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Modern electronic design has become very complex and traditional design styles, therefore are

inadequate to carry out these complex designs. Most of these designs these days, in particular in

the digital domain, are all done using Hardware Description Languages. In this module, we shall

look at Hardware Description Languages in general and then we will have a brief discussion on

specific Hardware Description Languages.

In  this  lecture,  we  look  at  the  underlying  principles  of  all  hardware  description  hardware

description  languages.  Hardware  Description  Languages  have  evolved  over  time  and  the

standards have changed; however, in this course, we shall look essentially what is the core of

these  designs  or  design  styles.  You  are  encouraged  to  practice  designing  using  these  and

excellent textbooks and tutorial material is available on these.

I  shall  mention  some  of  these  as  we  go  along  and  when  we  come  to  specific  Hardware

Description  Languages.  But  in  today's  lecture,  we  want  to  look  at  the  general  underlying

principles behind Hardware Description Languages and how they are connected to the Modern

Design Process. Let us begin with asking ourselves the basic question what is electronic design.
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There is no textbook answer to this; however, since the Hardware Description Languages are so

closely  linked  to  the  requirements  of  electronic  design,  we  should  surely  think  about  this

question a little bit. So, what is electronic design. To my mind and this is not necessarily an

encyclopedic definition, electronic design is that given specifications. 

We want to develop a circuit by connecting now electronic devices such that the circuit meets the

given specifications. The whole design process begins with somebody giving us specifications

that I want an electronic circuit which will turn such and such lights on or which will turn this

relay  on  or  will  display  such  and  such  things  when  such  a  thing  happens.  These  are  all

specifications. 

A designer is then supposed to sit down and think up an electronic circuit which is essentially

just an interconnection of known electronic devices, such that this circuit has the behavior which

meets  the  specifications.  To  me,  this  is  electronic  design;  however,  this  is  a  somewhat  lax

definition. What are the specifications. We have introduced a new term specifications and which

should actually understand what specifications are. 

Specifications refer to the description of the desired behavior of the circuit. Obviously, there has

to be a standardized way in which we specify the desired behavior.



There is another term that we have used in this definition that is known devices. What are known

devices.  Known devices  that  those  whose  behavior  can  be  modeled  by  known equation  or

Algorithms with known values or parameters. Essentially, what it means is that if the model and

the model parameters of a device are known then this device is known.

The model and model parameters could be a device level at sub-circuit level or even at module

level,  that  depends  on  the  level  at  which  we are  simulating  this.  Once  we have  the  model

equations, then we can put many such known devices together and since we know the behavior

of each one of these components and indeed the way that they are interconnected.

Given  a  good  enough  simulation  program,  we  can  now  predict  the  behavior  of  this

interconnected circuit and then we can see whether the behavior of this interconnected circuit is

the  same  as  the  specifications.  So,  therefore  if  we  have  a  standardized  way  of  giving  the

specifications and then a program which takes devices whose models are known and can put

these together and predict the behavior of the entire interconnected circuit. 

Then we will be able to know before making the circuit whether our circuit is likely to meet the

specifications  or  not.  So,  therefore  in  some  way,  electronic  design  is  really  the  process  of

converting  a  behavioral  description.  What  is  a  behavioral  description.  (1)  It  describes  what

happens when kind of things. (2) A structural description. What is a structural description what is

connected to what and how?
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So we begin with specifications which is nothing but a behavioral description. It says that if the

door is opened, then the light comes on or whatever. So, that the behavioral description, what

happens when kind of description, and the process of electronic design is the conversion of this

kind of description to an equivalent description of electronic devices and their connection which

is a structured.

After conversion to structural description, we may need to do one more step which is physical

design which involves choosing device sizes, placement of blocks, routing of interconnect lines,

etc. This part is already done for us if the design is on an FPG. On the other hand, if it is want to

design an (()) (06.26) or indeed a custom circuit, then these parts will have to be explicitly done.

However,  most  of  the  work  of  design  is  essentially  converting  this  specification  to  an

interconnection.
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So, what is the problem with this thing. What is the main challenge. The main challenge for

Modern Electronic Design is that the circuits being designed these days are extremely complex.

