
Advanced VLSI Design
Prof. A. N. Chandorkar

Department of Electrical Engineering
Indian Institute of Technology – Bombay

Lecture – 13
Arithmetic Implementation Strategies for VLSI – Part IV

Good morning, we will continue with our effort to understand the arithmetic systems in most

of the digital systems. We are so far seen the generalities about the systems, which allows you

to do all arithmetic operations like adder, subtracter or multiplication or division. Today, we

shall start looking into having completed the kinds of adders, which we can implement.

Please remember any of the choice of an adder circuit or adder sub system is decided by 3

important features, which are decided by VLSR requirement. Necessarily, they are speed up

the operation you want, then the power which you can tolerate to consume and finally of

course the area, which this particular system will occupy on silicon. Based on these 3, we are

discussed which kind of adders can be used when; depending on these 2 parameters.

And we are also seen that  many of  the circuits,  which we used in  adders  have multiple

advantages. In some cases, some are better one; the bits are higher, some are better if they are

smaller, some are better if there is only speed is the criteria or some are very, very good, if

they are very low power like say current mode circuits. Now we will go to the next and the

final  version  of  our  arithmetic  which  we  say  multipliers.  Multiplier  is  most  important

operation in many of the real life systems.

And the way multipliers operation occurs is basically requires some kind of generating partial

products and then using them, then using adders to add them out. So, let us see what is the

exactly  what  the  multipliers  are?  What  are  their  options  available  for  us  to  actually

implement? So, this  talk of multiplier,  I  will  talk about briefly  about introduction,  which

probably I did.

(Refer Slide Time: 02:18)



Then,  we will  talk  about  arithmetic  operations,  types  of  multipliers,  individual  multiplier

circuit  performance  and  the  finally  we  look  into  Booths  algorithm,  which  is  the  most

important multiplier operation these days in most of the digital hardware. Finally, we just

show you since, any operation in the multipliers requires addition and shifting, we quickly

see one or two circuits of a Barrel shifter.

(Refer Slide Time: 02:55)

Which, allows you to data to bits to flow; shift towards either left or right and these are called

Barrel shifters and finally we will may give some commands and then I may provide you a

list of references. Now, types of multipliers, which are required in any digital hardware are of

2 kinds; one of course, we all know are; is called a fixed point multipliers. Among the fixed

point multiplier, the most popular one is the integer multiplication.



And of course, it can also have decimals, it can have fraction and multiplication but anyway

any fractional number can be handled same way as the integer numbers and therefore they

only need some addition and shift operations to do a fixed point multiplication. The other

possibility of course, is a floating point multiplier, in which the functions are represented as 2

to the power or 10, in case of decimal; 10 to the power numbers. 

They use fix bits for sign, Exponent and Mantissa. For example, a single precision floating

point number is generally represented in 32 bits, which has one signed bit, 8 exponent bits

and 23 mantissa bits. So, for example, it can be written as -1 to the power S, which is the

signed bit into F, which is essentially your exponent; your mantissa bits and 2 to the power E,

E stand for the exponent bits. 

(Refer Slide Time: 04:27)

So, let us look into the easiest of multiplication, which we see normally in any operation in

decimal and now you are here it is something a binary multiplication shown to you. Let us

say, I want to multiply a number; which is a multiplier is 1 0 0, rather I should have said the

other way, the upper ones are always called the multiplicand and the lower ones is multiplier,

but does not matter, it is only a matter of definition. 

So, if this is your multiplicand, just reverse the name so, 1 0 0 1 is 9 and 1 1 1 0 is 8 + 4 +13,

okay. So, we like to see if I multiply 9/13, what is the number I am going to get? Say, okay,

so, with this on the thinking let us start 1 1 7 should be our answer. So the way we do it, we

take this, multipliers first bit, multiplied to each bit of a multiplicand and write then here and

then shift for the next bit multiplication and write down the; these are called partial products. 



We keep writing partial products for each bit of multiplier and then finally, we add vertically

to get this number 1110101 and since this number is around 117 so, we know basically what

we did? We first  figure out  that  among the multiplier  bits,  how many bits  are  you have

available? Whether it is a signed bit or unsigned bit, then you have a multiplicand, how many

bits it has? 

(Refer Slide Time: 06:08)

And then, we start multiplying from the first multiplier LSB to the multiplicands numbers

and keep generating partial products and then finally vertically we should; please remember

every part, second bit we actually shift to the left and then we add the vertical lines so that,

we get the sum. This is the standard multiplication even in decimal. So, we use the same

thing. 

So, traditionally, for example; just for the sake of this, there are 2 things we are doing in the

case of multiplication. We are first evaluating the partial products and then accumulation of

shifted partial products what we call sum, is then created. Now example is 1100 is 1210, this

is the multiplicand and 0101 is 5, if in decimal and the multiplication in decimal is 60, we

know very well. 

So,  if  I  do the same thing 1* 000, then 0*0 and then 1*0 1110 and finally  I  start  doing

accumulated,  please  remember,  every  partial  product  we  shift  and  then  finally  after

completing all  partial  products we add vertically to create  0111100,  which is nothing but



decimal 60. So, basically what we did? Binary multiplication equivalent to a logical AND

operation. 

One  can  see  1.0  what  is  up  we  did  or  0.1  we  did,  so  these  are  essentially  a  binary

multiplication  equivalent  to  a  logical  AND operation.  So,  the step one consist  of logical

handling of multiplicand and relative position of a multiplier bit. Each column of the partial

product must be added and carry if any generated should be passed on to the next columns. 

So, this is a typically what all of us been aware in case of decimal as well as in case of binary

numbers. Now, before I start ahead may be I will give you a class of multipliers, which are

popular in the digital hardware systems and the choice of course of any system requirement

is;  as  I  keep  saying  all  the  time,  speed,  throughput,  area,  these  are  of  course  VLSI

requirements or system requirements.

And the finally, one of the major requirement in many of the digital hardware system is, how

many bits you should continue to work on? Which is essentially, say a numerical accuracy,

how much  accurate  functions  are;  how many  the  number  you want  to  have  finally.  For

example, 0.0000099901, is that; is what that is 0.0001 is good enough, is your choice and

depending on the accuracy you provide, one may have to decide which kind of system you

require. 

(Refer Slide Time: 08:50)

Typically, there are 3 kinds of multipliers basic operations possible; one is called serial, the

other of course is parallel and the third if not the most important being is the serial parallel.



Here  are  the  3  multiplier  shown  to  you  here;  here  is  the  circuit  which  does  the  serial

multiplication. For example, here you have some kind of a circuit which; I already said that,

the reset requirement.

This is my adder, this is my shift register or register which actually can give you the delay; 1-

bit delay in this case, it may be a flip flop which runs through a clock, okay and you have a

clear signal as well. So, when you get reset, this clears a flip flop. Now, the way it operates

that you have 2 numbers x and y to be multiplied, so you add them out and this output, if

there is a last carry coming from the; initially the carry will be 0. 

So, the output of this flip flop is cleared, so it is 0 plus this and you generate the first partial

product. Then, this partial product pass on to this register in the first bit. In the next bit, please

remember I am actually feeding this output back to the input,  okay. To this which is the

adding the partial sum, the last partial product should be added to the next one by 1-bit shift.

So okay, this is what is going to be done.

So, every time after one clock cycle, whatever is available in the LSB on the register here

will be transferred back this to the adder. Now, the next bit will appear with the last partial

bit, the new carry, which would have been generated here is now fed back last carry and the

process one runs through. The advantage of serial multiplier is obvious that you have only

one adder requirement even if there are, 16 bit or 32 bit or 64-bit operation to be performed. 

However,  this  advantage  can  be  obvious  that  if  you  have  a  large  number  of  bits  to  be

multiplied obviously, one clock cycle only 1-bit operation is performed. So, if there are n bit

numbers, n clock cycles will be required to generate the full multiplier output. So, it may be

little slower but it is much less hardware intensive compared to others. For example, here is

another one, which essentially shows a serial parallel multiplier.

