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Structural Description in VHDL

In the previous lecture we have looked at various components of the VHDL language. We

have looked at  object  types.  We have looked at  data  types.  We have seen how physical

quantities can be represented with units and then we had seen composites and various user-

defined types and subtypes can be used.in VHDL. This defines the basic structure of the

language. We now want to look at the styles in which we design or describe hardware using

VHDL. We first look at structural description in VHDL. 

As we have discussed earlier,  structural  description  means  that  we have  to  name all  the

components that we are using in a circuit and give a list of connections from one sub circuit

to  the  other.  Therefore,  the  language  must  provide  the  wherewithal  for  placing  these

components of hardware, attaching these components with a particular kind of behavior and a

list of wires, which will connect pins of this sub circuit to pins of other sub circuits.

All  the  devices  in  the  language,  which  cater  to  this  requirement  they  are  described  as

structural description languages, structural description commands and those are the ones that

will look at first.
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So therefore structural description consists of these parts, you have component declarations in

which you declare the properties of each component that you would be using, component

instantiation in which you actually place the component at various positions in the circuit, the

configuration refers to the choice of binding this component to entities, to architectures and

so on and very often we use multiple components of the same time.

And therefore it  is convenient to have a repetition grammar to give you an example you

might have eight registers in a particular design. The register is declared as a component and

described it maps to a particular entity architecture pair; however, you do not need just one

register, you need eight and it is painful to go ahead and describe each instantiation of this

component type called register.

And therefore it is convenient if you could using repetition grammar place eight instances of

this type of component.

(Refer Slide Time: 03:33)

So therefore repetition grammar is an important part of structural description in VHDL. Let

us look at  some circuit  and see how we shall  go about  describing it  structurally.  So the

structural design describes a design in terms of components and their interconnects.  Each

component declares its ports and the type and direction of signals that it  expects through

these ports.

This is very similar to the declaration of an entity. So the next part is how can we describe the

interconnects  between  these  components  and  we  take  this  example  you  have  three



components here, U1, U2, and U3. Then each one has its own declaration of various ports so

for example U1 has p1, p2, p3, p4, p5 and p6, U2 similarly and U3 similarly. These might or

might not be identical components.

Now once we have instantiated these components the rest depends on how do we tell VHDL

that p1 of U2 is in fact connected to p5 of U3 and so on.

(Refer Slide Time: 04:49)

These are done using internal signals. So for each internal interconnect we define an internal

signal. When instantiating a component, we map its ports to specific internal signals. For

example, in the circuit above, at the time of instantiating U1, we map its pin p2 to signal s2.

Notice p2 is connected to the signal s2 so when we instantiate U1 we not only place a kind of

a  component  type  here,  but  we say  that  p2  of  this  instance  of  this  component  must  be

connected to the signal called s2.

Similarly, when instantiating U2, we map its pin p3 to s2 so U3 is a component, U2 is a

component and U2 is mapped to a component type and when we instantiate that component

type, we shall map its pin p3 here to that same signal s2. Therefore, it is known to VHDL that

pin p2 of U1 is connected to pin p3 of U2 through the signal s2.
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Now a purely structural  architecture  for  an entity  will  consist  of  first  of  all  components

declarations, what this does is, it associates a component type not individual instance of a

component, but a component type with their port lists. It is very similar to entity declarations.

You also need signal  declarations  so that  you can then  use those signals to  connect  one

instance of a component to another component.

Component instantiations to place component instances and to portmap their ports to signals.

The pins can be connected either to internal signals or to the port signals declared by the

entity, which is now being described. We also need configurations, these configurations will

bind component types to entity architecture pairs and these configurations can be inline that is

they could be part of the architecture or they could be standalone units outside the entity

architecture description.

In addition to these basic requirements, we require a repetition grammar for convenience.

This is for describing multiple instances of the same component type. For example, you have

let say 1024 memory cells, all of them are identical. It would be indeed very inconvenient to

have to describe each instance of a memory cell individually and it makes a life much simpler

if you could just place all 1024 of them using a repetition grammar.