It is not so easy to take these huge complex specifications and to translate it to a circuit and while

IC technology has moved at a rapid pace, capabilities of human brain have remained the same.

There is no scaling of the human brain and we cannot handle too many objects at the same time.

Therefore, we must break down a complex design into a small number of manageable objects. At

this  time,  we  do  not  know  how  to  design  these  objects;  however,  we  can  set  down  the

specification of what each one of these objects will do. Then, we see that if we had such objects,

what would the interconnection of such objects will do. Will it meet the specifications or not? At

the end of it, if each object is still too complex to handle.

The above process has to be repeated recursively, that means we take the object and then divide

it down into submodules as we did for the whole circuit. We continued this process till we find

that  the whole description contains  only the known devices.  So,  in other  words,  initially  we

design the circuit by breaking down into modules and these need not be known objects. These

are some things which are yet to be design.

However, for example, you might take a microprocessor. The microprocessor might be thought

of as a combination of registers, ALU, bus interface unit, instruction decoder, or what have you.



Right now, we do not know how to design the instruction decoder or the register file or the bus

interface unit or what have you. However, we can write down that we intend to design an ALU

which has essentially the capabilities which we desire. 

The bus interface unit should have such and such behavior and assume that in due course we will

have the design of these things done, so we can pretend that these modules are in fact known

devices. Currently, they are not but it is reasonable to assume that they are known devices. We

have a behavioral model of these and we can treat these as known devices. Then, we complete

the circuit design as if these known devices were available. 

Once the circuit works to our specifications, we are happy with it. Then, we look down on these

objects and say whether these objects are really known or not. If they are not, then we further

apply the same process to them till they have been simplified to a level where they consist of

transistor, flip-flops, or whatever, all of which are known devices. Once we have done, then we

have reduced the entire circuit to an interconnection of known devices and that is indeed the

design procedure. 

However, the complexity is high and therefore, systematic procedures have to be developed to

handle this complexity. So, how do we learn how to handle this complexity and we take a page

out of the software designer’s book.
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After all, very complex software has been written for quite some time. What have they done.

Well we must adopt hierarchical design. We have already seen an example of this, that means

you design the circuit in terms of modules, then design these modules in terms of sub-modules

and so on. So, there is a hierarchy of complexity. The architecture must be modular that means

the changes to one particular module should not affect the design of other modules. 

The description  should be text-based rather  than pictorial  because then we can use standard

parsing  technique  programs and so  on  to  handle  these  descriptions,  and we must  reuse  the

existing resources. So, for example, if the design of an ALU is already available, we can just add

on other things to design our microprocessor. In fact, if the design of a microprocessor is already

available.

We  can  build  a  much  more  complex  circuit  by  using  one  or  indeed  even  more  of  these

microprocessors. So, therefore we must reuse existing resources. These are the lessons that we

have learned from software. In software, the designer’s hierarchical subroutines are written to be

modular, so that if you change a subroutine the rest of the program need not change and the

description is text-based.

And we have libraries and we do not rewrite libraries every time we write a new program, we

use the libraries. So, these are the techniques which have been used by software designers for a



long time and even for complex hardware designs, we must use these techniques.
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So, how is the hierarchical design carried out. We have agreed that the design process has to be

hierarchical. A complex circuit is then converted to a structural description of blocks which have

not  yet  been  design,  we  have  just  discussed  this.  However,  these  blocks  can  be  described

behaviorally. They have not been designed that means their structural design is not know, but

their behavior that means their specification has been set down.

So, at this stage, the complex circuit is converted to a structural description of blocks which have

not yet been design but whose behavior can be described. Each of these blocks is then designed

as if it was an independent design problem of lower complexity. This process is continued till all

blocks  are  broken  down into  known devices.  It  is  essential  that  any  departure  from proper

operation is detected early when the complexity level is low. 

Therefore, once we go from one level of hierarchy to a next more detailed hierarchical level, at

that time we must make sure that everything works properly at the less complex hierarchical

level. And therefore if we have to design a language which will handle all these tasks, then the

Hardware Description Language must be able to simulate a system whose components have been

designed to different levels of detail.



