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Signal Distortion – II 
 

In the last lecture, we started discussing one of the very important aspects of optical 

communication, and that is signal distortion. 
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We saw that the signal is distorted, when it is sent on optical fiber for two reasons; one is 

what is called dispersion, which essentially is the pulse broadening as the pulse travels 

on optical fiber; and other one is the attenuation or loss of energy as the pulse propagates 

on the optical fiber.  

Then we saw the dispersion could be due to various reasons, it could be intrinsically 

because of the material properties, we call it as the material dispersion or it could be 

because of the modal nature propagation inside the optical fiber, that we call as the 

intramodal dispersion, and then because of the multiple modes propagating on the optical 

fiber, we have what is called the intermodal dispersion. And then we saw that in a single 



mode optical fiber, we have material dispersion and intramodal dispersion present. 

Whereas in a multimode fiber all three dispersions are present, but intermodal dispersion 

is much higher compared to these two dispersions. The attenuation that is the loss of 

energy as the pulse propagates could be various reasons and we will discuss this 

subsequently. 
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So, in last lecture we started discussing in detail this quantity dispersion. We define 

dispersion quantitatively and that we said if you have the relationship between omega 

and beta then from there we can calculate what is called the group velocity, that is, the 

velocity with which the pulse travels on optical fiber. Inverse of this quantity is what is 

called the group delay per unit length, that is this t g and then we said the dispersion is 

nothing, but dt g by d lambda that is rate of change of group delay with respect to the 

wavelength and then we got the unit for dispersion which is Picosecond per kilometer 

per nanometer.  

With this basic mathematical formulation, then we started investigating dispersions one 

by one that is, material dispersion and then waveguide dispersion and intramodal 

dispersion. However, we said that since the dispersion is rather a weak phenomena. We 

quantitatively calculate the dispersion due to one phenomena at a time assuming that the 

other dispersion is not present and the then the total dispersion is sum of the two 

dispersions. So, when we started discussing the material dispersion, we assume that the 



wave guiding nature for the dispersion due to the modal nature inside the fiber is not 

present; that means, the energy is propagating as if it is propagating in infinite medium 

and then just due to because of the material properties, we have the dispersion that we 

call as the material dispersion. 
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So, starting with the phase constant for a unbound medium and saying that now, the 

refractive index of the medium is a function of wavelength. We calculate the value of t g 

and then from there we got this quantity what is called material dispersion which is given 

by this and then we notice here that this quantity is proportional to this second derivative 

of the refractive index as a function of wavelength and then we plotted it the refractive 

index for material glass and realize that the second derivative of refractive index with 

respect to wavelength gives you the curvature of the function. 
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So, here we are drawing a curvature of one type here we have a curvature of opposite 

nature. So, curvature must be going zero somewhere, here and that wavelength we found 

out to be 1.27 micrometer or 1270 nanometer. So, these are the quantitative numbers 

which you saw last time that at 850 nanometer wavelength the material dispersion is 

rather large it is 85 Picoseconds per kilometer nanometer. If you go to thirteen ten then 

you get 0.1 and if you go to fifteen fifty you will get 20. 

Now, we have here a positive sign and a negative sign. So, if I look at the sign of this, 

what does the sign really mean, the dispersion is a parameter which tells you by what 

factor the pulse is going to broaden when it propagates on the optical fiber. So, does that 

mean that when we have a dispersion negative the pulse is shrinking or it is becoming 

more and more narrow as it propagates. The answer is no, the negative sign does not 

mean the compression of the pulse, but it rather tells you the way different frequencies 

are going to travel inside the pulse. 

 Let us look at thing this thing in little more detail. 
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So, let us ask what is dispersion which you have defined this quantity, this quantity is d t 

g there is a group delay by wavelength. So, it is the rate of change of group delay as a 

function of wave length that is what gives you dispersion. So, if this quantity is positive, 

what that means is that, the slope of this time t g as a function of lambda is positive; that 

means, as the wavelength increases the t g also increases. Whereas, if you have this 

quantity negative the slope is negative; that means, as the wavelength increases the t g 

decreases. 

