
Advanced VLSI Design
Prof. D. K. Sharma

Department of Electrical Engineering
Indian Institute of Technology – Bombay

Lecture - 20
Basic Components in VHDL

In our last lecture on Hardware Description Language and VHDL in particular, we had started

discussion on the design elements which constitute the language. we had looked at entities, we

had looked at architecture, we had seen that an entity architecture pair constitutes a template for

a piece of hardware, this template is then fixed as a component type by the term component and

then it is actually instantiated as one specific piece of hardware by a component instance.

Binding a particular component to an entity architecture pair is done by configuration in fact

configuration can be in line during the description of a component itself or it could be a

standalone unit which binds a particular component type to an entity architecture pair, we had

also seen that we can place various definitions, various components and so on in packages and

several packages can be put together in a library.

We had also seen the syntax and the usage of configuration, packages and libraries. There is one

point which we will probably take up in some detail today and that has to do with this somewhat

confusing terminology of entity architecture pairs, component types and actual instances. As we

had talked about earlier we had said that modern versions of VHDL permit you to instantiate

entity architectures directly, this has weakened somehow the usage of the component type.

And therefore sometimes this hierarchy of design description is not made very clear, let us just

make it clear with one example.

(Refer Slide Time: 02:53)

Let us say that we have an entity called filter, this is probably a digital unit which carries out

filtering of the input data using whatever algorithm, now notice that as far as the entity is

concerned it only describes the interconnection of this object with the outside world it does not

care what the insides of this could be, that means it will provide a connection to the input data

stream to the output data stream set of coefficients and so on.

So those will be the items which will be described by the entity in its port list and the generics

might for example specify the critical frequency and so on of this filter. This entity can now have

several architectures and let us say that we have three architectures for this entity, these are the

architectures for this entity notice that an architecture is defined only with respect to an entity,

now our entity is a filter.

And now we can have separate inside mechanisms in short of this filter and that may describe the

behaviour of this filter and you could have an architecture, for example which could be Low

pass, you could have an architecture which is High pass, and you could have an architecture

which is Band pass.

Notice that all these architectures are compatible with the interconnection of this piece of

hardware with the outside world what this architectures determine is how is the input data stream

handled inside this piece of hardware in order to produce an output stream which is a low pass

version or high pass person or a band pass version of the input data stream, around which

frequency is will low pass, high pass or band pass will occur is in fact decided by the generics of

this entity, so this entity has only the generics and the port list.

Next you might define components, so for example you bind a particular pair of entity

architecture to a component type, so I might have a component called LPF which is then bound

to the entity filter with architecture low pass, I could have a different component called HPF

which is bound to the same entity but with a different architecture and finally I could have yet

another component called BPF.

These are names of components and this is connected to the same entity but with a third

architecture which is band pass. So using an entity and its three architectures I have actually

described three different component types these are not yet specific components, now I can

instantiate these components and maybe in my hardware there are six pieces is a hardware, six

actual instances of components.

And it is possible that U1 is of type LPF, U2 is of the type HPF, U3 is again LPF, U4 is again

HPF and U5 is BPF, U6 is BPF. now notice the hierarchy of the use of these design elements, the

entity is the top unit it specifies that I am describing a class of hardware called filters, the entity

describes only the generics that means a manifest constants which describe the properties of this

filter and port list which describes how this class of hardware will be connected to other pieces

of hardware and entity can have several architectures.

In this case actually it is somewhat unusual, the different architectures actually provide different

functionality a much more common use is when different architectures provide different

implementations of the same functionality, but to take the most general case we may have

different architectures after all our entity is the generic filter and the architectures decides

whether it is a low pass filter, a high pass filter or a band pass filter.

So we have three architectures and at this stage this entity with three architectures is not specific

hardware it is not an integrated circuit on a board so to speak, it is a template for the kind of

hardware that we can use, we now describe component types and LPF, HPF and BPF are

component types, these are still not specific pieces of component, these are component types

which are available to us.