Similarly, a very large bus may have buffers associated with each line of the bus and it is

convenient  if  we have a  repetition  grammar,  which will  describe the placing of all  these

buffers in one go.
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So these are the components that we need for describing hardware structurally and let us look

at many of these components of the language as we go along. First is the declaration of a

component and these are VHDL 87 and 93 versions of the component declaration. It declares

a component type not a specific instance of a component and it is very similar to the entity

declaration that we have seen earlier.

I shall not drag you through the differences between VHDL 87 and VHDL 93 every time. It is

here for you to see and it is better to get use to the more consistent style required by VHDL

93. So in the discussions we shall mostly look at the VHDL 93 style of declaration. So then

you have the declaration says component that is the keyword what appears in bold letters here

is the keyword.

So component and this is the name of this component type. So component name is is is also a

keyword and then the list of all the generics and the list of all the ports. So remember this list

is essentially the same format as a record data structure that we had discussed last time. And

then  end  component  name,  for  example  we  say  component  flipflop  is  that  means  this

declaration is describing it component of the type flipflop.

Generic Tprop which is the delay length which says what is the propagation delay of this

flipflop and then a port list saying port clock and d as input and these are of type bit and q as

type output and bit and finally end component flipflop. This format is identical to an entity

declaration, but be aware that you are not describing an entity here. You are describing a

component, which will then be bound to entity architecture.



Because  of  this  similarity  in  fact  in  VHDL 93  you need  not  declare  a  component  type

separately if you are always going to use the same entity architecture pair for this component

and in such cases you can directly instantiate entity architecture pairs. This option was not

available with VHDL 87.

(Refer Slide Time: 11:39)

So this is what we have been talking about. In VHDL 93, you can do direct instantiation that

means an entity architecture pair can be instantiated to specific pieces of hardware without

having to go through a component type declaration first so this is an instance name. Notice

now I am not declaring a type of component, I am declaring a specific part of the hardware.

For example, this could be our U1, U2, U3 that we had seen.

Those are specific  instances  so you have the instance name and then the keyword entity

which warns the language that I am not using a component type, I am going to instantiate an

entity directly. So instance name could be U2 for example and then the keyword entity it will

appear  entirely  like  this  entity  and  then  the  name  of  the  entity  and  within  bracket  the

architecture, which you want to instantiate.

So this entity architecture pair is then instantiated into a specific instance of hardware here

and then you have the generic map and the port map as before. Notice that this port map now

will be for this specific instance that means it will bind those pins that you have declared in

the  entity  to  specific  signals.  This  form is  convenient  though  it  does  not  have  the  full

flexibility of associating alternate entity architecture pairs with a component.



Because when you instantiate the component this is already bound to an entity architecture

pair. VHDL 87 did not allow the direct instantiation and because it permitted only component

instantiation, this keyword was not there at all, it was taken for granted that only components

can be instantiated whereas in VHDL 93 you have both options. If you directly instantiate an

entity you will use a keyword entity otherwise, you must use a keyword component.

(Refer Slide Time: 13:45)

So this is the normal instantiation when you have declared a component type and then you

have  instance  name.  This  is  the  specific  instance  that  you  are  placing.  The  keyword

component then the component type name now and then the generic map and the port map.

The association here is with the previously declared component type. The type will be bound

to  an  entity  architecture  pair  using  an  inline  configuration  statement  or  a  separate

configuration construct.
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In VHDL 87, the keyword component is not required to be used because the only option you

had was of instantiating component type. So there in that we used to use instance name and

no keyword component, directly the name of the component and then the generic map and the

port list.

(Refer Slide Time: 14:39)

Now let us look at configurations and the simplest of these is an inline configuration that

means the binding of a component type to an entity architecture pair is made inline with a use

clause. So for example we say for all component name that means you are now saying that

whenever the component name flipflop is invoked then for all instances of this use the entity

with this entity name and with this architecture name.