So, as I go to longer and longer wavelength if this quantity is positive the delay will be 

more and more; that means, the longer wavelength will take longer time to reach the 

same distance. So, for positive sign the t g increases as lambda increases. Whereas, if 

you have a negative sign then you have t g decreasing as lambda increases. What that 

means, is that if you are having a dispersion which is positive, the longer wavelengths 

since they take longer time they are travelling with lower speed. So, the group velocity 

essentially decreases as the function of wavelength, as the wavelength increases the 

group velocity decreases. Whereas, if you have a negative sign then as the wavelength 

increases the group delay decreases; that means, the group velocity increases. 
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Now, you recall when we talked about the dispersion we said that the phenomena can be 

visualized as transmission of multiple signals propagating on the optical fiber. So, you 

have this white spectrum of your source carrier and these are the different component, 

which are present in the carrier and we said, the scenario of propagation can be 

visualized as the pulse is riding on each of this carriers and reach on the other side and 

total thing what you see is again a combination of the different pulses which you are 

travelled on different carriers. 

So, if dispersion is positive then we say that since now, the longer wave lengths are 

travelling with low speed, a longer wave lengths means smaller frequencies. So, if these 

frequencies travel with lower speed and compare to these frequencies then we have a 

dispersion which is positive. On the contrary, if these frequencies travel slower 

compared to these frequencies then we have a dispersion which will be negative. Now, 

whether these frequencies travel faster or this frequency travel faster, the dispersion is 

because of the spreading of the pulse because of differential velocity with different 

frequencies. 

 So, if the pulse has to remain intact all the frequencies must travel with the same speed. 

In one case this frequencies travel faster so this frequencies go ahead this frequencies left 

behind; in the opposite sign for dispersion this frequencies travel faster this frequencies 

are left behind. In either of the case there is going to be a pulse broadening, there is no 



shrinking of the pulse. So, if I look at internally the pulse if the dispersion is positive 

then the longer wavelength would be left behind within the pulse and shorter wavelength 

would go ahead. 

So, in this case, if I look at a pulse spectrum and ask internally, how the frequencies are 

going to look like. So, if I this is my pulse which is transmitting originally all the 

frequencies were together at every point in this pulse. Now, we will see that there is a 

accumulation of the longer wavelengths more time they will be getting accumulated on 

this end. So, you have here lambda longer wavelength and here you get a lambda which 

will be shorter wavelength. 

So, the frequency separation is going to take place inside the pulse because of this 

dispersion and for positive dispersion, the shorter wavelength will go ahead and the 

longer wavelength will be telling behind. If you take a negative dispersion then exactly 

opposite would happen again as far as the envelope is concerned it will be exactly 

identical to this. So, you again get a pulse broadening exactly by the same amount, only 

thing is now lambda longer will come here and lambda shorter will go here.  

So, the sign of dispersion essentially changes the distribution of frequencies of the carrier 

inside the pulse. But if you look at the envelope as a whole, the envelope is effected 

exactly the same way whether dispersion is positive or negative. So, in one case the plain 

is shifted like this; in the other case the plain is shifted like this, but if you look at a 

projection in time it will give you exactly the same kind of broadening what; that means, 

is that the pulse broadening is actually given by the modulus of this quantity D. So, 

though we define this quantity dispersion as d t g by d lambda, as far as the pulse 

broadening is concerned that is given by modulus of this quantity D. 

So, until and unless one is interested in finding out how the frequencies are separated 

inside the pulse, the sign of the dispersion does not matter whether dispersion is positive 

or dispersion is negative, as long as the magnitude of the dispersion is same it gives you 

the same broadening irrespective of the sign of the dispersion.. 

So, this is the material dispersion now. The next dispersion which you want to 

investigate is what is called the waveguide dispersion and as I mentioned earlier. When 

we now, discuss the waveguide dispersion; that means, this is the dispersion due to the 

modal nature inside the optical fiber. 



We have seen this diagram the b - V diagram, where V is the V number of optical fiber 

and that is proportional to the frequency, we have this quantity b which is normalized 

propagation constant which is related to the phase constant of a mode. So, from this 

diagram we would like to find out what would be the group velocity and how it would 

vary as a function of wavelength. We also recall that the b - V diagram is not a linear 

diagram. So, b V relationship is not linear there is a non-linear function there. So, as a 

result we expect that there would be some kind of a pulse broadening because of this 

wave guiding nature. 