For example, I have a circuit. I break it down into modules A, B, and C and I say that if the

modules A, B, and C work as desired, then my circuit will work. Now, I design A to a higher

level of detail and before I proceed any further, I would like to put this more detailed description

of A with the less detailed descriptions of B and C, put them all together and see that the whole

circuit works properly.

Therefore,  the  Hardware  Description  Language  must  be  able  to  simulate  the  system whose

components have been designed to different levels of detail. However, let us not get carried away

in emulating software, after all hardware is different from software.
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These are the major differences of hardware from software. First of all hardware components are

concurrent.  All  parts  work  at  the  same  time.  Whereas  traditional  software  is  sequential,  it

executes one instruction at a time. Therefore, only one part of a very complex piece of software

is  active  at  a  given  time.  In  case  of  hardware,  multiple  parts  are  active  and  interactive.

Description of hardware behavior has timing as an integral part. 

Changes in timing can change the entire behavior of the hardware. If the set input comes first or

the recent input comes first, it can change the eventual behavior of a flip-flop. Therefore, the

hardware is time sensitive. The timing of a signal is crucial to the operation of this hardware. On

the  other  hand,  traditional  software  is  not  real  time  sensitive.  It  may  run  slow,  but  it  will



eventually produce the same results. 

Therefore, the design of complex hardware involves many more basic concepts beyond those of

programming languages. All the concepts of programming languages will be used in Hardware

Description Languages, but we must now introduce other components of Hardware Description

Languages  which  take  care  of  these  requirements  which  are  peculiar,  which  are  specific  to

Hardware Description Languages.

And two of these are major, one is the timing is integral part of hardware and second that various

components  of hardware are active at  the same time.  So, therefore this  parallel  operation of

different components is something which is peculiar to hardware description. Other than that,

Hardware Description Languages are going to look very much like software, indeed so much so

that sometimes we do not take the pains to understand that a hardware description is inherently

different from software.

And tend to think of it as a software program which can often lead to very serious problems.

Therefore, in this lecture, we are underlining those concepts which are specific to hardware. So,

let us look at Hardware Description Languages and see what are the abilities that these must

have.
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Hardware Description  Languages  need the  ability  to describe a circuit  of  course but also to

simulate  the behavior  of the circuit  at  behavioral,  structural  and mixed levels,  and finally to

synthesize as far as possible the structural description from behavioral description. So, if we have

a Hardware Description Language here, we would like eventually to have these capabilities. That

means, we should be able to describe a very complex circuit, (()) (17:52) by itself.

But having described the very complex circuit, we must be able to simulate and the simulation

should be possible if all parts of this are described structurally, behaviorally, or in a mixed way.

Also once the description is in a standardized form which design tools can understand. Then all

the mechanical work of converting a behavioral description to structural description should be

done by a program to the extent possible and this activity is called synthesis.

When hardware  is  described specifically  in  a  particular  way which  permits  a  synthesizer  to

convert this behavioral description to structural description, then that kind of design is called

synthesizable  hardware  description.  Not  all  description  needs  to  be  synthesizable;  however,

much of useful hardware design must be synthesizer. However, there is a large part of Hardware

Description Languages which is not synthesizable, which is meant for testing, debugging circuits

and so on. 

So, therefore we must learn both kinds of Hardware Description Language and we must be aware

that this part is synthesizable this is not, and for what is the non-synthesizable part to be used.

The basic concepts involved in Hardware Description Language are timing, concurrency because

we have seen that the part which is peculiar to hardware is that different components of this are

working concurrently and the hardware simulation process which itself involves several stages.
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These stages are analysis that means you analyze the given description, elaboration that means

you build up a circuit from the components that have been described, and finally the simulation.

The simulation step itself leads to distinct phases. First is single update that means you bring the

signals  to  their  current  values  and because  signals  have  changed,  you must  find  out  which

components of this very complex circuit need re-simulation and re-simulate only those.

This re-simulation will cause changes in signal values and therefore you will go around this loop,

updating signals at every time and then re-simulating only those components of the circuit which

need re-simulation. So, this is how the simulation will proceed. It will proceed in a loop and in

phased manner. That means all signals will be updated first, then we will analyze these updated

signals to see which signals have changed; and if inputs have not changed, the output will not

change. 