You also have the option of not saying for all, you could specify specific instances and bind

some instances to one entity architecture pair and other instances to other entity architecture

pairs.  So  this  is  the  additional  flexibility  you  will  get  if  in  fact  you  are  using  inline

configuration or indeed a standalone configuration. So in that case instead of for all you will

have an instance name list.

You might say for example that U1, U2, U4 and then component name and then you say use

the entity these two are keywords and must appear verbatim in your description. And here

comes the name of the entity that you will be using and here is the architecture name. So

these lines then constitute a configuration. It simply says that when an actual instance is being

placed, we know eventually which entity architecture will be evoked when its sensitivity has

been hit.

(Refer Slide Time: 16:46)

If we use the keyword others instead of a list of instance name it refers to all component

instances of this component name, which have not yet figured in a named list. In VHDL, the

keyword others is used in different contexts involving lists and if some members of the list

have been specified then others refers to the remaining members. If none were specified, it is

equivalent to saying all.
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So recall  we had said for  all  here.  If  we do not  give a  list  and use others,  then  that  is

equivalent to for all. On the other hand, we could even say U1, U2 and use some entity for

that and then say others that means all other instances of this kind of component will use the

entity name, architecture name given in the other statement.

(Refer Slide Time: 17:53)

Now this configuration could be hierarchical. Remember whenever using this, we are using it

in  an  architecture  of  some  higher  level  component  that  means  we  have  a  higher  level

component, which consists of a more detailed description using lower level components in

the hierarchy. So therefore these configurations and such statements etc are going inside in

architecture, which happens to be structural in nature.



So  in  that  architecture  we  could  use  an  inline  configuration  or  indeed  use  an  external

configuration by specifying its name. Now this architecture will then specify a component

type remember this component type will then be mapped using the configuration to entity

architecture, but that architecture itself could be structural. Therefore, we need to bind the

components of that lower level architecture also by a configuration.

And therefore the configuration itself can be hierarchical. For example, you could say in the

current architecture, U1 is the component. This U1 is then is some component type, which is

mapped to entity e1 and architecture a1, but a1 uses some other components and they must

then be bound to entity e13 and architecture 13. So therefore this binding can percolate down

the hierarchies and such configurations are called hierarchical configurations.

(Refer Slide Time: 19:55)

So this hierarchical association within an architecture you have a component that component

is marked to an entity architecture and that architecture has other components and so on. So

this hierarchical listing of components can be done once in for all in a single configuration.
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So here is an example, hierarchical configuration can be fairly complex and VHDL contains

fairly complex configuration statements. We now introduce a very simplified construct here,

which is an inline configuration. So for example you say configuration, this is the name of

that configuration this is actually a standalone configuration in that case. So configuration

and this is the name of this particular configuration of this is the entity name is for such and

such architecture of this entity.

So remember the configuration is a standalone unit, it has its own name and then it says that I

am describing the configuration of this entity whose name is this and then for such and such

architecture of this entity and within that architecture for this component instance name list

use this component type name, which must use then the entity such and such entity lower

level hierarchical entity with such and such architecture.

And notice that you have two for’s here and both for’s must be ended. This can then be

followed for some other architecture of the same entity. Indeed, inside this for architecture

you could have for these component instance lists map thusly and for other lists map in a

different way. So this whole construct founds a hierarchical configuration by itself.
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Let us illustrate it by an example. So this is in fact an XOR gate and we are constructing this

XOR gate using NANDs. The inputs of this whole thing is an entity and this interconnection

is  in  fact  the  structural  architecture  for  this  entity.  This  structural  architecture  uses  four

instances  of  the  same  component  type,  which  happens  to  be  a  NAND.  So  you  have  a

component type called NAND and there are four separate instances of this component type

NAND.

(Refer Slide Time: 22:53)

So therefore you need to describe the NAND gate first. So in VHDL you describe entities and

architectures and these are when compiled into a special library called work. The work library

does not have to be specifically declared. So if you invoke some components, which you

have just now described, then you do not have to invoke a library. On the other hand if you



invoke components, which were described elsewhere maybe by somebody else then you have

to declare a library and then invoke the use clause to use those things from a specific library.