Essentially, you put all the bits simultaneously together create partial products in this. All that

we do is; between the 2 adders since you need a carry out, you provide 1-bit delay here which

is essentially  or register  and that  provides you the last  carry and then this  process keeps

continuing ahead. So, it does not say that it is; it will be very, very fast, though this operation

will be simultaneously done so the one AND gate delays only required. 



However, 3 bit delays of the delay part will be certainly required before now an output is

there. Though it is faster than the serial multiplier, it is certainly not our case that it is the

very, very fast as we would have wished to. In general, therefore one of the cells of this is

essentially called the serial pipelined architecture, in which essentially you provide data as

well as the output partial sum of each of them for the next this, in after the clock delay.

(Refer Slide Time: 12:23)

And please remember, if these chains of delays are provided the way it is shown here, it does

not really delay very much because once the pipeline is full, every clock cycle you have a

data, as we said in earlier pipeline circuits. So, here is the first add and shift multiplication

operation, which is the most common principle of any adder circuit. I am showing you here a

parallel adder shown here as the block, you have a parallel adder which is shown here, which

receives the data from multiplicand register. 

For simplicity, right now only taken the 3-bit data 1 0 1, which is essentially 5 and you have

another multiplier register here which stores the multiplier which is 4 here 1 0 0. So, now

what we do is? We actually have all 3 bits parallely fed to this parallel adder 1,2,3 here, then

we have a accumulate register here, which is 3, whatever bits you have plus one you need

here, so it is here.

Because last carry has to come here, so this is 4-bit register here for the 3-bit data and it

receives the data as the output from the parallel adder. However, initially it is clear and after

every clock cycle all these 4 bits, which you are showing here, are returned to the input of the



parallel adder. So you have a 4-bit coming from here, 3-bits coming from here and yes of

course are the control bit, which is coming from the multiplier register, the LSB part. 

So,  the idea is in this  adder circuit  is,  add shift  register  multiplication is;  that this  mode

control M signal here, if it is one here then, we say addition operation is performed by a

parallel adder. If this receives 0 here, it does not do any add operation, only there will be

clock cycle shift operation will be performed. So, please remember whether you do addition

or  you do not  do  addition,  every  clock  when the  new data  appears,  the  shift  has  to  be

performed. 

(Refer Slide Time: 14:24)

So, the way it is the circuit shows, load multiplicand in multiplication register as we said

here, load 1 0 1 multiplicand register and load multipliers number in the multiplier register.

LSB of multiplier register, please remember, LSB of multiplier register is essentially is taken

out as the mode, okay as the mode value M, so please remember initially this is 0, when the

next clock, when 0 comes out, this will receive M0.

Next when it further shades, another 0 may come, so no add operation. When this 1 will

come, there will be an add operation here. So, please remember every clock this will shift to

the right and when it shifts to right, this bit will move out and the last bit, which comes out

acts like the mode control value, okay. So, load accumulator register and then we initially as I

said, load accumulator register is already initially cleared okay.

(Refer Slide Time: 15:36)



And whenever the multiplication accumulation register receives any addition, it stores the

new data and then it shifts the operation and gives whether M is 1 or 0. Please remember

again,  I  will  give  you  an  example  little  later.  After  every  add  or  no  add  operation,

accumulator  and multiplier  shift  register  does  a  right  shift  operation  under  clock control

because the next bits of multiplier and multiplicand will be now in question to operate. 

This creates change in LSB of a multiplier register and which means that one has new value

of mode control  signal M. the new mode signal  again decide whether  adder  should start

addition of bits of accumulator register with multiplicand register or if M is 0, is not. This

process is continuous as many times as number of bits of the multiplier register. In above

example, one will have 3 shifts and add or no add operations. Because, we are using 3 bits. 

(Refer Slide Time: 16:28)



So, let us look at the example here, initially you have 1 0 0 and 1 0 1 as the operation, so we

start with initial accumulator register with 0000 then, the other multiplier register has 1 0 0,

since the last bit is here mode signal 0. So, we expect that the parallel operator; parallel adder

does not add any do any add operation. However, as we said even if we do not do any add

operation, or we do add operation, shift 1 bit on the right is necessary every clock. 

So, we shift this data 0 0 0, of course we add since this will move ahead, the blank 1 is now

added 0, automatically and now 1 0 0 will shift to 0 1 0 and now mode is again 0. Since,

mode control is signal is still 0 and which is returned to parallel adder mode control, there is

still no add operation required by now, but we still have to shift this data. So we do another

shift operation once again, so you have 4 zeros again and 0 0 1 but now mode is 1.

So, since mode is 1, the mode control signal 1 will start the adder operation, so you have a

multiplicand which is 1 0 1 and now that is added with this 4 bits, 0000 plus multiplicand

which is 0101 and the addition of this is 0101 and that is then 0101001, but since we have

already done an addition operation, this is the status of accumulator register, this is status of

multiplier register. 

(Refer Slide Time: 18:17)

However, every add or no add operation needs shift, so we shift the data on the right, so you

get  0010100.  But  the  next  time,  you see  M is  now 0,  so  no  add operation  is  required.

However, again the data will be; since they already all the 3 bits are over, no more shifts are

required, so you get 0010100, so if you write this number, 10100, which is your output, if you

see very clearly 1 0 1 is 5, 1 0 0 is 4 in decimal, multiplication is 20, which is 10100. 



So, this is the easiest of multiplication operation which one can perform in the normal serial

kind of registers which we have. The advantages I keep saying in this kind of; you can see

you need a one adder and 2 registers and 1 accumulator register perform. The only thing is as

many bits you have as many times you will have to shift and that means that many clock

cycles you have to go through before the final operation, final result is available in some of

this accumulator and multiplier register area. 

(Refer Slide Time: 19:46)

So, it  is much less hardware intensive but comparatively slow, comparatively slow. This,

another operation, which we will like see, parallely to be done, add multiplier operation; add

shift operations, multiplying large number of bits. One technique, which we often use in this

case is to find out,  how is;  this  multiplication can be performed. So, let  us say I have 2

numbers okay, which shows X = Xi 2 to the power i, Yj 2 to the power j, as the Y number and

the product is X*Y. 

I will do this again little more detail, but just to give the Xi 2 to the power i, Yj 2 to the power

j some of all the bits and if we want to find the product, then it is Xi Yj 2 to the power i + j

and if we put k as the product, this term Xi Yj is Pk, then k=0 m+n-1 Pk 2 to the power k; i +

j is k in our case, so in that case this is the product which you get. So, each Pk 2 to the power,

2 to the power gives the position and Pk is the partial product. 

So, if you have n by n multiplier needs n into n-2 full adders, so please look at the simple

adder multiplier cell, you have one X; sorry this is your X and this is your Y. so, the first



AND gate gives me partial product of XY, if you have the; if this is not the first adder, then

you will require a carry. If it is this, it can be half adder because you do not need initial carry.

So, the output of a AND gate, which is XY is transferred to this adder. 

If it is initial, first cell, then the initial P also a partial product is 0. So, partial product is does

not exist so but, if naturally, it may have for the next month, so P is also inputted here, carry

is also inputted here. The partial, whatever is the partial product XY for this, we create here

Xi Yj, then we add, create output carry, output product and please remember this is my X and

this is my Y, this is my input carry, this is my output carry.

And this is my initial product for the last case and then the new product is this one. This will

then become the new input product and the next X and Y will appear and this process will

continue. So, if you look at it, since the first one where you received first X and Y, do not

have any carry to generate, so those places where that happens, you do not need any full

adder, you may need half adder.

Please remember, half adder is a less hardware intensive, less number of gates and also is

relatively faster. So, you need n into n -2 FAs, full adder and half adders and obviously for

each of this n into n squares, so n square and gates to create all partial products. For the worst

case delay, one can say, if tau g is the worst case adder delay for this block, when 2n + 1 tau g

is called the worst case delay of this kind of multiplier, okay. 

Typically,  if  you would  4-bit  multiplier  partial  products  if  you see;  let  us  say,  I  have  2

numbers multiplicand is X0, X1, X2, X3, multiplier is Y0, Y1, Y2, Y3 represented by these 2

numbers, then we do partial product Y0 into X0, Y0 into X1, Y0 into X2, Y0 into X3 and

then we repeat with Y1; Y1 into X0 and so on and so forth and then all this partial products

are added; this columns are added, X0, Y0 transfers here.