Therefore, those parts of the complex circuit description need not be re-awoken. However, when

the inputs have changed, we must go to those blocks which must be re-simulated. Re-simulate

only those blocks and find out as a result of this re-simulation which signals will now change.

So, this whole cycle continues till the circuits settles down to its final values. We shall actually

see a tutorial of this.

Because it is very important to see this for a very simple circuit to see exactly what is going on



behind the scenes when you use Hardware Description Language.
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What  are  Hardware  Restriction  Languages  used  for?  Well,  these  are  used  for  description,

description of interfaces, description of behavior and description of structure. These are also used

for describing test benches which essentially test the circuit to see whether it meets specification

or not and these are also used for synthesis, where if we have been careful in our description of

the circuit.

Then rather than we reducing the behavioral description to a structural description, a program

can be let loose on this description and a program itself will convert this behavioural description

to a structural description. Let us look at the basic components which are different from software

in a little more detail and timing is one of those. So, let us at delays and see how delays are

actually handled in Hardware Description Languages.
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How do you describe delays? Well, the actual syntax is not material at this stage when we look at

Specific Deception Languages, then we will look at the syntax. Right now the syntax need not

bother us; however, we choose some specific syntax here. This happens to be VHDL syntax and

see how do we describe delays. 

So, I have an input signal in hardware and I want to describe this delay of 30 microseconds, let

us say, and the output is essentially the signal when it has been delayed by 30 microseconds. We

need to examine this very important question that is this description unambiguous. Let us see

why I raised this question indeed that this very simple description could at all be ambiguous. So,

let us implement this delay in a circuit.
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Here is a circuit. Notice that the circuit is not all digital. This delay part is in fact analog and

these waveforms are somewhat stylized. These are not actual waveforms. However, the input is

digital and so is the output. This is a discriminator. It looks like the voltage at level X and if it is

below some threshold, it outputs are digital zero. 

If it is above some threshold, it outputs are digital one, and the values of this delay element R

and C are so adjusted that we get an overall delay of 30 microseconds. Now assume that we

apply an input to this black box. Inside the black box is the circuit. Our black box of delay equal

to 30 microseconds has this circuit and we apply to that circuit this waveform. 

This waveform has a pulse which is much narrower than 30 microseconds and another pulse

which is much wider than 30 microseconds, and let us figure out in our minds what is expected

to happen. When the input is held at zero, then of course this capacitor is already discharged

initially and it remains at zero.

So, the input remains at zero. As the input rises to 1, it starts charging this capacitor through this

register; however, the time constant of this is large and the pulse is relatively narrow. As a result,

the charging process has not proceeded too far when the pulse actually comes down. Because the

pulse comes down, this point is now connected to ground and every capacitor starts discharging,

so the capacitor discharges.



As I said before, this diagram is somewhat stylized the actual waveforms will be exponential

charge and exponential discharge as you very well know. At this point, the wider pulse arrives

and the capacitor starts charging again and because the pulse is wide enough, this charging will

now be complete when the pulse goes down, the capacitor will start discharging and if this level

lasts long enough, the discharging will be complete.

Along this charging and discharging waveform, we will pass that discrimination level of this

discriminator. As long as the voltage is below that discrimination level, the output will remain at

zero. However, as soon as the voltage exceeds that discrimination level, the output will become

one and to remain one as long as the voltage at the input that node X remains higher than the

discrimination level.

Once it falls below the discrimination level, then the output will come down to zero. As a result,

we can expect to get a pulse like this at the output. Notice that the input is fully digital and so is

the output. This point X is completely internal to that black box; and what has happened, well the

narrow pulse has vanished but the wide pulse appears in a delayed form as we wanted. Okay, this

vanishing of the narrow pulse is somewhat unexpected. 

It is not clear from the description whether this is desired or not. We could have just as well

implemented that delay in a different way.
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So, here is our black box again and somehow we are able to see inside this black box and what

do we find inside that black box. In order to implement a delay of 30 microseconds, somebody

has an interface here which converts the digital signal to light. This light is coupled to a long

optical fibre which introduces a delay of 30 microseconds and there is an output circuit which

converts this light back to a digital circuit.