So, as we mentioned earlier we take one dispersion at a time. So, now when we 

investigate the wave guide dispersion, we assume that the material dispersion is zero; 

that means, the core and cladding material do not have intrinsically any dispersion. Only 

dispersion which is going to be there is because of the guided nature of optical fiber. So, 

essentially we would like to find out this parameter dispersion in terms of the parameter 

which is b and V. So, let us do a small derivation to get a relationship between a 

dispersion and the parameter b and V. 
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So, you recall we had define the quantity b which is equal to beta square minus beta 2 

square divided by beta 1 square minus beta 2 square, where beta 1 and beta 2 are the 

phase constants intrinsically in medium core and cladding and beta is the propagation 

constant of the particular mode. 



Now, recall that we also have in practice the optical fibers for which the refractive index 

n 1 and n 2 are very close to each other; that means, for a practical fiber what we call as 

the weakly guiding fiber, we have seen that n 1 is approximately equal to n 2 where the 

difference between them is typically of the order of about 10 to the power minus 3. 

We also recall that we had define a parameter delta that is equal to n 1 minus n 2 divide 

by n 1 and since n 1 is approximately equal to n 2, I say approximately this quantity is 

also n 1 minus n 2 divided by n 2. We have also seen that when a mode propagates the 

phase constant of a mode is bounded by beta 1 and beta 2. So, beta lies between beta 2 

and beta 1 which is nothing but n 2 multiply beta 0 and this is n 1 multiply beta 0 since, n 

1 and n 2 are very close to each other the range over which this beta changes is 

extremely small 

So, what; that means, is that this quantity difference quantity which we have, beta beta 1 

and beta 2 are there almost equal. So, if I can factorize these two we can write this as 

beta minus beta 2 and this is beta plus beta 2 divided by beta 1 minus beta 2 and beta 1 

plus beta 2. Now, since this beta beta 1 and beta 2 are very close to each other this beta 

plus beta 2 is almost equal to beta 1 plus beta 2. So, we can say that this is approximately 

equal so, this can cancel. So, we can linearize this relation b as this is beta minus beta 2 

divided by beta 1 minus beta. 

So, to do a simple calculation for the what is called the waveguide dispersion, first we 

linearize this quantity b under the assumption that the fibers are weakly guiding fibers; 

that means, the refractive indices of core and cladding are almost same. The different 

between them is very very very small. 
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Once you do that then I can invert this relation and I find out this quantity beta which I 

can do as beta that is equal to beta 2 plus b into beta 1 minus beta 2. So, I just take this 

beta 1 minus beta 2 here bring beta 2 on the other side. So, you get this now phase 

constant beta for mode which is given by beta 2 plus this one. Now, I can take this beta 2 

common from here since you get beta 2, 1 plus beta 1 minus beta 2 upon beta. Now, this 

quantity beta 1 is n 1 into beta 0 this is n 2 into beta 0 and this will be n 2 into beta zero. 

So, beta 0 will cancel. So, this quantity will be n 1 minus n 2 upon n 2. So, is you can 

write here this is beta 2 which is 1 plus b n 1 minus n 2 upon n 2. 

And this quantity is nothing, but the fiber parameter what is called delta. So, we can 

write this expression now, in terms of beta 2 one plus b into delta. So, after linearizing 

we get the phase constant of a particular mode which would be essentially given by this 

and now, I can write down this quantity beta 2 explicitly in terms of frequency and the 

refractive index. So, this could be omega by c into n 2. So, it is beta 0 into n 2 where 

omega is the frequency multiplied by 1 plus b into delta. 

Now, note here this quantity b which is the normalized phase constant or propagation 

constant that is a function of omega or that is the function of lambda. So, how to find out 

dispersion as we have done in the basic formulation; first you find out what is called the 

group delay which is d beta by d omega. So, we have group delay t g that is equal to d 



beta by d omega. So, if I differentiate this with omega we get is equal to n 2 by c, 1 plus 

b delta plus n 2 omega by c, d b by d omega. 