Then, X1 Y0 + X0 Y1 is transferred as some of these and we keep doing. So, here is only one

term and 2 terms and 3 terms and 4 terms, 5 terms. The way we operate is whenever we get

this first term, next time we actually will add this up and then we only add this one. When

this happen we would have already added these 2 in the same operation,  we would have

added on this next operation then the finally generation 4 will do fourth operation. 

(Refer Slide Time: 24:24)



So, the method is  repeated product availability  in  earlier  game,  can be reused as I  show

product input and then new x and y can be added every now and then in this same column

and new product sum can be obtained. The first and the foremost multiplier uses, which uses

this algorithm we shown here, which is simple algorithm is due to credited to Baugh-Wooley

multiplier, which is an algorithm for twos complement multiplication. 

It adjusts partial product to maximum regularity of multiplication array, whose partial product

with negative  signs to  the last  steps and also add negation of partial  product  rather  than

subtract. Please remember no negative numbers; no subtracters are probably we want to use,

so we can do it by actually creating the do some negative adds as we called, instead of using a

subtracter circuit, okay. 

(Refer Slide Time: 25:14)



Now, I will before we go to Baugh-Wooley circuit which is shown, which is standard array

multiplier. Let me again do some little bit of (()) (25:04) again, which is not very difficult but

just to see you, which is used in Baugh-Wooley multiplier. Let say, X is a multiplicand and Y

is the multiplier and both numbers are represented as their complement; twos complement

numbers. 

Then X is equal to; can be written as; please remember how X can be now written, is – Xn -1

2 to  the  power  n  –  1  and then  sum of  i  =  0 n-2 Xi 2 to  the  power i,  this  is  the  twos

complement method of representing numbers. Similarly, Y can be represented as – Yn – 1, 2

to the power n – 1 + j to the power; j = 0 to summation of, to the n -2 Yj 2 to the power j and

we know the product term is X * Y. 

(Refer Slide Time: 26:09)

Now, if we do this, okay if we do this, we rewrite these terms. Let us see, how we rewrite. We

take the products, remember there are 2 terms in X and 2 terms in Y, so though XY will

produce 4 terms. So, P is Xn -1, Yn -1 2 to the power 2n -2, then you have i = 0 j = 0,

summation for i and summation for j up to n – 2. Then, the partial product Xi Yj 2 to the

power i + j. 

Now, you have 2 more terms, because there is a – Xn – 1 2 to the power n – 1 and –Y and –n

2 to the power n – 1. So, those terms will also get added now; multiplied so there will be 2

more addition terms. The first is –X – n, j0 of this, that is X*Y, now Y * X and the power will

be 2 n + j -1, 2n + i -1. Now this essentially means that these 2 terms are first 2 terms are

going to be added. 



However, the last 2 are subtracted. We will not like therefore any subtractor to be use; please

remember  require  addition;  subtractor  hardware,  so  we  do  not  need  any  subtracting

operations. So, what we do is? We do negative addition as I keep saying and therefore we

represent these negative numbers in this format. This is the format; please remember 2 to the

power; some number when I say it actually gives you, for example let us say, let me tell you

what I am trying to say? 

(Refer Slide Time: 27:41)

If I have a number 10110 what I am essentially saying is, 2 to the power 0 into 1 sorry 0 into

1 + 1 *2 to the power 1 + 1 * 2 to the power 2 + 0 * 2 to the power 3 + 1 * 2 to the power 4.

So, every bit position here, here, here essentially gives me the 2 to the power coefficient

there, so if I say, I am here and I want to subtract something or this, I can move my by this

position, and if I do should the position I am actually doing the essential  equivalent of a

subtractions. 

So, this method of actually doing subtractions through a negative number can be represented

as – Xn -1 Yj n + j -1 Xn -1 -2 and -2 +2 to the power n-1. Please remember this is 2 to the

power n -1 – of 2 to the power n-2; j=0 n - 2. Similarly, I can write for Y; - Y term, which I

said the –Y and -1 and -2 can be rewritten in the same form as Yn -1 2 to the power 2n – 2 +

2 to the power n -1 i = 0 to n -1 Xj 2 to the power n + i -1. So, I can write these 2 terms in this

format. 

(Refer Slide Time: 29:47)



I  have these 2 terms are anyway positive terms  and therefore  now we am in interesting

situation that we can then only need positive operations or add operations in this case and 2 to

the  power  numbers  essentially  the  shift  operation,  shifting  this  is  the  shift  operation.

Typically,  array multiplier  shown here if  you see here is typically array multiplier  shown

here, these are all Ys, Y0s, Y1s, Y2s, Y3s, okay. 

Then, each vertical line is X, say this is X0, this is X1, which is not shown in each gate

receives X0 X1 X2 X3. Similarly, you need X2 again you need X2, you will need X3, X3 so,

this X is essentially travelling diagonally each X is diagonally, whereas Y; we have taken as

horizontal lines. So the; what it does this, the first partial product is X0 Y0 which is your Z0.

Then the next partial term can be created by X0 times Y.

But you need now this addition with X1 Y0, so this is X1 Y0 is coming from here, X0 Y1

coming from here and since it is the first time you are doing an addition operation that is no

carry available here for a half adder is good enough and if that happens, the together half

adder creates Z1, but now it generates carry. For the next of this, you get X2 same way and

now this whichever you carry you are generated with this theme numbers plus this X0 Y2

numbers can be again it will not have any carry.

Because, this is the first time appearing. So, you need a half adder. So, one can see from here

the last X, wherever X0 is appearing, you actually need half adders but whenever X1 Y1 or

X2 Y2 ahead you will require full adders for those all operation. Here again you see, there is



no full adder requirement because there is no additional X or Y coming from this side, so no

additional carry because already one, only there is this term is not occurring here. 

So, you need does not need; you do not need carry inputs here, so you need half adders here.

So, typically what you are doing is successive creation of products and some through full

adders is transferred to the next bit, so you can see this is the total addition going through

this, whatever is added here is now added with this. Whatever is added here is now added

with this with half adder you get this Z3, by same logic, you get addition of these the vertical

lines and you get Z0 Z1 Z2 Z3 Z4 Z5 Z6, okay. 

(Refer Slide Time: 32:42)

Now, of course, the last carry, which will generate will be your Z7. Now, if you see the kind

of operation you may have to perform for subtracter or minus values, can be shown through

there. There are 5 kinds of cells or block cells, which you use in a Baugh-Wooley multiplier,

the first one of course is the generation of Xi Yj term, this is Xi, this is Yj, simple AND gates.

This is block cell 1, then you may require a Xi bar Yj.

(Refer Slide Time: 33:15)



This is subtraction kind of requirements if you see, then you may require inverter here, okay.

This is block cell 2, then if you see this another cell you may require is Xi Yj, you create an

Xi Yj term, you have the last sum which is coming, which is what full adder will give. It may

receive a carry, may generate a carry and the final sum out, which what that full adder circuit

which you are seeing there, you can see. 

The other one is you may require X bar or Y bar kind of things, this is X bar Y and same

operation as this you require and finally you may require some kind of an XOR equivalent,

for  example  in  the  final  adders,  this  is  nothing  but  Xi  Yj  the  complemented  is  Xi  bar,

complement of this is Yj bar, so this is X bar, Xi Yj + X bar Yj bar + carry; this kind of

operation can then lead to an XOR or XNOT kind of operations. 

(Refer Slide Time: 34:33)



So, these are the 4 blocks which are normally you will find in a Baugh-Wooley multipliers. If

we see carefully these 4 figures, 5 figures, you can see from here, in this multiplier, we need

twos complement generator, AND gates to get partial products and full adders do additions.

So, these are the only 3 gates which we probably will; 3 kinds of system, blocks we will

require to do a multiplication. 