So in some sense, the work library represents the current state of the development of the

project for designing something.

(Refer Slide Time: 23:40)

So let us now build upwards from NAND here. We say entity NAND to is. Notice we are

declaring now end entity. This is the elemental level entity of a simple to input NAND. This

is our port list. We are not using any generics here. So the port in1 and in2 are inputs and are

of type bit whereas p is of output direction and type bit and end entity NAND2. That is all

there is to the entity NAND2.

Then we describe an architecture we happen to call this architecture trivial then architecture

trivial  of  NAND2 is  and then  we say assign to  p the  value  of  not  in1 and in2.  So this

describes how p is the NAND of in1 and in2. Not and and are built in logic functions. Now

that we have this entity architecture pair, we can use these to build our XOR gate. So now our

work library contains  this  description of the entity  NAND and this  architecture of entity

NAND2.

Okay entity is called NAND2. The architecture is called trivial and it is the architecture of

NAND2.
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Now we want to build this XOR gate that we had specified. We say USE WORK.ALL that

means everything described in work is to be recognized as something to be used and now we

declare the entity XOR so entity declare is and now we declare the port of XOR now. So port

a, b are inputs, so a, b are inputs and of type bit and port axb this is the name, axb is the

output and is also of type bit.

And then finally end entity XOR. With this we have declared the entity called XOR. Now we

need an architecture for this and we happen to call this architecture, we happen to name it as

simple. Architecture simple of XOR is, now remember we have to declare a component. So

component NAND2in is and if you recall components are declared the same way as entities

are.
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So we declare that component NAND2in is and this is the port list, port a, b in bit axb out bit.

For all  NAND2 in use entity  NAND2 with architecture trivial.  Recall  that  NAND2 with

architecture trivial was declared earlier in the work library.

(Refer Slide Time: 26:56)

Now the architecture begins and the architecture is simply a list of instantiations because it is

structural with all the signals that we should have declared earlier. So signals s1, s2, s3, which

are the internal signals must be declared earlier and that is what we have done here signal s1,

s2, s3 bit. Now we begin here and this is a, b and then this is instance n1. Notice all instances

they are all NAND gates, but they are separate instances.

So n1 is an instance and we tell the language that we are instantiating a component we are not

directly  instantiating  an  entity  architecture  pair.  So  we use  the  keyword component  and

NAND2in is the name of the component. Recall that this component was declared here. So

we say that instance n1 uses a type called NAND2in and it is to be port map to a, b and s1.

That is a say a and b are port signals and the output is to be mapped to an internal signal

called s1.

Similarly, we can instantiate n2; n2 is this instance of NAND. So n2 will use the component,

which we have declared earlier in a work library called NAND2in. And we shall port map it

to a, which is the port signal and to the signal s2, which was the output of NAND N1 here. So

a and s1 are then its inputs and then s2 is a new signal and that is its output. Similarly, we

instantiate N3; N3 again keyword component, name of the component NAND2in.



And then we port map its ports to b, which is the port signal of XOR, s1 which is the internal

signal, which is the output of N1 and then this new signal s3, which is its output. And finally

we instantiate N4; N4 is also of the component type NAND2in and we port map this instance

to inputs being s2 and s3, here s2 s3 these are the outputs of N2 and N3 as you can see here

s2 and s3 and its output goes directly to the port axb of the XOR.

So with this now we have described the entity architecture for an XOR. We can now map a

component to the entity architecture pair naming the entity as XOR, here entity XOR with the

architecture simple. So now XOR becomes a component and from now onwards we can use

XOR as a component type just like we use NAND2 as a component.

(Refer Slide Time: 30:26)

Let us have a look at the repetition grammar. We frequently use a large number of identical

components of the same type. We had look at this example before. For example, we could be

using a large number of memory cells or bus driver or what have you. Now it is tedious really

to instantiate and configure each one of them individually. So recall all this work that we did

for N1, N2, N3, N4 would have to be done for let say 1024 components of a 1k memory.

And we can have much larger repetitive components in VLSI. VHDL provides a way to place

a collection of instances of a component type at one go using a statement called generate.