What do you think will happen now? This input, this narrow pulse will result in a narrow flash of

light.  This wide pulse will  result  in a wider flash and both these flashes will  arrive here 30

microseconds later. These light flashes will then be converted to an electrical signal and we will

get an exact replica of the input at the output delayed by the amount of delay which corresponds

to the length of this optical fibre presumably adjusted to give us a 30 microseconds delay.

So,  notice  that  our  black  box does  not  behave the  same in the  two cases.  Both cases  were

designed to introduce a delay of 30 microseconds. In the first case, this narrow pulse vanished. In

the second case,  it  did not.  Therefore,  just saying that  you delay by 30 microseconds is not

adequate for accurate description of physical systems.

We have learnt that there are two kinds of delay. One kind in which pulses which are much

narrower than the delay vanish and the other in which they do not. These kinds of delays are

called inertial and transport delays.
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So,  the  same  amount  of  delay  which  was  in  our  example  30  microseconds  can  result  in

qualitatively different phenomenon. In one case, the narrow pulse vanishes; in the other, it does

not. So, therefore, we must define two different kinds of delay. Inertial delay is the RC kind of

delay, the first circuit that we saw, which swallows pulses much narrower than the delay amount.

Transport delay is optical fibre kind of delay which lets all pulses pass through irrespective of

their  width.  In most Hardware Description Languages,  delays are inertial  by default  because

these are  no normally  caused by RC kind of  circuit.  However,  there are  cases  for  example,

specifying an input, which are then transport by default. So, if you do not specify the delay at all,

then the amount is taken to be zero and the kind is taken to be inertial. 

However,  you  do  have  the  option  of  not  only  specifying  the  amount  of  delay  like  30

microseconds here, but also the kind of delay and if you so choose you can specify either inertial

or transport kind of delay. If you do not specify the kind, it will be taken in most circumstances

as inertial; and if you do not specify the amount, it will be taken as zero. We should now look at

the other thing which is specific to hardware description and that is how to handle concurrency.
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Now to represent real hardware, single assignment has to be associated with a delay. When a

value is assigned to a single, the target signal does not acquire the assigned value immediately.

The value is  acquired after  some delay.  Therefore,  there are two values  associated  with any

signal, one is its current value and the other which is potentially different, it could be the same it

could be different, but which is potentially different is the value that it will acquire in near future.

That  means  when  you  assign  a  new value  to  a  single,  it  does  not  acquire  this  new value

immediately. Indeed, you put a marker on that signal saying after this much delay this signal

should acquire this value. This marker is called a transaction. Thus, when an assignment is made

we imply that the target signal will acquire in future, will acquire this value after so much delay

of this type.

So, the acquisition of a new value is not automatic; however, if you do not specify a delay, then

as we said that the amount of delay will be taken to be zero. However, we must understand the

case of zero delay a little carefully.
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When a transaction is placed on the signal, the default type of delay is inertial and the default

amount of delay is zero. In fact, inside the language, this delay is not made zero. In fact, it is

implemented as a small delay which is called a delta, and then when we report the result, we take

the limit taking dealt equal to zero. So, why do we take this roundabout way. If the user wants a

zero delay then just let us given zero delay.

Why do we take this indirect way of actually implementing a delay and eventually making that

delay equal to zero and the reason for this is that scheduling is very important in simulating

hardware. It is very important to know what occurred before what and what occurred after what.

Therefore, for scheduling purposes. We keep track of these delta delays. Something might occur

at time T, something with a zero delay will cause a signal change and that signal change will take

effect at T+ delta. 

This change may cause yet another change and that change will occur at T plus 2 delta. The

cause and effect will always have a delta time difference. Therefore, if we ever have to resolve

which  signal  is  earlier  and which  is  later,  which  is  important  that  times,  then  internally  we

always know which was the cause and which is effect, which signal arrived at delta time earlier

and which signal arrived at delta time later.