(Refer Slide Time: 35:11)

To save an area and also to improve speed an n/m bit multiplier is always arrange in an array

which is what the slide is showing. You can see this is XY array has been done. However, a

better arrangement is also possible okay and which is shown in my next slide. You can see

from here, actually I will say exactly the same it is not different. So, only thing why I am

showing you is the place what is the kind of delay you are going to get.

Let us say, you have N/M, N/ this, so this is same as X0 Y0 then X1 Y1 X0 Y0 kind of thing

we are doing as we did. So, the path is this, this, this, this, this, and this. Please remember the

path is this, this, this, this, this, and this. I remember, I please tell me this is the critical path of

the circuit, okay. So, if you look at the delay associated with the critical path; critical path I

repeat is coming like this. 

So, you require all 4 adders okay, so you have a N -1 kind of full adders okay only some

operations will be required so, you have N – 1 t sum, because please remember when we are

performing this operation, the other operations are simultaneously done in the earlier cycles,

so you do not need to know this. So, you have only N -1 operation, every; since X and Y are

created simultaneously, so you have only one AND gate delay.



And then you have a carry path; this is what I was trying to show a carry path. So, you have

M – 1 + M – 2 carry for X and Y, I  mean for the;  this  is  one is  vertical  down, one is

horizontally down. So, it is the delay that is associated with M -1 + M; this is of course M

cross N carry. So, this is the net multiplier delay. I may tell you again the delay is essentially

from this path, this is the time delay, I evaluate. 

(Refer Slide Time: 37:22)

Since as some of the partial product do not need to carry so, hardware can be reduce as I keep

saying only a half adders are sufficient. A better arrangement for the same, which I shown

here; you know this is my X, which is travelling vertically down, this is my Y, this is my

AND gates, which receives X and Y here at this AND gate, this is my adder, which can be

mostly full adder in case the carry appears otherwise half adders if there is no carry appears. 

Now, this is my output carry, this is my initial partials products which is then added to next

partial products and keep generating the new. So, if I keep array of 4/4 in this fashion, you

can see from here, this is my X, sorry this is how diagonally I am crossing X and Y, okay and

please remember these are my X and these are my Y, slightly shown in a better fashion and

the product is travelling.

In a; instead of product travelling vertically, actually my; this circuit is product is travelling in

the AND gate, which is going to the adder is essentially looked into this direction. So, this is

XY with the last this P comes, initially of course this is 0, so it keeps doing. So, if you can see

using this kind of arrangement which is shown here, the multiplier; which is same, if it is M



-1 N -2, carry and N – 1 t sum + t AND is the net delay which is; this is same as what I earlier

shown.

And one can see from here that delay can be minimised; delay will obviously increase if the

array size is  larger  that  means if  your  8 bit  by 8 bit  multiplications  or 16 bit  by 16 bit

multiplications, the multiplied time will keep increasing. So, the adder part does not really

increase; adder part does not really add; please remember this is M + N kind of things but this

is only n kind of things. 

In general, sum time is not that high compared to this product of this, so this essentially

dominant over this term and time of course is very, very invisible. So, we have seen earlier in

our carry save operations earlier in an adder thing. We know the carry save adder has the

biggest advantage we know about it, it is little faster for the simple reason that carry save

adder allows you to do 3-bits addition first and generating 2 terms C and S.

The S essentially, is the sum of those bits X Y and j for example and without taking carry into

consideration and the carry term C is generated without taking the sum into consideration and

then we add C and S with the any other initial carry it you had with a simple CLA or any

normal full adder to generate your carry save operations, full adder. Now, and we say since it

does not propagate carry nor it has to look ahead the carry, it has the; it is the fastest adder. 

(Refer Slide Time: 40:38)

So, the same circuit, which we discuss earlier instead of using the normal adder, we can use

at least those place remember I already shown you the critical path in my circuit there, those



full adders which are in the critical path to derive the time at least those should be utilised

using carry save adder. So, you can see these are the carry save adders, these are called vector

merge.

For the simple reason that, here the actually you are adding, generating; of course please

remember first one will can be always half adder if there is no carry generation. So, the way

we operate here in the carry save adder, twos addition and then the third is added here, twos

addition and then the third is added here, we keep doing this operation 33232 operations and

can generate Z1 Z2 Z3 this is my X and these are my Y, which are fed here. 

Now, this is 4/4 carry; please remember the critical path is all that matters to me for the worse

case delays and therefore the multiplier delays N-1 t carry, okay because there is no carry

propagation except for the actual carry which are required for the next stage; one carry only.

You can see 4 + 3, 7; this is 4 3 t carry are only required plus this; only 3t carries plus merge

time; merge time is essentially in which all Zs are parallely available. 

(Refer Slide Time: 42:41)

Please remember these are parallely available to you, okay, so you have t merge and of course

AND gate to generate XY terms. So, a carry save multiplier has half a multiplier cell full

adder multiplier cell and there are among the half adder full adder, some of them are carry

saves and the others are; these are called vector merging. The same figure can be little better

way shown here, these are Xs, these are Ys, okay.



And you can see 3 terms; X3 Y0 Y1 creates CNS. The S is now transferred to the next cell

with the X2 Y0 Y1 is transferred here and then it; this is; these 2 numbers and then generate

another 2 numbers and diagonally passes back there and since it simultaneously passes from

this side, from this side, from this side, this is called vector merging and therefore the delay

essentially is what I have just now discuss. 

So, the half and multiplier  cell  they are full  multiplier  cell,  they are vector merging cell.

Please remember you can use all carry save adders, which may do but some of them in the

last circuit if you see, they need not even carry save because any way I am sorry; they are all

carry  save,  they  need;  they  are  not  the  ones  in  the  critical  path.  Because  they  are

simultaneous; I am very sorry what I said? 

(Refer Slide Time: 44:00)

These are full adders, same carry save, but these are the only ones, which will transmit the

data then therefore in the critical path. So, only the critical path delays are after relevance

which this receives this. The other possibility of a generating a multiplication is using what is

called a Wallace tree. We know when a tree operations, any tree operations reduces the depth

of the adder chain.

(Refer Slide Time: 44:32)



We still use carry save adders, so you have 3 input a b c, which produces 2 outputs y and z

CNS, in the last case and we create these terms. We know this we already done this carry save

operations. How do we do a Wallace tree multiplication or this? So the first thing we do is? In

your multiplier, let us say these are the positions, 0 1 2 3 4 5 6 bits, this is the first partial

product terms X0 Y0 X0 Y1 kind of things.

Then this is again X0 Y1 X1 kind of thing. There are 4/4 product I am showing you. Now,

what you do is? We know this is the operation; these are of course zeros here, okay. So, we

instead of writing in this format, we write for each position, 1, 0 to 6, we write bit position,

we write whether 1 or 0 exist, okay. So, for example these 4, 4; first 4 will exist because of

this but the next 4 exist from 1 to 5 okay, 1 to 4 so it is 1 to 4, so this is 1 to 4 okay. 

Then you can see from here, the next is from 2 to 5, so from 2 to 5 and then from it is 3 to 6,

so 3 to 6. So, the first we write for each of them whether; see if in this column this has to be

added,  this  has  to  be  added,  this  has  to  be  added.  So,  we  now start  looking  for  actual

additions. We say okay in the first bit position only 0. Next you have only 2, then in the third

you have 3 okay. In the fourth, you have 4, okay.

In the fourth you have again 3, in the fifth you have 2 and the sixth you have 1, okay, we are

just inverted it nothing big, same thing rewritten in this form. Now, what we do in the; after

we put this is called the first stage operation, to create the tree, the next stage is; in the first

stage itself, circle the last ones. For example, for the third and fourth, you circle the last 2, so

if that means we do this addition it will create only one numbers here, okay.



And then you will have 3, 3; 2 kind of thing can be operation can be created, okay. Then it

will  be  3 3 3,  all  three  operations  and then we can  see in  the next  operation  if  we see

therefore, if 1, 2 of course this is also 2 operations are could we have been directly here, but

so we look into second position, there will 3, so you create for the 2, then you will create 1

out of that and then 1 + 1 is 2. 