Notice that generate is interpreted and handled before the simulation actually begins. So this

is in that sense a macro of the language so to speak. That means the hierarchy is expanded

before the detailed simulation occurs and generate is interpreted as essentially something,

which relieves you of the repetitive description process.



From that point onwards the description will use this expanded form, which is internally set

up.

(Refer Slide Time: 32:09)

So let us look at the generate statement. The generate statement contains a for loop, which

takes  effect  during  the  circuit  elaboration  step.  This  is  what  I  had  said  that  before  the

simulation begins there is an elaboration step and during elaborating the circuit we make use

of the generate statement. After elaboration has been done, it is a riffed, generate statement is

not there in your description because the effect of this has already been expanded out in a

more detailed circuit.

This statement can be used to repeat instantiation constructs. Indeed, in theory a generate

statement can be used to repeat any concurrent statement, but in actual use it is much more

common to use it to repeat instantiation. Let us illustrate this with an example. Here you have

a name, which is the name of the entire group not a single instantiation or any. This is the

name of the entire group, which is then being instantiated.

Since this is the repetitive statement, it has syntactic constructs, which are very similar to

other repetitive statements and programming language and we use a for here. So you say for

any index here, which could be an integer. For index in the range 0 to width - 1 generate. So

this is the generate construct.  It simply says that what follows here and it  happens to be

between this begin and end pair has to be repeated for the value of an identifier called index,

which will span from 0 to width - 1.



Whatever follows here is to be repeated that many times. Then you have the begin and this is

the instantiation, some name followed by the keyword component, this will appear verbatim

as component. This is the name of the component say outbuf and then port map. So suppose

we are placing many buffers on a bus the bus is for example 32 bits wide. So then we are

saying for index in 0 to 31 generate begin. This is the name of the group saying buffer group.

Component which has to be placed repeatedly, the type of that component is outbuf and then

you portmap in terms of this index. So each instantiation will use different signals and the

names of those signals will be derived from this index. Now the defined index in the for

construct has local scope that means it has scope only inside this. You may use the same

name outside the generate statement and that will not be this index.

This index has local scope only inside here and can be used to pick specific signals from an

array  in  the  portmap statements.  Remember  this  portmap is  to  be  repeated,  but  the  port

mapping is different for different instances. So we get around this problem by using an array

of interconnect signals and the index in that array comes from this.

(Refer Slide Time: 35:51)

Here is an example, you have a FullAdder. This is an example of structural description. You

have a FullAdder, it has three inputs a, b and carry in and it has two outputs sum and carry

out. We must as always begin with an entity declaration. Entity FullAdder is, this is followed

by a port less thing, port a, b and c in as inputs of type bit and sum and c out as outputs and

also of type bit and entity FullAdder, that is all there is to the entity declaration.



Remember an entity is a look at this hardware from the outside and from the outside what we

see are a, b and c in as inputs and sum and c out as outputs. A force as is conventional sum

and c out represent sum is the less significant and c out is the more significant bit of the two-

bit result of adding a, b and c in.

(Refer Slide Time: 37:10)

Now just assume that this is too difficult for us to figure out. In reality you will be using

much more complicated circuits, but we just use this example as if designing a FullAdder is

too difficult for us and that it must be hierarchically broken down.

(Refer Slide Time: 37:30)

So we would like to decompose this circuit into blocks, which handle only two bits at a time.
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So let say that we cannot design a FullAdder from scratch. We would like to describe it in

terms of a simpler circuit called a half adder, which adds only two bits at a time. So then we

can decompose the FullAdder into two half adders. The first half adder adds a and b and

produces two outputs sum1 and carry1. This sum1 is then combined using a half adder with

the carry in.

So we add carry in to this sum and the output of this again produces two bits, s2 is the sum of

this half adder and that appears as the sum of the FullAdder and the two carries need to be

combined to produce a single carry out and it turns out functionally that the OR of these two

carries is the carry out that means if a and b produce a carry in that case the carry out should

be 1 or even if they do not if the sum of these produces a carry from c in then also the carry

out should be 1.