 We want to finally, derive the expression in terms of b-V diagram. So, what we want to 

do is we want to change derivative d b by d omega, in terms of the derivative with 

respect to the V number because once you have a b - V diagram we can find out the 

slope or the curvature of the b V diagram. So, essentially we can find out the derivatives 

of b with respect to the frequency omega. 
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So, what we can do is we can write this expression differently. So, we can get here t g 

which is equal to n 2 by c, 1 plus b delta plus n 2 omega by c, this one we can write 

down as d b by d V into d V by d omega. 

So, the derivative which we have here d b by d omega, we can write here as a d b by d V 

into d b by d omega. Now, recall we have this number V number which is defined as, 

omega by c into a into the numerical aperture. So, if I calculate this quantity here d V by 

d omega that is nothing, but a into numerical aperture divide by c. So, that is equal to if I 

can multiply this by omega divide by omega, if I multiply by omega the whole quantity 

will become V. So, this is nothing, but V upon omega. 

So, I can substitute in to this to get the group delay that will be equal to n 2 by c 1 plus b 

delta plus n 2 omega upon c d b by d V into d V by d omega which is nothing, but V 



upon omega where V omega, this omega cancels with this. So, here you get a quantity 

here n 2 upon c which will be common with this. So, you can rewrite this n 2 upon c into 

1 plus b delta plus V d b by d V, there has to be delta here is you got a quantity here delta 

here delta. Now, taking the delta common from here you can combine these two to write 

more compactly. This is n 2 by c into one plus delta d b V by d V.  

Note here, if I expand this it will be d times b V by d V which is one. So, that gives you 

delta into b the second term will be b into or V into d V by d V which will be this term. 

So now, the group delay in terms of the b - V diagram parameters is essentially given by 

this. Now, note here this quantity n 2 by c, if I see this is nothing, but the group delay 

which the signal will undergo if it was travelling in the medium cladding of a refractive 

index n 2. 

So, this parameter is a constant delay where signal will undergo anyway, this is the 

quantity essentially which is telling you the differential velocities. So, this is the term 

which essentially will give you something which we are interested in that is dispersion. 

So, every signal is going to undergo a delay which will be this thing which is constant 

which is not a function of wavelength or frequency, this is the term which is going to 

give you a differential delay and that is what will give you a dispersion. 
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So, now having got now this quantity here t g then the next step is the dispersion which 

is t g by t lambda. So, we can get now the waveguide dispersion let us call it d w g that 



will be equal to d t g by d lambda. So, I can take this quantity d t g and differentiate with 

respect to lambda. Firstly, this quantity is constant so, that derivative is 0. So, what I get 

is equal to n 2 delta by c d by d lambda of d b V by d V. Again, we can do the same thing 

as we did in the previous case this I can write as d by d V multiplied by d V upon d 

lambda. So, you can write here this n 2 delta upon c. See, if I write this d by d V this will 

become d two b V by d V square. So, I will here d two b V by d V square into d V by d 

lambda. Again writing the V number now in terms of wavelength rather than in terms of 

omega we know, that V omega by c a in the numerical aperture that is the V number, but 

omega we can write as two pi have and c upon f will give you wavelength. So, this also 

can be written as 2 pi by lambda into a into numerical aperture. 

So, d V by d lambda will be equal to minus 2 pi a into numerical aperture upon lambda 

square, if we give one lambda here and one separate out 2 pi a numerical aperture upon 

lambda will be nothing, but again the V number. So, this quantity can be written as 

minus V divide by lambda. So, we can substitute now, this quantity into this, we get 

what is called the waveguide dispersion in terms of this b - V diagram parameters. So, 

we get d w g that will be equal to minus n 2 delta upon c, V upon lambda d two b V upon 

d V square.  
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So, once we have the b - V diagram known, then from there we can calculate this 

quantity b into V and then we can calculate second derivative of this quantity and from 



there we can essentially calculate the waveguide dispersion. Of course, in the b - V 

diagram does not have any analytical form, this derivative has to be obtained 

numerically. So, firstly you should have a very accurate value of V measured or 

calculated as a function of V number and from there then you can calculate what is 

called the waveguide dispersion. 