This we already created 2 + 1, 2 + 1, 2 +1, this, so if you rewrite this, it becomes of course

this is 0 we take, so 2 2 2 2 2, since 2 2 2 operation is very simple to add, so you have

partially doing your summing here and bringing at then only some of the 2. By using this

kind of thing we can reduce substantially hardware can be saved, substantial saving in the

hardware, the operation will be very high speed, we will see this.

(Refer Slide Time: 48:07)

And the delay will be now log; log 3/2 N. Of course, since it is the kind of operations you are

performing the; it will be a irregular structure not in array, universal structure and therefore

many times the lay out becomes vary and efficient. Here is the tree multiplier basic concept.

So, basically you have a carry save multiplier shown here, you have a full adder, this is Y0

Y1 and the next is Y2 creates some C and this and add and the next is carry.

The last similar adder must have come, add this now they have 3 bits create this and this 2

and keep create in a vertical  diagonal directions.  Here is something which better  looking

figure, which is same as this but lightly better. You have Y0 Y1 fed to Y2 creates Ci, okay



and then this is your S term, which is nothing but sum of Y0 Y1 Y2, which is then fed with

the carry generated out of this, okay. 

Full adder sum, partial sum and you add with this to create the new carry and new sum. The

next carry is now fed here and create new carry and new sum. So, it is log N multiplier times

order of log N is the delay here; Y represent the partial products and X represent this. So,

essentially  till  you are  doing time  multiplier,  so you are  trying  to  save some operations

because they are carry save operations, no carries are required in the self-operations.

And these are  transferred to the only next  stages and the next sum simultaneously  made

available to you. So, this means using this tree multiplier concept, one can save the time or

that is high speed. The number of adders now required will be only 4 to do these operations

and 6 bit operations as we see and this is therefore less in hardware high speed. But you can

see if I lay out this block, it will be very difficult. 

(Refer Slide Time: 50:06)

Now, if you look at your multiplier any time very carefully, okay. What is the problem with

normal multipliers? If you see a normal multiplier, you have partial sums, you are going to

create depending on your multiplier and multiplicand kind of numbers, it can be fine that

there may be large number of ones available to you and if you have ones those many mean

terms usually partial products will be available. 

(Refer Slide Time: 50:47)



For example, I may show you what I am saying? If I have a number; 1 0 1 1 1 1 and I

multiply it by 1 1 0 1 0 1, you can see from here, I can create this so many terms so, 1 1 1 1 0

1, then 0 0 0 0 0 0, then the next one is 1 1 1 1 0 1 then again 0 0 0 0 0 0, again 1 1 1 1 0 1,

and finally again 1 1 1 1 0 1, so if you see an operation except for these 2, which is shown

here, every other partial product you are creating, larger the number of partial products you

have; for example, in this each of this for example here you have 3 ones, you have 3 ones

okay. 

So, the larger the ones availability in your partial products, larger will be the operation of

addition and therefore even if you use carry save, you could require larger times. However, if

I actually convert into say let us say something like this for the sake of completeness, then I

have only 2 terms associated with this multiplier one ones, the rest terms I have need not even

write because these are the terms any way going to be zeros.

So, I will only do addition of 2 terms, which is very fast. This is essentially called a multiplier

term is coded or recoded, this is your twos complement number let us say and you recoded

into a format, which allows you to deduce the number of ones and if that happens the number

of  adders  which  reduce the  number  of  additions  and therefore  it  will  increase  the  speed

enormously. 

(Refer Slide Time: 53:13)



So, one of the major criteria of any VLSI chip, as we discussed here also is to show that; now

here is before I go the actual Booths algorithm, I may just show you what I am really talking.

In Booths multiplier, we recode twos complement number; since we use binary number, we

observed that  j  long sequence of ones is equivalent  to j  – 1 long sequence of zeros.  So,

replacement  of  ones  by  zeros  reduces  the  partial  product  terms,  this  is  what  is  called

recoding. 

Is that word clear? I; the sequence of ones can be converted of sequence of larger number of

zeros  and therefore  reducing the  partial  products  and since  the  partial  product  terms  are

smaller, then time taken to add them will be also smaller. So, this is basically the principle or

basically the need of a recoding and that is what Booth feedback in 1900, odd years as first

time suggested that this is mathematically possible.

Because of the; this law that j long sequence of ones can be equivalent to j – 1 long sequence

of zeros and using this theorem, Booth has arrived at an algorithm for additions. What is this?

It  say  that  Booth  recorded  multiplier,  recoded  sorry;  it  is  not  recorded,  it  is  a  recoded

multiplier examine 3 bits of; this is for the Radix 4, this is essentially modified kind of thing

but let us see what I am talking about. 

A Booth recoded multiplier examines 3 bits of multiplicand and time to determine whether to

add 0, -1, +1, 2 or -2 of the rank of the multiplicand. Before we go to this, maybe I will

actually discuss the same issue little later, but let us look at the kind of things we do here.



Before we; we will come back to this expression little later; this one but okay just look at the

number. 

X is can be written as i = i2, let us I am using 16 bit numbers, 15, xi 2i -1 –x0, so this is very

important. What I wrote is first to, 0 of course I have taken out okay. So, it is xi 2 to the

power –i –x0 2 to the power 0, okay. So, if you have this you can remove this term from this,

so you have 16 bit numbers. This can be further written as i = 1, 2 this 8, now I divide into

this 877 kind of thing.

So, x2i – 1, 2 to the power –i + 1, i1 to 7, like this plus minus 2 to I minus 1 and again x

series. If we collect these terms, then x can be written as x2i – 1, x2i, and -2xi- 1 into 2 with

the power -2y +1. Now, this is essentially what I am going to do in my evaluations that any

number has 3-bit equivalence x2i -1, x2i x2i -1, minus of that of course with the minus 2

signs which is equivalent of the xi 2 to the power. 

(Refer Slide Time: 56:44)

Now, this is what essentially, we know how can we represent the x numbers and before we do

ahead, let me tell you how do I do the recoding? Consider a positive multiplier consisting of a

block of one surrounded by zeros, so it is 00111110, the product is given by M; M is the

multiplier you want; multiplicand you have and this is your multiplier which can be written

as M * 2 to the power of 5, 2 to the power 4, 2 to the power 3, 2 to the power 2, 2 to the

power 1, so this is 62 M, where M of course further multiplicand. 



The number of operations can be reduced to 2 by just simply rewriting it, 2 to the power 6 is

62 – 2 to the power 1 is 2, which is 64 – 2 which is 62. So now, what operations I am

performing? Right now I was performing 1 2 3 4 5 operations okay. I can now reduce to only

2 operations; this is essentially the basic thinking in recoding. Please remember this number

if I recode in this format, this 11110, in this format, you have larger number of zeros minus

this. 

Please remember 2 to the power 6 will have larger zeros, because 10000 kind of term, this 2

will be of course -1, 0 okay. Now, you can see from here, this number has most of the zeros

okay. So, you can see it is only the positional advantage you got it, you only have to do now 2

operations because most of them are 1, only these 2 operations I may have to perform to

actually perform this whole multiplication. 

(Refer Slide Time: 58:44)

This is essentially recoding this into this format, okay. Continuing with our Booths multiplier

operation, it takes values of 0, plus minus 1, -2 as we just now said and number of partial

product generated are reduced and they are simple multiples of input operand -2y –y0 y 2y, if

y is the multiplier and x is the multiplicand. Please remember this is the table, which will

right now I do not want to discuss this table, I am coming back to this table again. 

(Refer Slide Time: 59:08)



In  a  Booth  multiplier,  encoding  scheme  reduces  number  of  stages  in  multiplication.  It

performs 2 bits of multiplication at once requires half the stages, each stage is slightly more

complex than the simple multiplier but adder and subtracter is almost as small and as fast, as

normal adders, okay just to give you again the same twos complement number can minus can

be represent like this. 

Rewrite 2 to the power something is 3 – 2 to the power a, therefore –y can be written in this

format, then we already discuss this earlier, it is same representation. Consider first 2 term by

looking at the 3 bits of y, we can determine whether to add x or 2x to the partial product and I

will give you an example what I meant, okay. Even before this, let me say; tell you what I

really code okay. 