So therefore functionally the carry out of the FullAdder is the OR of the carries of the two

half adders. Each half adder, so now we have described the FullAdder in terms of half adder.

We must go hierarchically down and declare how the half adder is going to work. The half

adder is easy to design. Each half adder represents a sum and carry of just two bits. Carry

occurs only if both bits are 1 and therefore it is the end gate.

And the sum is 0 if both bits are 0 or 1 and 1 if the bits are dissimilar so this is an XOR gate.

So now we have described the half adder in terms of known gates. Recall that just some time

ago, we had described the XOR gate as a combination of NAND gates. So now we are down

to NAND gates for describing everything else.



(Refer Slide Time: 40:00)

Now this is how in VHDL will describe the FullAdder. Entity half adder is; this is what we

need for the FullAdder. Port in1, in2 as inputs of type bit and port s and carry these are

outputs of type bit and this ends the entity half adder. The architecture trivial of half adder is

and you assign to s a xor b and assign to carry a and b and this is the trivial architecture. Now

architecture simple of FullAdder is now we declare a component type half adder.

Notice we have an entity half adder, but we are going through the full route not instantiating

the entity directly. Declaring a component type, which is half adder so we say component half

adder is and this component has port a and b as inputs, which are bits and s and carry s

outputs, which are also bits and this ends the component declaration and now we declare

signals s1, cy1 and cy2.
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Notice these are the internal signals of the FullAdder, s1, cy1 and cy2 are the internal signals

remember s2 is directly mapped to a port and therefore need not be declared as an internal

signal. Similarly a and b are directly available as ports. So it is a carry in, so these do not

have to be declared as internal signal. So at the result it is only s1, s2, carry1 and carry2,

which are internal to this architecture and that is what we are doing.

(Refer Slide Time: 41:47)

We are declaring s1, carry1, carry2 as the internal signals; s2 will be directly mapped to the

port sum and then we place these components. There are two instances of the half adder so

HA1 component half adder, remember we have declared the component half adder here and

portmap these ports that had been declared here to a, b, s1 and carry1 that is this half adder,

this half adder inputs are mapped to a and b and the outputs are mapped to s1 and carry1.



Then HA2 is instantiated this is also the component half adder, but this is port mapped to s1

and carry1 and the outputs are port mapped to sum and carry2.

(Refer Slide Time: 42:47)

Recall this is HA1, the inputs are mapped to a and b. the outputs are s and s1 and cy1 and

then s1 and carry in are the inputs to half adder 2 and sum and carry of this are mapped to

sum directly here, which is the port signal and cy2 is then mapped to the input of this R gate.

(Refer Slide Time: 43:15)

So that is what we are saying HA1 is component half adder, portmap to a, b as input, outputs

are s1 and carry1. HA2 is also the same component half adder and it is port mapped, two

inputs are s1 and carry1 now and outputs are the sum of the entity and carry2. Now we need

to combine the two carry into a single carry and that instance is called combination. We have

a previously declared component OR2.



So we say component OR2 input and portmap the OR gate to carry1 and carry2 and the

output appears as C out of the FullAdder and this ends the simple architecture.

(Refer Slide Time: 44:09)

Now let us look at the half adder, the carry from the half adder is an AND gate and the

combiner eventually is an OR, but gates without inversions are slow, AND gates and OR

gates are slow. So let us improve this design and bring out carry bar rather than carry using a

NAND gate. A NAND gate is a natural in CMOS implementation. So then we redefine the

half adder to produce sum and carry bar.

Remember  the sum is an XOR, which can be constructed from NANDs as we had seen

earlier. So rather than carry using a NAND gate we declare a carry bar. So now we declare a

new half adder whose output is carry bar not carry. So entity half adder is port in1, in2 as

before inputs bits and sum as before, but now cy bar, which is an output of type bit and that

ends the entity half adder.