And then each component type is then bound in fact this binding is done by configurations, so

you have a configuration which binds LPF to entity filter with the architecture low pass, HPF to

entity filter with architecture high pass and the entity BPF to the entity filter with band pass, it is

only after I have declared these components types using a configuration and entity architecture

pairs, that I can actually use these component types of U1, U2, U3, U4, U5, U6 are the actual

pieces of hardware which describe my design.

So U1 is then bound to a component type, U2 is also bound to a component type and so on. So

each instance of component needs a component type to which it will bind and each component

type must then be configured to an entity architecture pair, I hope that explains this somewhat

confusing hierarchies which is in fact a bit too detailed if you ask me, but this is the hierarchy

that we have in the full-blown hierarchy that we have in VHDL.

However most of the time we do not need this full-blown hierarchy most of the time generally

just one level or two are good enough in that case in modern versions of VHDL you are

permitted to skip the component stage all together, that means a particular instance can be bound

not to a component type but directly to an entity architecture pair that means it will be possible in

the modern version of VHDL.

(Refer Slide Time: 12:29)

To say that component instance U1 is bound in fact to entity filter with architecture low pass this

direct binding is a somewhat late edition to VHDL earlier the binding could only be done to an

object type component, so only a design unit component could be instantiated in the earlier

versions of VHDL modern versions of VHDL allow instantiation of entity architecture pairs

directly.

Once we have this done, now it is relatively easier to see how hardware could be described

structurally, you have interconnections defined by signals, you have hardware components which

are instances of component types and component types are bound using configurations to entity

architecture pair, so this is the super structure which is assumed in a VHDL based hardware

description.

Modern versions of VHDL allow short circuiting the component stage if that is considered

convenient it still respects the old hierarchy and therefore if you describe components that is also

okay, with the modern versions of architecture but it also allows you take the shortcut of directly

instantiating entity architecture pairs, so this is the hierarchy of design elements in modern

version of VHDL.

(Refer Slide Time: 14:21)

In addition to that of course you have libraries and packages and we had seen this in the last

lecture that you have this syntax of library dot package dot component and you can make any

component from any package from any library visible to your design by this kind of declaration

which first declares the library and then you use what is called use clause which allows you to

select which component of library package etc. will become visible to your design.

(Refer Slide Time: 15:00)

We had also seen object and data types, object types are constants, variables, signals, files and in

fact that are pointers types as well and then the data types could be of type bit, of type std logic

define later in library and so on.

(Refer Slide Time: 15:21)

Let us look at data types in much more detail now, notice now we are talking of data types and

not of object types different object types can use the same data type, for example a constant or

variable or a signal could all be of type bit. Now let us see the classification of the data types

which we can handle in VHDL, you have types which are scalar, a Scalar is a single object, you

have a type which is Access this is like pointers in programming languages.

You have a data type like File and then you have Composite data types which are collections of

scalar types. Let us now look at the scalar types, the scalar types could be of the type discrete

shown here in blue, they could be floating points that means which are inherently continuous

type variables of course in actual implementation because of the size of the variable is limited

these are also somewhat discrete but they are meant to be continuous.

And finally you have a scalar type called physical these are used to describe physical quantities

and they have not only a value but also a unit and different sized units can be interrelated in a

physical type, so essentially we had three scalar types, we have things which are inherently

discrete like integers, we have things which are theoretically continuous though in practical

implementation with fixed size representation they are also discrete.

But they are meant to represent continuous quantities like floating point and finally there are

physical types which these two carry only values but you have physical types which carry values

as well as units and then the values can be transformed, because you can define several units for

the same physical unit, physical quantity. Now let us look at all three of this one by one.

Discrete kind of scalar values can be either of type integer, integers are well known to us these

are positive or negative numbers inclusive of 0, they could be of type enumeration in which you

enumerate a set of value that this discrete type can take, so for example a scalar could be a

discrete type but it cannot take any old value.

