have been a role of this. It is a registered type instruction because you see that all these three

sets of 5 bits are of use, okay. So this pair of 5 bits are indicating the pair of source registers,

the contents are being available at this pair of 32 bit outputs and the result is coming back in

to the register files. So it is a R-type instruction where the pair of source operands and result

are all like specified with respect to the register file, okay.

The destination is in the register file, the sources are in the register file. So it is the R-type

instruction and it could be add or subtract or OR or like you know AND, depending on how

the ALU is configured, okay. There are some control signals to be ALU, which will set an

ALU in an addition mode or subtraction mode or logical operation mode, okay. So it could be

an add instruction or subtract instruction or logical OR, logical AND or set less than for

example, okay.

(Refer Slide Time: 1:01:09)

So, next we can look at this example, there is a bit of slightly different data flow. So again

you can guess, you see that, it may not be complete in this picture but here this thick red line

should be carried over to this. So this means the PC plus four is computed and is being routed

back to and kept ready at the input of program counter. So program counter being a

synchronise like you know clock register.

So at the end of the clock cycle program countablity updated and in the beginning of the next

clock cycle we will be effectively using this new address as the address of the instruction

memory. Next instruction will be fetched out and it will be processed. So this is what is

happening over here, again since there is no role of this thing, this cannot be a branch

instruction.

But you see that the instruction that has been read out, fetched 5 bits of this instructions are

going over here, though I have not show it too clearly, the next 5 bits are going over here. So

this is the destination this you can guess, I deliberately not shown this labels because I am

treating this as exercise for you to a lot of guess work and get more familiar with the data

path of this and it is basically quite simple, quite easy to work out from scratch and assimilate

the understanding of that.

So there is a 5 bit index for specifying one of the source operands, the next 5 bit is going to

be used as destination address. Now look at the ALU, ALU receives the, ALU processes as

one of the source operands the result from the register file, which is basically the first source

operand specified by this, the index specified by this particular 5 bits, okay. The second set of

32 bits from the register file is of no interest.

What the other input, the ALU is using is coming through this multiplexer, this multiplexer is

allowing this input, which is clearly the 16 bits of the instruction that has been read out. So its

immediate field shifted left by 2 bits right, it is passing through this left shift combinational

block it could be a barrel shifter. The result of the ALU is clearly in this case, it must be the

address right.

Address is being sent out to the data memory and the data memory is accessed at that address

and the contents of data memory are routed by this multiplexer unlike in the previous case the

disc multiplexer is taking the contents from data memory, whereas in the previous case for

the add or subtract instruction, this multiplexer was taking the result of the ALU and it was

been sent to this data input port of the register files.

So this is the 32 bit data that is going to be latched in to a register specified by this target

information, okay. Over here, this multiplexer is the one, which is going to take care and not

let this 32 bit data which is irrelevant and instead let this appropriately shifted immediate

field in to the second port and compute load at the memory address, computer memory

address and so on so forth.

So this must be, since it is reading the data memory like it must be a load instruction, if it

were writing in to the data memory it would be a store instruction. So this data flow must be

for this configuration of data path must be for the load instruction, load word instruction.

Now what about this one as you can guess, there is a role of data memory, something is being

provided here the address has been provided and here the data is been provided.

Where is the data coming from, the data is coming from this second output of this register

file, which basically is the content of register specified by this 5 bits, the second set of 5 bits

over here, okay. There is no role of destination address over here, because register file is not

being written in to, where as the two like you know, two registers are being read out from the

register file. First of them is being used as base address, that base address is being added to

the word offset and that becomes the address information for data memory.

And the data to be stored into the data memory is coming from the second register specified

by the set of 5 bits, okay. So again no role up this branch related ALU. This is a store

instructions data path, okay. So this way like you know one can study that, one can analyse

that this particular data path is more or less adequate of course, there is one or two minor

things are missed out here, that is optional.

For example, I mentioned that if we were to show add in the simulation or how the data flows

for add immediate instructions, then we would require the 16 of the 32 bits coming from the

instruction memory to be routed without shifting into the second port of ALU. This

multiplexer will have to be big enough to be able to either send this 32 bits or this 16 bits

with sign extension.

I did not remark on that or like the immediate field without shifting. These three possibilities

have to be supported by this particular multiplexer, so it has to be at least three to one

multiplexer, this has to be two to one multiplexer, this is another two to one multiplexer, two

input one output multiplexer and so on so forth. As an exercise you can sketch out the, trace

out the configuration of data path or the data movement for the branch instruction, branch

equal to, it is quite simple.

(Refer Slide Time: 01:07:41)

So with this I will stop, the last comment that we need to like understanding the performance

issues we notice that the longest delay is the one that determines the clock period. So the

longest delay is along critical path, the critical path is the one which causes the longest delay

of combinational logic and here intuitively it is clear that load instruction is the one which has

the longest delay, because that is where the lot of data processing and data movement is

happening.

In particular, for the load instruction, instruction memory is being read out, the contents of

parts of the instruction that is being read out are going to the register file, register file warms

up, it supplies the like you know supplies one operand to ALU the other operand comes from

the instruction itself. ALU completes the address of the memory location from which we have

to read the data. So that address is to be sent to data memory, data memory has to kind of take

its own time generate the read out the data for you and that data has to be routed to the

register file.

So there are some five sub stages in a load instruction, so this seems to be the longest

instruction even compared to longer compared to store and other instructions. So evidently

the critical path is going to be decided by the way data moves for load instruction and then

we realise that for many other instructions like things are must simpler for branch equal to

there is much quicker completion of the work of this processing of that particular

instructions.

So the instruction, the clock cycle which is long enough for the longest instruction might be

bit of waste for the instructions which would have prepared a result much earlier, you know

branch target address would have completed much earlier. By the way there is a role of other

ALU in the branch target instruction that you can see when you do the exercise yourself. So

there is a performance issue here.

The clock period is bad enough long enough for accommodating the longest instruction. It is

not feasible to have varying period for different instructions, sorry for the typo here spelling

mistake, that is fine. But we can improve this performance by multi cycle execution or pipe-

lining. In the next couple of lectures, we will talk about multi cycle version of the CPU,

which is where we see the role of finite state machine and that is what we wanted to discuss

mainly.

This was just to background, setting up a background of CPU architecture, micro architecture

that there is a data path and similar data path will be used with a bit of changes and it would

be adopted to multi-cycle execution with the help of finite state machine which will act as the

controller of the data path. Here if you take a closer look the control of the data path means

you know control of the multiplexers, control of the ALU which is all combinational.

In a given cycle knowing the instruction, we know completely how the multiplexers have to

be controlled, how the ALU has to be controlled and how the memory has to be controlled.

So there is no need of a statement, any kind of state information inside the controller itself,

controller is purely combinational. I will stop here.