Now, again looking in to the expression one does not get a feel what should be the V 

number for operation so, that I get this waveguide dispersion as small as possible. So, 

again one has to go numerically to find out from the b - V diagram. 
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So, if I now consider the b - V diagram and from there I find out this waveguide 

dispersion, we find that for the Lp zero one mode or HE 11 mode that is the first mode 

which can propagate. The waveguide dispersion peaks around V number around 1.2. So, 

if I go on either side of V number 1.2, the dispersion reduces so; that means, if we want 

to have waveguide dispersion then either I have to operate at a V number much smaller 

than 1.2 or at a V number which is much larger than V 1.2; obviously, if I go to a V 

number which is much less than 1.2 then since, the V number is very small either the 

numerical aperture has to be very small or the radius of the fiber has to be very small. So, 

that is not a very good option because both of these essentially are going to affect the 

launching efficiency of the optical fiber. 



So, ideally we should operate at a V number as large as possible as we have seen earlier 

and now, we are saying that we should operate at a V number which is much larger 

compared to 1.2. So now, you have restricted the operation range for V number still 

further that we cannot go to a V number more than 2.4 because, if the V number is 

increases more than 2.4 the fiber does not remain single mode. So, for single mode 

operation V number has to be less than or equal to 2.4, but now the V number has to be 

more than 1.2. 

So, what we find is to reduce the waveguide dispersion essentially. We should go as 

close to again, the V number two point four. So, that the waveguide dispersion is small 

of course, it has not become very small it is about 20 percent of what we would get 

around the peak around the V number which is 1.2. So, you cannot make the waveguide 

dispersion very small because you cannot operate the fiber at a V number which is 

greater than 2.4. So, that is why as I mentioned earlier also, to guaranty the fiber to be 

single mode and to reduce the dispersion on the optical fiber the V number has to be very 

close to 2.4, but less than that. 

So, now if I consider a single mode optical fiber we have both these dispersion present; 

one is the material dispersion and other one is the waveguide dispersion and total 

dispersion is approximately equal to sum of these two dispersions. Now, since both these 

dispersions are because of the finite bandwidth of the signal, this dispersion together we 

call as the chromatic dispersion on the optical fiber. 
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So, we have quantity what is called chromatic dispersion and this is approximately equal 

to the material dispersion plus the waveguide dispersion. So, we have now calculated 

now the material dispersion from the properties of the glass. We have calculated now, 

the waveguide dispersion and if we combine these two we will get the net dispersion on 

the optical fiber.  

Note [however]; however, is that the material dispersion is a property of glass. So, it is 

completely out of your control, once you identify the material glass this d material is 

decided this quantity here; however, d waveguide that depends upon the b – V diagram 

and b – V diagram depends upon, the V number which depends upon, the size of the 

fiber the refractive index difference numerical aperture and so on. 

So, this is the quantity which is the structure dependent quantity. So, if I change either 

the refractive index of the fiber or size of the fiber this quantity is going to change. So, d 

waveguide is a fiber based parameter, which can be controlled and later on we will see 

we will try to make use of this fact that the waveguide dispersion can be manipulated and 

as a result the total dispersion on the fiber can be manipulated, but at the moment it is 

enough to note that the material dispersion is almost like god given, but the waveguide 

dispersion can be manipulated by changing the fiber parameters. 
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So now, if I take the total dispersion then as we mentioned it is sum of the two. So, here 

this green line gives you the material dispersion the blue line here is the waveguide 

dispersion for HE 11 mode in a single mode fiber. So, the total dispersion will be sum of 

these two. So, if I take these two curves and add them point by point, I will get this red 

line that is the total dispersion I will see on the single mode optical fiber. Recall when we 

talk about the material dispersion we have seen that the material dispersion goes to zero 

at a wavelength which is 1270 nanometer. 

However, when I make a single mode optical fiber, I do not see this zero dispersion point 

at 1270 nanometer because we always see a combination of the waveguide dispersion 

and the material dispersion. So, effectively we will see this point, where the dispersion 

would go to zero and that point is 1310 nanometer. So, inside a single mode optical fiber 

the zero dispersion point is not 1270 nanometer, as it is for the intrinsic material, but it is 

around 1310 nanometer. 