It can take any value out of a list that we shall enumerate, various enumerated types are inbuilt

into the language as you follow the language you will become familiar with these but at least

three of these are quite common and enumerated type Boolean as the value false or true, so if

you have a scalar which is discrete and enumeration type then a pre-defined enumeration type is

a Boolean type and the Boolean has enumerated values true and false it can take only these two

values.

Similarly, we have an enumerated type called bit, the type bit can take values 0 and 1, so this is

also a two valued enumerated type the enumerated type is therefore 0 or 1. Notice that the

integers 0 or 1 is therefore quite distinct from the enumerated type 0 or 1 in VHDL and VHDL is

a very strongly typed language it insist on this distinctions being made.

The third built-in type which is enumerated is character essentially these are ASCII values or

whatever values which represent text characters and these are all enumerated, therefore the type

of characters known to the language is limited by the enumeration and this is a longer list then

Boolean or bit that we had seen which are two value.

So these are essentially all the alphabet characters which are enumerated and a scalar type which

is of type character can take any one of these specified values, so a character type can take any

one of those specified values. Notice that internally all the discrete types and indeed all the

floating points are represented using bits that means 0's and 1's.

But as far as the syntactical structure of the language is concerned it checks that the value is

either false or true in case of Boolean either 0 or 1 in case of bit or any one of those specified text

characters in types - a type of characters, what it does internally to represent these is of no

concern to the person who is using VHDL.

Apart from these three you have other specialized enumeration kinds these are severity level in

case of an assertion which is a statement that we shall see later, there is a file open kind which

essentially is associated with the type file and file open status, file open kind could be are you

reading a file for read-only or for read write etc. etc. and file open status whether this file is open

whether it is successfully open in the specified mode or not etc.

So the file open status is also of an enumerated type, so these are the pre-defined enumerated

type but the option remains with the user to define enumerated types of your own, these are the

ones which the language provides to you, but you do have the option of defining your own type

which is enumerated.

For example you might design an ALU and define an enumerated type called ALU command and

the ALU command could have any one of the enumerated values add, subtract, multiply or

divide. So enumeration types which are shown here are those which are already built into the

language but you can expand this types by defining your own enumerated types. As far as

floating points are concerned the built-in type for that is called real.

As far as physical types are concerned for scalar there is only one pre-defined physical quantity

and that is time of course we have seen the time is crucial to a hardware description language and

therefore time is pre-defined in VHDL, so that is the physical type which is pre-defined in

VHDL, however as in other cases you can define your own physical type which will carry its

values and its units that you can declare.

Having look at scalars it is now meaningful to look at composites, so composites are collections

of scalars and you can have unconstrained arrays or constrained arrays, unconstrained arrays are

things which can have any number of scalar quantities which are associated with them,

constrained arrays are those which are restricted to a particular range of scalar values, to

unconstrained arrays are pre-defined in the language.

A bit vector is an unconstrained array of bits which we had earlier seen in the enumerated types,

the bit vector can be of any size that is why it is unconstrained and therefore the size has to be

defined by the user, so when you use a bit vector which is a collection of bits for example you

might have a data bus it is for you to decide that this bit vector will have 16 elements whose

index will run from 15 to 0.

Similarly, unconstrained array of the type string a pre-defined strings are collection of the type

character which is an enumerated type in VHDL, so in short the bit type and the character type

have associated unconstrained arrays declared already in the language, so therefore bit vector is

in fact a an element of the language you can directly use and declare some collection of bits to be

bit vectors without having to describe a new type.

Similarly, you can declare a collection of characters to be a string which is an unconstrained

array, whenever you use an unconstrained array, then you have to fix the size of this

unconstrained array, the type does not constrained the size, the user when invoking the type will

fix the size, on the other hand in case of a constrained array the size is previously fixed, for

example you might declared a type called byte and byte might be a constrained array of bits.