(Refer Slide Time: 01:00:06)



The simple Booth, before go to the modified one which I started, let me first discuss the

Booths algorithm, which is the simple Booth algorithm; Booth algorithm involves repeated

adding one or 2 pre written values of A and S to a product P and then performing rightward

arithmetic shift on P. 

(Refer Slide Time: 01:00:30)

Let us say, you have m and r be the multiplicand and multiplier and x and y represent number

of bits in m and r. So, the algorithm says, determine the values of A and S and the initial value

of P, all of these numbers should have a length equal to x + y + 1. Now, A; fill the most; I will

come to an example, you will see it, fill the most significant bits with the values of m, fill the

remaining y+ 1 with zeros.

For  the  S,  fill  the  most  significant  bits  with  the  value  of  minus  m in twos complement

notation and fill the remaining y + 1 with zeros. For the P, fill the most significant x bit with

zeros to the right of this append the value of r, fill the least significant right most bit with the

zero. I will give you an example and I think that I will be clear to you but before that what is

the operation to be perform? 

(Refer Slide Time: 01:01:15)



Determine the 2 least significant bit of P, if they are 0, 1 then do this operation P + A, and

ignore always overflow. If these 2 last bits are 1, 0, then do operation P + S, again ignore

overflow. If they are 0, 0, do nothing, use P directly in the next step and if they are 1, 1 again

do nothing P directly in the next step. So, only if it is 0, 1 or 1, 0 you do the P + A or P + S

operation otherwise do not do just move. 

(Refer Slide Time: 01:01:51)

Now here is an example, I think that will clarify what I said. A is 0011 and the rest is 008 bits

and the finally happened is 0 here. S is; please remember this is 3 and this is again 4 +; sorry

8 + 2, 4, 12; 13; 13, 3 is the 39, okay but if it is in the minus numbers, then this is -3 and this

is 4, so I may actually looking for 4 * -3 as my number, okay. So initially you have the P is

110 okay, which is first term, perform the loop 4 times.



So first P =0001100 add the 0, the last 2 bits of P are 00, so arithmetic right shift since they

are 00, do not do anything just shift one side, okay. Now, again we see the last 2 bits are 00 so

just shift again, so you get 000110. Now, the next 2 bits are 1, 0; so do operation P + S. So,

this is your P, add S to that and if you do this operation, you get this and again shift to the

right; again this side. 

(Refer Slide Time: 01:03:48)

Now, we see an observe 1 1,  so we okay 11 means again the last  2 bits  are  1,  1 so no

operation  to  perform only  shift  so this,  and if  this  see,  this  number  11101011,  which  is

nothing but -12. So, if I perform this operation, I can always create this number, this is our

basic idea of both recoding. Instead of having only 1 or 0 this, you can have the number in 1

and -1 codes and by doing this; we can generate the number in minus itself. I will give you an

example. 

(Refer Slide Time: 01:04:01)



Before we go this, the Booth recoding it advantages and disadvantage are depends on the

architecture  potential  advantage  might  reduce  the  number  of  ones  in  multiplier.  In  the

multiplier, that we have seen so far, does not save any speed still have to wait for a critical

path, increase area, recoding, circuitry, AND subtraction.  So, a new idea was figured out,

okay, so what do we do really in the coding part. 

(Refer Slide Time: 01:04:46)

So, I may actually show you how do I coded as an example, before I actually look into what I

am really this, okay here is my operation. Let us say in twos complement, I have this 001101

is 13 and 111010 is -6, so I recode the multiplier x, okay. My initial number is 110010, so the

way I recode is the following. The way recoding is done, I think I will go back and show the

other slide but this is to simplify before I go there. 



For every, the first of course, you leave zeros but the next ones whenever you see one, just

below that put -1 and +1 in the next bit position. For 0, you put only 0,0, for 1; -1 +1 for this

one -1 +1; for this one -1 and then you just write down the numbers, this is of course initially

was 0, 0 here. So, you say first number is; -1, 0 the second; please remember second is -1 and

+1, +1 and -1, this is 0 and 0, this add is -1 is 0, -1 +1 is 0, so for this; so please remember I

am actually doing this operation, this operation and this operation. 

If I do this, I get -1 0, -1 +1, 0 0 and finally 1. Now, Booth encoding or recoding as we said,

essentially  says  and  we done  we  now back  and  show what  I  am talking  about?  Is  this

operation is say; do multiplication do; do operation which is called -2 times the A is the

multiplicand and add to that, this is addition of -1A and this is 0, so just no addition. Now, I

will come back to this little later once again, okay. 

(Refer Slide Time: 01:07:00)

When I come back to this number evaluation, so, how do I get this? Path is the following, so

this is how I do, okay. I have a group appears leaving -2 -1 this and as I said produces the

number of partial product by half, so how it is done? It gets rid of 3s; sequence of ones in

general,  okay and I suppose, I have that expressions with me, here is the one what I am

saying, we can see both simultaneously to some extent, okay. 

(Refer Slide Time: 01:07:27)



You have x0 to xn -1 as your number in twos complement, add xi – 1 which is always added

to the LSB extreme LSB side and is always 0, okay. So, if you see at this table, this number,

you have 011011100 and 1 and this last 0 is appended by me, okay. Now what do I do? I said

for everyone I write -1 and +1 okay. I do not have to write zeros, because zeros do not add.

For this one, I write -1+1, for this one I write this, for this one, I write -1 +1, for this one, I

write -1 +1, for this one I write this.

(Refer Slide Time: 01:08:50)

And if I then add vertically down, so it is -1 0 then it is 0 +1 -1 0 0 0 -1, now we know Booth

encoding or recoding says this is equivalent of -2, this is equivalent of 0, 1 so, from here now

we come back to this. What was the problem in Booths normal recoding? In normal coding

has some difficulty one can see, which is not very obvious to many, okay. In a normal Booth

simple recoding, it may create, if you just do the normal recoding as we did earlier.



Then, you may have initial number, which has certain number of ones but when you recoded,

you may have larger  number  of  ones;  -1  or  +1 whatever  it  is.  Here is  an example,  this

happens particularly when there is ones are very sparse. For example, given in a book this is

the  K.  Roys  book,  it  says  that  85  can  be  a  number,  which  is  001010101  in  a  twos

complement.

And if I Booth coding it, this will give my 01, -1, 1, -1, 1, -1, which essentially means now

there are more operations to perform, one means, there is operation to perform, 0 means no

operation to perform. You have only 4 operations here in normal case, here you have 3 + 3, 6

operations of ones. So, in case of Booth, normal Booth multiplication, there is a possibility of

error.

In  the  sense,  you  do not  save  partial  product  sums  actually  increase  sometimes,  in  this

particular  area  occurs  when there  is  a  sparse  ones.  The  live  number  of  ones  any  Booth

recoding will reduce that ones to more zeros and therefore number of partial products will

reduce and this is very, very relevant in what we call modified Booths recoding. So, in a

modified Booth recoding what I am going to do is? 

I have; I generate ix0 n-1, add this append this number 0, I leave this number and look into

the first 3 bits from LSB, this is additional LSB plus we are not counting in inspection. So,

we say, we will start inspecting first 3 bits and using the inspection of x0 x1 x2, I can recoded

into y1 y0. However, in the Booth normal recodings, I would have done x1 x0 x3 x0 and then

there would have been possibility if they both would have been 0 or 1 alternatively. 

So, sparsity would have come, now what i do is, I take the last one once again and now with

this; so, even if it is 0 or 1 with this it will be taken care and then I will generate another

recoded values which is y3 y2. I start again with x4 go to x6, I create y4 y5, I will start with

x6, go to y7 and so on and so forth create y6 y7 y8 y9, things of that, all odd numbers, okay

finally. So you have x0 to xn-1 is the original number and y0 to y – 2 is the modified recoded

number. 

(Refer Slide Time: 01:12:01)



You can see, we are using a 4 bit Radix 4 scheme here, we inspect 3 and every time we

inspect 3, 2 bits gets eliminated because common this is there. Now, this is essentially what

Booth encoding is about or recoding is about? Example here is; I have a x1; 000 then the

recoded bits are 00, I will come back the table again and again you will see the same thing.