That means, if I take a single mode of optical fiber and illuminate this with a wavelength 

which is 1310 nanometer dispersion on this wavelength is almost zero; that means, it can 

really support a very large bandwidth or very high data rate at 1310 nanometer, if I go to 

a wavelength which is 1500 nanometer or 1550 nanometer again, the dispersion is a 

large. 



So, pulse broadening is large and as a result the data rate is reduced. So, if you see from 

data rate point of view 1310 nanometer is the best wavelength in a single mode of fiber 

because that is the wavelength at which the dispersion is almost zero. Why I am using 

the word almost because as soon as you try to put a finite band of wavelengths we do not 

operate at a point where this curve is zero you will be having a very narrow region 

around it. So, one point of this curve is zero, but in the small wavelength range every 

point will not have zero dispersion. So, you will see some dispersion, but that dispersion 

will be extremely small compared to what you get at a point here, which is 1500 

nanometer or you take a point here, which will be about 800 nanometer. 

That is the reason 1310 nanometer, was immediately chosen window after the first 

generation because at that wavelength one could see a scope of sending extremely high 

data rates on the optical fiber. So, 1310 nanometer that is why the special window 

because it can support the highest possible data rate. 

 Now, the total dispersion which we have seen here since is the combination of these two 

the material dispersion and the waveguide dispersion this curve is fixed as I mentioned, 

but this curve can be changed either it can be changed like this or it can be shifted up or 

down and as a result the total dispersion on the fiber can be manipulated. We will come 

to this aspect little later, thereby changing the waveguide dispersion, what way the total 

dispersion characteristics can be modified and what way we can get much more 

broadband systems by manipulating the waveguides on the single mode optical fiber. 



(Refer Slide Time: 43:33) 

 

Let us now, turn our attention to the second important parameter which causes distortion 

on the fiber and that was the attenuation. So, we saw for the attenuation we have various 

mechanisms, the signal on the fiber can be attenuated due to intrinsic material properties. 

So, like any other material you have absorption of energy as it propagates. So, 

intrinsically you may have a loss because of absorption, but more strong absorption 

which you see inside the optical fiber is what is called the scattering loss. Now, what is 

the scattering loss when I consider the optical fiber initially we said, that the refractive 

index of core is n 1 and refractive index of core is n 2 and there is absolutely constant 

inside the core and the cladding. 
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However, when I manufacture an optical fiber you will see that there are very small 

microcenters which are developed, which have a refractive index little different than the 

average value. In other words, we have a some kind of regions which are created inside 

the optical fiber which are distributed all through its length, and these sizes are very very 

small fraction of a micron.  

So, when the light tries to propagate through this, it sees a small perturbation in the 

refractive index this phenomena is very similar to when the microwave signal tries to 

propagate in the atmosphere and we are a raindrops that microwave signal gets scattered 

by the raindrops. 

Precisely same phenomena which you see here, that these microcenters have sizes 

smaller than the wavelength. So, you see scattering of light taking place because of this 

and that scattering is what is called the Rayleigh scattering. So, essentially due to very 

tiny fraction of light gets scattered in to all directions at everywhere. Now, recall that for 

a sustained guiding of light, the light must be confined within the numerical aperture 

cone. So, let us say if the numerical aperture cone was was this, any light which is 

scattered outside this numerical aperture cone will not get guided and will be lost from 

the sides of the fiber, that is what is what is called the scattering loss and the Rayleigh 

scattering is a very strong function of the wavelength. 
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The Rayleigh scattering goes as lambda to the power minus 4; that means, for every 

doubling of wavelength, the Rayleigh scattering loss would reduce by factor of 16, it is 

lambda to the power minus 4 say wavelength is doubled it is 2 to the power minus 4. So, 

you will get a reduction in the loss by 2 to the power 4 which is 16. 

 Primarily, that is the reason why the fiber shows low loss at 1500 nanometer compared 

to 800 nanometer, because from 800 nanometer to 1550 nanometer the wavelength ratio 

is approximately 2. So, use a substantial reduction in the loss because of the Rayleigh 

scattering. So, if I take this and plot this loss as a function of wavelength, the Rayleigh 

scattering loss would go lambda to the power minus 4 which essentially is given by this 

red line. What we are showing here you is a plot as a function of wavelength, where 

wavelength is going from 0.5 micron to almost 10 micron here and that is a Rayleigh 

scattering loss, as you can see this drops very rapidly as the wavelength increases. 