And now the size is pre-defined in the type itself and therefore a byte has to be an collection of 8

bits such arrays are called constrained arrays, so now we have seen the kind of data types which

constitute this language many data types are pre-defined we have had a look at many of the

important types.

We have not looked at accessing file types which are which we will see later if we cover this in

this lecture, but as you use VHDL in actual usage you will become familiar with those types as

well, but these are more fundamental types which you must be familiar with before you start

using VHDL.

(Refer Slide Time: 27:23)

So enumeration type allows us to define a set of values that a variable of this type can acquire,

for example we can define a data type by the following declaration, the keyword type must be

used first so you say type instr instruction is and then you give a list of values which are

enumerated, so for example I might say type instruction is add, subtract, add with carry, subtract

with borrow, rotate left, rotate right, this limited set of commands now has been enumerated.

And now variable or a signal which is defined to be of type of instr instruction can only be

assigned values enumerated above, that means a particular signal says which is of type

instruction can only acquire values which are add, subtract, add with carry, subtract with borrow,

rotate left and rotate right, in actual implementation as I had said earlier these values maybe

internally mapped to a 3 bit value.

Because we have only 6 possibilities however an attempt to assign a 3 bit value say 010 to a

variable of type instruction will result in an error, it is for the VHDL to use 010 for one of these

possibilities internally, but externally you must respect the enumeration that you had declared, so

if you want the fourth here so assuming that this is 0, 1, 2, 3, 4 and 5 and internally rotate left

might use the bit combination 010.

But direct assignment of 010 when you mean rotate left is wrong as for as the language is

concerned, you must only assign the value rotl to this kind of variable, so only the enumerated

values can be assigned to a variable of this type.

(Refer Slide Time: 29:58)

As we had said earlier, if you enumeration types are pre-defined you do not have to define this

using a type statement, if you and enumeration types of pre-defined in the language these are this

is effectively the declaration that you might have had to use had these not been pre-defined, type

bit is 0 and 1, notice the quotation marks around 0 and 1, this distinguishes it from the integer 0

and 1.

When there is no cause of confusion then you can skip the quotation marks otherwise the

quotation marks must be used, because 0 and 1 can be confused with the integers 0 and 1, the

language requires you when you use them for a bit to put this quotation marks around 0 and 1,

type Boolean is pre-defined and it can have the values false and true.

Type severity level is also pre-defined and it can only take these values note, warning, error and

failure these are the four severity levels, these are severities of failure of assertion which are used

by the language, type file open kind is also pre-defined as we had seen earlier and it can have one

of these three values read mode, write mode or append mode.

The difference between write mode and append mode is that write mode begins from the start of

the data structure, append mode starts adding from the end, file open status is also pre-defined

and it can only take values open ok, status error, name error or more error. In addition to these

the character type enumerates all the ASCII characters which exist, so these are the pre-defined

enumeration types which are available to you.

(Refer Slide Time: 32:15)

Now notice that for each type you can define a subtype which does not use all the possible values

defined in the main type, for example if you use the IEEE library it defines a new signal type

called std logic which is quite commonly used, std logic is a signal which can take one of 9

possible values, it is defined by a statement of the type.

Type std logic is U which stands for undefined, X which is unknown, 0 1 obvious binary values,

Z which is open circuit, W which is a weak version of X, L low which is the week version of 0,

H or high which is a week version of 1 and do not care which is represented by a dash. So a

signal can in fact take one of these 9 values, now suppose we do not want to use all 9 of these in

our design, then you can define a subtype of this kind of signal.

The subtype let us say uses only these four values X, 0, 1 and Z indeed these are the four values

which are used in Verilog as you might learn later, this can be defined to be a subtype of std

logic, we might use the statement subtype we must give a name to this new subtype and what we

have chosen here is fourval logic, so we will say subtype fourval logic is std logic. Because it is a

subtype it must refer to the parent type which is std logic, range X to Z that means it will take

this subrange X to Z of the main type which is std logic.