And the architecture better, this is the new architecture of half adder is and you begin assign

to some a xor b and assign to carry bar a NAND b. This ends the architecture better of half

adder, this is hopefully faster because it uses only inverting gates. The combiner should now

remember the carry is now negated, carry is the bar of the carry, cy bar is output. Therefore,

the combiner should be an OR of negative true signals.



Whenever the carry is true, the output of half adder will be false. So therefore the combiner

should be the OR of false signals and that is just a NAND.
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So now you have HA1 with a better architecture, HA2 with a better architecture both giving

carry bars and the combiner now is the OR of negative inputs, which is in other words a

NAND. So now we have the architecture better or FullAdder, which uses component half

adder so we declare a component half adder with these ports with signal s1, c1b, c2b and we

instantiate HA1 and HA2, which is component half adder portmap and so on.

And then the combination is a NAND2 and this ends the architecture better. Then we have the

efficient FullAdder, which uses this better half adder and the combination is in fact NAND2.

This illustrates essentially how true instantiate components.
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We have not instantiated generics and that can be shown by having a byte comparator, which

compares two bytes and each internal components is a bit comparator. So essentially we are

making a  byte  comparator  to  give  you an example  of  a  hardware,  which  uses  repetitive

hardware  components  and  assume  that  you  have  input  bit  comparators  and  these  bit

comparators will then be stacked eight of them.

So that we have to use a generic to describe eight of them and then we have three outputs

from each bit comparator. When you compare the two single bits if the result less than equal

to or greater than and then we stack these end to end to form a byte comparator. Notice that

the most significant bit is compared closest to the output because if the most significant bit

produces a greater than or less than result then the output is independent of the rest of the bits

and can appear immediately at the output.
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So  now  you  have  this  architecture  compose  of  byte  compar  IS  and  then  we  declare  a

component bit part with these ports and these outputs greater than in, equal in and less than in

as the inputs because you are concatenating design and greater than out, equal out and less

than out as outputs. So each bit comparator has a and b as inputs, but it also has concatenating

inputs from the previous comparator and it produces three outputs which is greater than equal

or less than as outputs.

So this declares the component and then we say that for all bit part use entity bit compar

behavior. So hopefully we have already declared an entity called bit compar, which has an

architecture behavior and now we declare a signal called connect,  which will connect all

these bit  comparator  one to the other.  So essentially  these three will  occur between each

repetitive components.

So we declare connect as a bidimensional array so it is array one to three because of these

three signals and 0 to 6 for all these where these group of three is to be repeated of std ulogic,

std ulogic is a bit type signal, which we have not yet done, but we could start using it here.

This is a type that we have declared. Remember this is a type, so type connect is an two

dimensional array and now we say signal cascade is connect.

That means cascade is a special signal which is a two dimensional array of std ulogic, which

is like type bit. So it is a two dimensional array of 3 by 7 actually 0 to 6 of std ulogic.
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And this is the example that we wanted to show then we will say for I in 0 to 7 this is going

for all the bits generate and then we have a special case if I equal to 0 generate component bit

part and when we map it in case of I equal to 0 we map it to the port entries, the 0 part maps

directly through the entries of the entity and the outputs are aI, bI. These are the other two bit

inputs.

And the outputs are Connect 1 I, 2 I and 3 I. I is the bit number, which will go from 0 to 7 end

generate. Notice connect is the two dimensional array and here 1, 2 and 3 are being mapped

to the corresponding greater than in, equal in and less than in signals and end generate.
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Also the last part is unique if I equal to 7 then generate and it is very similar except that the

inputs are now cascaded, but the outputs are the port outputs.
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And this is the interesting part, this is the middle part and if I is greater than 0 and I less than

7,  then no port  signals  are  involved and then we say generate  and then we say that  the

component to be used is the bit part and the port mapping is the array at the input and the

array at the output, only aI and bI are the bit specific signals which will come. So by using a

generate then we have used all the component parts.

So this gives an illustration of how we can describe hardware structurally using components,

using entity architecture pairs directly and with or without repetition statements. We bring

this lecture to a close here and then we will wrap up the series on hardware descriptions by

describing how behavioral descriptions can be done in VHDL. We stop this lecture here.