However, as we know that for glass there is another loss, what is called infrared loss. The 

glass is a very bad conductor for infrared. So, all infrared get very rapidly attenuated, 

when they propagate inside the glass. So, as you go to longer and longer wavelength the 

loss increases very rapidly. So, the blue line here essentially shows you a loss, which is 

because of the infrared absorption inside the glass. So, now, we see something 

interesting as we increase the wavelength, the scattering loss decreases, but as you go to 



very long wavelength much deeper in infrared then the infrared loss starts dominating 

and again the loss starts increasing. 

So, the total loss profile if you see it is like a valley here which is created, the loss is 

decreased because of the scattering and started increase again and because of the infrared 

absorption. Let us also get a impurity what is called the OH molecules which normally 

remain inside the glass, these are the water molecules. Say even if you purify glass to a 

very high accuracy when the glass is exposed to the environment typically, the water 

molecules slowly get diffused inside the glass or even in processing time you cannot 

really move completely the water molecules. And water molecule gives you the 

absorption peaks at various wavelengths and one of the peak lies exactly on this valley, 

where the loss here is minimum.  

So, this peak which you see here that is because of the OH absorption. Of course, now 

the technology has improved and people have removed this OH absorption loss. So now, 

we practically have a window which is just a corresponding with this valley, but because 

of this OH absorption loss essentially, this low loss window which is created by this 

valley has been split in to two and the so, precisely we find in the overall loss profile of 

the glass as we have seen in the earlier lecture. So, the dispersion here has been enlarged 

see, if I consider a region around this and if I enlarge this we get a large profile which 

looks like this. 
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So, this is that OH absorption peak this is one of the windows, these are another window 

and this window is 1310 and this window is 1550. So now, it makes sense why this 1310 

and 1550 windows, were chosen primarily they come because of the dispersion 

considerations and because of the loss consideration. Of course, this loss which we are 

talking about is intrinsically, because of the fiber characteristics; that means, as soon as a 

fiber is made you will always have a loss which is the absorption and which will be 

scattering, but in addition to that when the fiber is late in to the system, then the fiber has 

further loss incurred and that is because of the environmental or deformations of the 

fiber. So, either fiber can be deformed in to very small special scale or it will be defined 

at a very large special scale and both of these essentially contribute to the loss. 

So, the scattering loss and the absorption loss are present inside the optical fiber, even in 

the ideal conditions; that means, even before laying the fiber in system. 
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If I lay fiber; however, in the system and because of all the mechanical pressures, the 

fiber get deformed at a micro scale. So, ideally the fiber core and cladding should have 

remain absolutely straight, but because of this pressures you can have a micro 

deformations on the core and cladding of the optical fiber. 

Now, these pressures are extremely tiny for example, even if you touch the fiber that 

kind of pressure is good enough to create this kind of deformations. Now, note here if the 

fiber was absolutely straight this boundaries are straight like this, ray will get propagated 



by total internal deflection, but if the (( )) is deformed like this then essentially, what is 

happening is locally now, the normal is changed this is normal now. So, the ray which 

was satisfying the critical angle condition when the normal was like this, (( )) no more 

satisfy the critical angle condition and as a result their energy essentially leaks out 

something like this. So, what we find now is that when the fiber has what are called the 

micro bending’s then, there is a small amount of energy which leaks out from the fiber 

and this is what is called the micro bending loss inside the optical fiber. So, when the 

fiber is laid is commissioned in to the system in addition to the intrinsic loss which is 

scattering and absorption, you will also have the micro bending loss present inside the 

optical fiber. 

There is one more loss which is there, which will be a fiber is bent gently and that loss 

essentially, we will investigate when we meet next time, that is what is called the 

radiation loss and then we will see as a whole, the attenuation and dispersion 

characteristics of the fiber to get some conclusions about the signal distortions and the 

optical fiber. 

 