Similarly, we may want to constraint some integers to a limited range of values this can be

defined by a new subtype, for example we might say subtype bit num is integer is range 31 down

to 0. So that means bit number is actually an integer bit number is actual integer subtype which

has all the properties of integers with the additional constraint that it can only be in this range 31

to 0, when do we describe a new type and when should we describe a new subtype.

The advantage of using a subtype is that all the procedures which are defined for the main type

are than inherited by the subtype. Otherwise you have to define your own procedures for a new

type, for example end of std logic is defined by the type, now if you define a subtype then the

end is inherited from the main type this inheritance is quite convenient and when you want to use

this inheritance.

Then it is better to define a subtype if it is a completely independent type then there is no need to

force a subtype declaration then you can declare a new type. But now you have the responsibility

of declaring all the functions which are valid to operate on this type, so for example the bit num

that we had seen with a restricted range of 31 to 0 was a subtype of integer and therefore

operations defined an integer like addition, subtraction, multiplication and so on are directly

inherited we do not have to define them all over again.

This makes it clear of about when to use a subtype and when to use a type. We should now look

at physical types we had seen, so now we know that discrete types which are used.

(Refer Slide Time: 33:10)

The physical types or objects which carry a value as well as a unit. So physical types are a data

type which carry a value as well as a unit these are used to represent physical quantities such as

time, resistance and capacitance, time is pre-defined, but we do have the option of defining our

own physical type called resistance or capacitance. The physical type first defines a basic unit for

the quantity and then may define other units which are multiples of this unit.

Time is the only physical type which is pre-defined in the language the user may define other

physical types.

(Refer Slide Time: 38:02)

This is the pre-defined type physical and the pre-defined unit is femtoseconds, so you can say

type this is how it must have been described internally, it is equivalent to a definition of this kind,

type time is range 0 to some maximum value, then you have a declaration units and the base unit

is declared first, this one is compulsory others are optional. So the base unit then is femtosecond.

And then we declare that a picosecond is in fact 1000 femtoseconds, a nanosecond is then 1000

picoseconds, a microsecond is 1000 nanoseconds, a millisecond is 1000 microseconds, second is

1000 milliseconds, a minute is 60 seconds and an hour is 60 minutes and this ends units for time.

This is a complete definition of the type time internally again it will be kept as femtoseconds you

may however assign a value to a time type object of let us say 500 microseconds.

This declaration makes it possible for the language to establish and equivalent between

microseconds and the base unit which is femtoseconds it will be automatically converted to the

base unit and then stored in base units, at the time of reporting it will be reported in the

convenient units which you can choose, this is the pre-defined physical type the user may define

other physical types as and when required.

(Refer Slide Time: 40:16)

Just to take an example, let us say we want to define a new type new physical type called

resistance, we can declare it as saying type resistance is range 0 to 1E9 with units ohm that is the

base unit and derived units which are Kohm or kilo ohm equal to 1000 ohm and Mohm or

megaohm to be 1000 kiloohms and units resistance, with this block of declarations we now can

use types which are in fact of type resistance.

(Refer Slide Time: 41:08)

Having done the scalar types let now look at composite data types, these are the types which

consists of a base unit type and then what we declare is a collection of composite types, so

composite data types are collection of scalar types, VHDL recognizes records and arrays as

composite data types. Records are like structures in C, they permit a collection of heterogeneous

kinds of scalars. Arrays are indexed collection of scalar types.

The index must be discrete scalar type, notice it need not be an integer, it can be any discrete

scalar type and arrays maybe one-dimensional or multi-dimensional, so essentially if you have to

put lots of scalar types together if they are all the same type then you can describe this collection

as an array. If they are not of the same type, then you have to declare a record and describe what

combination of dissimilar types will constitute that record.

And now you can put scalars of those dissimilar types into composite data types called records.