Finally, when we report back to the user what is happening, the user always wanted zero delay



and it is only at this time that we put delta equal to zero and report the final results as if delta was

zero. But internally we keep track of all these deltas and treat as if delta is non-zero. Remember

the actual value of delta is unimportant. It is some infinitesimally small time. The only point

which matter is at how many deltas did this signal acquired its value.

So that we can do a time ordering. The time ordering of signals is indeed very important in

Hardware Description Languages and as long as events are ordered in time, things are fine. If the

user does not want to specify a delay, so be it, we shall order it in time using delta delays. So,

this concept is very specific to Hardware Description Languages. You will not see such a concept

in any programming language.

And indeed, lack of understanding of Hardware Description Languages very often springs from

the lack of understanding of this delta delay concept. Now let us see how we handle concurrency.
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Concurrency is handled by following an event driven architecture. So, in a concurrent system,

many things can happen at the same time. It is not as if one latch is being set. many signals might

change at the same time. However, since we will be writing Hardware Description Language

which will run on a computer, we can efficiently handle only one thing in real time at a given

time.



Therefore, we need to control the passage of time. In simulation, we are doing various things one

after the other, but we wanted to appear as if all the things appeared at the same time. Therefore,

we need to control the passage of time and we manage it by treating the time as a global variable.

Things which happen simultaneously are in reality handled one after the other, but we keep the

value of this global variable time the same. 

Then, the time value is incremented explicitly after all the events which occur at the current time

have been handled. So, in other words, the actual time as it passes when the program is running

has  no value  whatsoever  as  far  as the simulation  time is  concerned.  The simulation  time is

changed discreetly it is brought to a level. Then in whatever time that it takes in real life we

handle all the events which are said to have occurred at this time.

And then increment the time value inside the variable time is incremented to the next time value.

Therefore, as far as the results of simulation are concerned, it appears that all the previous events

before incrementing the value of the time occurred at the same value of time. Obviously, the

value of the time variable represents the time during the operation of the concurrent system and

has nothing to do with the actual time taken by a computer to simulate the system. 

You may have a slow computer, you may have a fast computer, and the actual amount of time

taken to simulate may be different. We are not talking of that time. We are talking of the time

which is being simulated for the behavior of the circuit, okay and that is handled in this special

way. So, let us see how hardware simulation then proceeds.
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We have given a description in a text form conforming to a particular syntax described by some

hardware language. So, the first step is when we want to run that simulation, the syntax of this

hardware description is checked and interpreted. Only if this syntax is correct and make sense to

the language that we will proceed to the next step.

The  next  step  is  called  elaboration.  This  is  a  preparatory  step  which  sets  up  hierarchically

described system for simulation. So, there are many things which are done at this level. Even

though the description follows a hierarchy, we flatten the hierarchy because eventually the circuit

is the same. The circuit does not know that it was designed following this hierarchy, the circuit in

the final circuit. So, we flatten the hierarchy.

For  structural  descriptions,  components  are  expanded  till  the  circuit  is  reduced  to  an

interconnection of simple components which are described behavior, and then we set up data

structures  which  describe  sensitivity  list  of  all  elemental  components.  So,  we  know  which

component receives which signals as the input and this sensitivity list says that if this signal

changes, then re-simulate this component.

Remember the circuit is very complex and we cannot afford to simulate all components at all the

time. We re-simulate only those components whose inputs have changed or in other words, if

there is  a change in a signal to which this  particular  component  is  sensitive,  and only after



analysis and elaboration, this simulation is actually carried out. The simulation itself is a two-

step process as I have described earlier.
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So, what does analysis do. It checks for syntax and semantics. Syntax in the grammar of the

language, semantics of the meaning of the model. You analyze each design unit separately. You

place analyze units in working library and generally in an implementation dependent internal

form to enhance the efficiency. Remember your description was a text description and it need not

be kept in this form. Then you go to elaboration.
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This  kept  builds  up a detailed  circuit  from a hierarchical  description,  you flatten  the design



hierarchy. You create ports which are interfaces with other blocks, create signals and processes.

For each instantiated component, you copy the component template to this particular instance.

Remember you may not have just one flip-flop.