This is 001, the yi yi -1 is 0, 1; 010 is 0, 1; 011 is 1,0; 100 is -1, 0; this is code 100 is 0, -1; 1

1 0 is 0, -1; 1 1 1 is 0, 0. 

Now, the operation we have to perform is called A, is your multiplicand, so how many times

this recorded digit times that multiplication has to be done, multiplicand has to be added. So

the actual from 0, 0 does an operation of 0; 0, 1 does 1; 0, 1 does 1; 1, 0 does 2; -1, 0; -2, 0,

-1; -1, essentially, it says the operation should have this is zero addition, 0 * A addition, this is

whatever is the last is you add one times your multiplicand, one times multiplicand, 2 times

multiplicand.

Then add – 2 times means actually subtract kind of thing, minus 1A times, -1A times, 0 times

this is called Booths encoding table, okay. Now, if you look at the Booth encoding table, in

this expression how to get that? Please come back to the slide again, so for every one array

represent -1 +1, I gave you the colour because I will not say it; this one gives blue one is +1

--1, this black one is +1 -1, green is; of course zeros are all zeros will not added at all, you

can write 0 0 you finish.

(Refer Slide Time: 01:14:30)



Then 1 is +1 -1 and this one is +1 and then you add vertically so, you get -1 and of course 0 is

here so -1 0 then the next is 0 +1, then you have -1 0, 0 0 -1 +1 and from the Booths table, we

know -1 0 is -2, 0 +1 is +1, -1 0 is -2, 0 0 is 2, -1 +1 is -1, +1 is 2. So, I have I know what

operation to perform when I convert the recoded system into this and here is what I do the

same thing which I said earlier  can be rewritten i,  i -1, i  +1 are the 001 and the kind of

operations you perform. 

(Refer Slide Time: 01:14:47)

Since Booth recoding, got rid of 3s generating partial products is not that hard because it is

only shifting and negating has to be done okay. This is the same thing again explanation is

given more detail, number of strings of ones in the side, end of strings of ones this is called

isolated one, this means end of strings are ones, this means beginning of string of ones, end of

one string beginning new ones, beginning of string of ones and continuation of string of ones.



(Refer Slide Time: 01:15:17)

The kind of operations, add operations you perform has this explanation. In summary, what

do you do?  Grouping  multiplier  bits  into  pairs,  orthogonal  ideas  to  the  Booth  recoding,

reduces the number of partial product to half, if Booth recoding not used, we have to have

been able to multiply by 3, which is hard shift plus this, 3 multiply addition to be done.

Applying the grouping idea to Booth, modifies recoding as it is called as encoding.

(Refer Slide Time: 01:15:52)

We have already got rid of sequence of ones, no multiplication by 3 numbers, just negate shift

once or twice and that is the idea. Use high radix to reduce number of intermediate addition

operands, can go higher, you can have radix of 8, radix of 16. Of course, you will have to

implement 3 – 3, 4 -4 large number of such these operations to be performed but it will be

more accurate and sometimes much faster.



(Refer Slide Time: 01:16:36)

Recoding and partial  product  generation  become more complex than,  of course,  you can

automatically take care of signed multiplication. Typical Booth multiplier is shown here but

before I go now, I will show you the example of that, here is my example, which I just now

was talking to you, okay. I have an operation, which is shown here, multiplicand is 13, 00110

and you have multiplier which is x, which is in twos complement of -6 is 111010. 

(Refer Slide Time: 01:17:17)

So, I recode multiplier x, this is 111010, I again put -1 +1, -1 +1, -1 +1 this and add. So I get

-1 0, -1 1, 0 0 and I know -1 0 from booth recoding table is – 2A, this -1 -1 means -1 is 0 0

means 0A. Having known the operations to be performed, I start looking for the actual things

which I want to do. Here is your decimal number 13 * -6, you expect an answer -78, you

want to do this operation of 0 –A -2A, okay. 



Let us say initial, product or sum is 000000, partial product sum call it. The first operation

you want to do -2A and A is; please remember multiplicand, okay. Now, if I do this 2 of this

and shift, I get 100101 take complement and shift you can get this 100101, and then add since

it is 0, this number will remain 100101, okay then shift 2 bits because you have to 2, so shift

2 bits, 11100101.

To this now, add -1 A, -1A – same thing is complement of that is 1100 is complement of that,

please take it complement, ones complement is 110011, okay and then append since there

were 2 addition number here, because of shift, you operate 00 here okay and add. So, you get

1 0 then 1 and 1; 0, 1 and 1; 0, 1, 1, 1 and 1; 0, 1 and 1; carry 1 and but we say since it is

overflow, this part is an, so neglect.

(Refer Slide Time: 01:19:14)

So, the number, which I got is 10110011. Then, we have to shift this the least number by 2

bits 1111 this and if I do it and after shift I get add to this one, so I get ; sorry add 0 A to it, of

course now add 0, 0 means, no addition. So, this is the number 101110, this last 2 of course

are signed bits, 10110001 which essentially with the signed bit this is 78 with a minus sign.

So, what does that Booth encoding has done?

You can see, since Booth encoding actually only uses those terms which have ones and by

Booth encoding or recoding, we are reduce the number of ones, the net partial products sums

required much smaller you can see in a 4 step operation in the first of course is recoding one



operation, then 3 operation is here and 2 operation is here and 4, 5 operations I am able to

generate multiplying of 13 into even signed bit multiplication. 

(Refer Slide Time: 01:20:49)

Before we leave this part, okay I may like to show you of course you require Booth encoding,

what kind of circuits we use, you need an XO, you need 2 inverters, 2 AND gates or an OR

gate  you can  say,  okay and  a  multiplexer,  this  is  bi,  bi-1;  these  are  the  bits,  which  are

entering, the xi is of course is XOR of bi, please remember this is bi – 1, this is bi, and this is

Bi, bi – 1, XOR is xi.

(Refer Slide Time: 01:21:29)

Then, this addition of this, are complement of this is passed as 2xi and this is directly passed

as mi, this is what recoding while asking. The other part circuit you need is to create partial

product generator,  so you have you need 3 AND gate and XOR gate produce the partial



product and you need a modified version you which does not use a AND gates but only

muxes, 3 muxes. 

(Refer Slide Time: 01:22:16)

Then, these circuits are taken from MADRID papers in IEEE on VLSI 1993. So, you can see

basically you require only few muxes for encoding and passing the partial products and shift

operation because there is every time you are shifting,  you need shift  registers, so and it

should be able to shift the data left and right. So, before we leave this part probably okay, the

one circuit, which I already shown is efficient Booth multiplier which is same as what just

now I said. 

(Refer Slide Time: 01:22:20)

This of course, a slide need not worry about adder, which we already taken earlier, this is

essentially we are looking for; let us say carry save as a unit one, okay and compared to this if



you look at the speeds for a Wallace tree, you will have 0.05 and if you do the other 0.05 if

you do Booth,  it  will  be 0.001. So, essentially  power delay products this  is  essentially  a

power delay product can be reduced in a Booths encoding.

There are variety of version carry save multiplier 32 bit is the reference then if use tree, it will

be 120th of that, it will be 125th, if you use Booths encoding further on that, it will be 100.

So, that is the idea of improving the speed power product of any multiplier. Before we leave

to  shift  operation,  the  last  part  of  my  circuit  requirement;  multiplier  requirement  is  the

floating point representation. 

(Refer Slide Time: 01:23:32)

We know integer operations, so we also should be able to do some kind of floating point

multiplications. Before we go to that, let us look at the numbers. We can see that typically,

any number X is represented as minus; whatever signed bit plus some integer numbers here

before the exponent and then you have E to the power some exponent number in Mantissa.

So, it is called a one-bit field for the signed bit, 8-bit field for the exponent.