(Refer Slide Time: 42:44)

Arrays are particularly important and they can be constrained or unconstrained as we had seen

earlier, in constrained arrays the type definition itself places bounds on index values, for example

we might say type byte is array 7 down to 0 of bit or type rotation matrix rotmatrix is array 1 to

3, 1 to 3 of real, so it is a two dimensional array for a rotation matrix which will have sin theta,

cos theta, sin pi, cos pi kind of entries therefore those are real.

And we have defined a 3 by 3 array of this as a rotation matrix, notice that this size of these

objects is now fixed. In unconstrained arrays no bounds are placed on index values, bounds are

established at the time of declaration, for example we might declare a type bus to be an array

unconstrained array of bits, then we will say type bus is array natural range this empty symbol

which is essentially < any > concatenated of bit.

So here we are saying that the type bus is an array of bits it will be indexed by a natural number

that means the index cannot be negative, however the range is left undefined in the type, when

this type will be used the user will declare the range, for example when using it the declaration

could be signal address bus is of type is bus 15 down to 0 that means the address bus is 16 bits

wide.

However, the same type namely bus can be used for data bus and the declaration will be signal

data bus is bus 7 down to 0, so it is at the time of usage that the size of this array has been

declared by intrinsic property this is unconstrained, the constraints are placed when it is actually

used such arrays are called unconstrained arrays.

(Refer Slide Time: 45:38)

There are as we had said earlier built-in array types, where bit vector is an unconstrained array of

bit and string is an unconstrained array of character, as a result you can directly declare variables

or signals of this kind for example you might have a declaration which says variable message is a

string 1 to 20, notice string is an unconstrained array of characters and here we are saying that

message will be a collection of 20 characters whose index will go from 1 to 20.

Similarly, we might declare signal A register Areg is a bit vector 7 down to 0, bit vector is a type

already known to the language and it is an unconstrained array we are putting the constraint here

7 down to 0 and saying that this constraint type should be used for Areg, so this is how we use

the built-in array types.

(Refer Slide Time: 46:59)

Records are on the other hand collections of different types, so while an array is a collection of

the same type of objects, record can hold components of different types and sizes, this is like a

structure in C. And the syntax of a record declaration contains a semicolon separated list of

fields, each field having the format name name name subtype.

For example type resource is record and then within brackets P reg, Q reg each of which is a bit

vector 7 down to 0 and enable which is of the type bit, so this record resource now will always

have two 8 bit registers and a bit called enable, so these types are in fact of different types and

you can collect them together in a type called a record and you give it a name call resource.

And now you can declare objects of the type resource, where each one of those objects will

contain two 8 bit registers and a 1 bit enable, so this can be used indeed later and we have seen

one example of this, the port list is in fact a record it has different of signals some are input,

others are output, some could be bits, others could be bit vectors and so on, and that collection is

in fact a semicolon separated list of different types and each type of the same type is a comma

separated list.

So that is how we have used the port list earlier and now we can recognize that in fact a port list

is actually a record. With this I think we have reviewed the basic elements which constitute

VHDL we have looked at object types, we have looked at data types, we have seen the various

in-built scalar data types, we have looked at the collections which are pre-defined, we have

looked at physical types and we have seen also how you can declare your own types.

The hardware itself we have understood has templates which are entities with their

corresponding architectures, a specific template can be chosen to define a component and once

you have defined a component then you can instantiate actual instances of these components,

various components can be interconnected using signals and signals can have various kinds they

can be of scalar types or they can be of arrays like buses and so on and you have seen examples

of all of these.

So armed with all these basic types, we can now see a few examples of hardware description

language, I must emphasize here that in a brief course of lectures it is impossible to cover all the

nuances of a language what we have done here is introduced you to the basic types and it is

important to understand what these types represent and what they find distinctions among them

is. This part is essentially required to be done in a lecture series.

We will use a few examples in a very brief survey of the VHDL language, but in order to learn

VHDL descriptions you must use some standard text and you must use some actual programs

which allow you to describe hardware using VHDL and we shall do this in the following

lectures.