You describe a flip-flop for once and now you may place say 20 flip-flops in your circuit. Each

instance is different. The description occurs only once but the actual copying has to be done at

the elaboration level.  You are elaborating the entire circuit.  So, you take the template  as the

description and make copies of this template for each instance of the flip-flop, and you repeat

this recursively till we are left only with behaviorally described atomic modules, whatever these

can these may be.

For example, basic gates might be our atomic modules. Anything which occurs in library might

be our atomic module or indeed single transistors might be our atomic module. The end result of

elaboration  in  the  flat  hierarchy  free  collection  of  single  nets  connected  to  behaviourally

described modules through defined ports. This defined ports describe which way the signal is

flowing.

Is it an input to a module or an output to a module, so this is what elaboration will do; and finally

we go to event driven simulation.
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We maintain a time-ordered queue of signals which are waiting to acquire their assigned values.

If you recall our discussion on delta times, now you realize how important that is because for the

user,  many  events  might  have  occurred  at  the  same time  but  for  the  Hardware  Description

Language their time ordering is very important and therefore we maintain a time-ordered queue

of signals which are waiting to acquire their assigned values.

Now, we go to the earliest entry in this queue and the time variable is given a value which is

equal to the earliest entry in this time ordered queue. All signals which are waiting for acquiring

their values at this time are then updated to their values. This is when they acquire the desired

value. So, therefore all these updates or transactions were kept in this time-ordered queue and

then we take up one-time incident at a time.

Look up all the transactions which are placed for this time and these transactions now fructified.

That means the signals actually acquire the value which they were assigned perhaps at an earlier

time. After updating these values, we notice which values have changed and if this updating

results in a change in the value of a signal, then we say that an event has occurred on this signal.

This is very important because only if a signal has changed that we want to re-simulate a part of

the circuit.

(Refer Slide Time: 47:05)

We maintain as I had said earlier a sensitivity list. During the elaboration phase, we determine



which pieces of hardware are affected by or are sensitive to which event and this is called a

sensitivity list. The data structure is optimized for reverse lookup. While describing we describe

hardware  and then  the  hardware  is  sensitive  to  certain  inputs.  But  we keep the  data  in  the

opposite way, that means if you know that an event has occurred, we can go back and look up all

the pieces of hardware which were sensitive to this event. 

So, that means given an event, one can quickly get a list of all hardware which is sensitive to this

event. Notice that hardware could be sensitive to a particular kind of change. For example, you

could have a flip-flop which is sensitive to a rising edge of the clock and not a falling edge. So,

therefore if the event is for a one to zero transition, the hardware doesn't bother about it, but on

the other hand if the change is from 0 to 1.

Then, this hardware would like to reassign new values to its output.  So, in short we have a

sensitivity list, the sensitivities to particular events and then whenever an event occurs, we have

an efficient data structure which then goes around looking for all pieces of hardware which are

sensitive  to  this  event  which has currently occurred.  When this  event  has  occurred,  then all

pieces of hardware which are sensitive to this event are re-simulated. 

The re-simulation will then result in further transactions. So, the simulation cycle consists of the

following.
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The time variable is advanced to the earliest time entry in the time-ordered queue of transactions.

Then we entered the update phase in which all signals which were to acquire their values at the

current time. So, we update their values and then delete them from the queue because after all we

have updated their values. Then, we enter the event handling phase. So remember all updates are

done before you enter the event handling phase.

When all the updating is completed, then we have a list of various events which have occurred,

and it is only when we have prepared this list that we enter the event handling phase, and now if

the value of the signal changes due to the above update it is said to have had an event and all

events which resulted at the current time are handled by a scheduler. This scheduler will handle

all the events in a particular way.

For this lecture, which shall stop at this particular point and we shall resume in the next lecture

and see an actual example of a very simple circuit how it goes through the process that I have

described somewhat abstractly here. It is only when we look at an actual circuit undergoing those

actions  that  it  will  become  quite  clear  to  you  how the  transactions  are  handled  in  a  time-

dependent way.

How the time-ordered queue is maintained, how events occurred due to updating of signals and

how are these events eventually had did. So, we shall do that in the next lecture. We stop here at



this point in this one.