(Refer Slide Time: 01:24:32)



You may have a biased integers 0 to 255 and you have 23-bit Mantissa. So, totally, typically

floating  point  number  is  represented  in  the  32-bit  representation,  which  is  called  single

position, which will have; for example, 0 bit, 8 bits, 1 bit for signed one do not actually store

it, you have 8 bit for the exponent fields and 23 bit for the Mantissa field, okay. Here is the

number to show the same thing, this is your number; M Mantissa is s1 s2 s3 dot 1 + 0s2 in

this form. 

Example; -0.75 in 10 in single position is 1/2 +1/4, this is can be written in twos complement

and twos binary, -1 1.12 this, if you write this, this format, 2 to the power 126 – 2 to the

power 127, S is 1, sin bit, exponent is 126 and 127, so can be represent in binary this and

Mantissa is 1 0 0; all zeros and therefore a number, which is shown here in 32 bit is the

following. This is 20 second Mantissa, okay. 

(Refer Slide Time: 01:25:56)



Then there are exponent bits, please remember one data is say, you have one signed bit, 23

exponent bits, sorry 8 bit exponent and 23 Mantissa fields. So, this is 23 Mantissa bit, then 8

exponent bit, okay and the last of course is your, this is your last zeros of 31, this is your sign

bit, which is shown here. So, how do I do addition in this? First, let us say you have number

-1.610 in decimal at this, so in decimal  what do we do is, represent that number in tens

number and see to it that there decimal points are align. 

So, both are represent tens, 10 to the power one, so this can be 0.016 10 to the power 1 and

this can be 9.99 10 to the power1 and then because this is common, we do not have to do

anything just add these 2 terms you get 10.01 10 to the power1. Then we normalise, the next

operation is we normalise. So, what do we mean by normalise? We do not want 2 decimal

numbers, bits before decimal should be only one, so we say it is into 10, so 1.015.

(Refer Slide Time: 01:27:05)



Then, we may round it off, how many accuracy you want? Say, for example, 1.002 is good

enough if I neglect 5, 5 or more than 5 we make it 2, last bit so 1.002. We may need to repeat

step in  3,  if  the normalisation  is  after  rounding is  not  correct.  This  is  a  single precision

number,  any number is  represents -1 2 to the power,  F * 2E, this  is how, the IEEE 754

standard into right a floating point number.

And single precision, which is 32 bit, 8 bits of exponents, 23 bits of significand and the range

is 2 to the power 10 + - 38 and double precision is 64, 11 bit exponent, 52 bits of significand,

and the range is  2 into 2 power this,  okay. So, once we know we can since;  each is  an

individual integer numbers; fixed numbers the operations can be independently performed

using integer theories and one can do this. 

(Refer Slide Time: 01:27:48)



For doing a multiplication compute sign, exponent, significand, normalise; shift, left, right by

one, check for overflow, under flow, round it and normalise. It is identical to the same.

(Refer Slide Time: 01:28:00)

Sign is Ps, A, XOR, Bs, exponent is AE, BE, due to bias excess, must subtract bias kind of

thing, significand is AF, BF, standard integer multiplier, use Wallace tree for the addition,

creating  partial  products.  So,  please  remember  floating  point  numbers  are  independently

handled  in  3  zones,  this,  exponent  is  separately  handled,  Mantissa;  sign  are  separately

handled.

(Refer Slide Time: 01:28:56)

And because of that, we can and put into a different shift register positions to actually get the

multiplier operations. Now, the last but not the least part of this whole circuit; is we are keep

talking of shifting, so we kept talking of shifting the data to the left. A typical shift register



based; pass gate based shift register is shown here, which allows the data to move to right or

left. One cans see here only pass gates have been use and buffer of course since you may

have to drive. 

The first one is the; for the right, the second one is for no operation and the third one is left.

So, if you want to move the data from right, so you make this as 1 and let us say this is my

Ai, no operation means 0, left is not operation, so this data is appearing here, right shift. So,

you can see from here it has gone to the right, i -1. If you want left, you can see that if I want

left, I must go above, I want to reach here.

(Refer Slide Time: 01:29:58)

So, obviously I will go up this is high, and since this is high, this is transferred. So, left and

right data can be transferred and no operation can be also; to show you this data wire and

control, this is a 4 bit shift; Barrel Shifter is shown here, there I shown you 2 is 4 , it is

identical, shift 1, shift 2; Sh1, Sh2, Sh0 are the 4 shift signals, it can be depending on right

and left whether these are, these are turned none, data can be transferred here.

Data can be transferred here or transferred here depending on which pass gates are switched

on, okay. This can be controlled by small logic which will allow this to create shifts, signals

and those shift signals will allow you to create A0 to go to B3 or A0 to go to B1 or vice versa

coming down, each bits can be reposition left or right by using this kind of Barrel shifter, 4

bit simultaneously can be given.



They can be put like this or they can be put directly like this. So, obviously shift register, shift

operations can be easily performed left and right using a Barrel shift register. So, we have

now seen in a multiplier, you need adder, you need a shifter. We already had seen all kinds of

adders in our earlier implementation. We are today seen all kinds of multiplier possibility, we

also looked into floating  point  possibilities  and using Barrel  shifters  and those 2 blocks,

different kinds of blocks depending on the area, power, speed, and of course, the accuracy.

(Refer Slide Time: 01:31:48)

One can choose different  hardware circuits  and different  hardware circuits  will  lead to a

different performance index and based on that you can choose it and implement any addition

adder multiplier in your actual hardware. These are the books from where much of my work

was taken. Basically, you can; for the first level of understanding you can use Rabaey’s book.

There are other 2 books we all know is Eshraghian and Weste, and this and I already given

my other references to you. 

(Refer Slide Time: 01:32:25)



Of course, there are many thanks to my students because they are once who create many of

old style, this is of course, my VLSI, my post graduate students in VLSI in last 15, 20 years

may be more than 15 years. They asked me many things which allow me to understand better

and of course there are some good book references you can see some of the slides from the

University of California, Berkeley Course Site due to Rabaey and others and their book.

Credit to printers Hall, for allowing it to do that. Then, there is a book by Addison Wesley,

which is one of the very famous old book Waste N. H. Eshranghian, Principles of CMOS

VLSI design, which are published in 1994, but still seems to be one of the best system design,

device 2 system design book, many of the circuit shown here I have been taken there. Then

there is a book on DSP, processors which is written by Madisetti Vijay, which is published by

ButterWorth Heinemann.

So some slide some data,  things were taken from this book and then there is a book on

complier arithmetic by Hwang. This is John Wiley, it is one of the oldest book in hand. But, if

you  really  read  classic  books,  you  really  understand  much  more  okay  and  therefore  I

recommend those who are looking for advanced VLSI, should look for the last 3 book very

carefully. 

(Refer Slide Time: 01:34:03)



The another book, which you can see is Lars Wanhammar, DSP ICs, which is published by

Academic press and last but not the least, the very recent book appearing from McGraw Hill,

which is written by Kiat Seng Yeao and Kaushik Roy much of the data, powers, speed, this I

have been taken from Kaushik Roys book and due regard to them. There are many references

on number systems.

(Refer Slide Time: 01:34:04)

(Refer Slide Time: 01:34:08)



(Refer Slide Time: 01:34:10)

(Refer Slide Time: 01:34:12)



(Refer Slide Time: 01:34:13)

(Refer Slide Time: 01:34:15)



(Refer Slide Time: 01:34:16)

(Refer Slide Time: 01:34:18)



They are references on adders, they are references on the other huge numbers you can see, lot

of  actual  this  available  for  multipliers  and  this.  With  this  part,  we  complete  the  total

arithmetic operations for any processor or any hardware in this part of the advanced VLSI

course. Some of the problems, which I gave during this all I will add at the end of them they

will my model problem as we already solve them. 

Some problems  I  will  add  to  it  later,  which  you  can  solve.  Many  times,  most  of  these

problems can be only solve on what I would say on the using this spice. So, you must have at

least the initial version of spice, if you have cadence tools or Synopsys tools or tools or model

if you have the mentor graphic tools, you have a good spice available on it, you can choose

any of the hardware shown here for any given technology.

You can try implementing many of those blocks in your real system design and verify which

ones, which I have actually have given you as a hint to take whether they work. Thank you

very much for the day.


