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We are discussing propagation of light inside the optical fiber. In the beginning, we took 

the light in the form of rays and investigated the propagation of light inside the optical 

fiber by using phenomena, what is called total internal reflection. Then we found the 

limitations of that model, then we started investigating the advance model, what is the 

called the wave model for propagation of light inside the optical fiber. 
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So, for wave model essentially we define first appropriate coordinate system for the 

optical fiber, which is cylindrical coordinate system. So, we assume that the core of the 

optical fiber is a solid glass rod having refractive index n 1 and then we assume that the 

cladding is of infinite size with a refractive index n 2. 

So, essentially we are solving the wave equation for this structure which has only one 

interphase, but in the core and cladding. Then by using the physical understanding which 



we develop from the ray model, we try to solve the wave equation and then we found 

that the radial variation of the electric or magnetic field is given by the Bessel functions 

inside the core and it is given by the modified Bessel function inside the cladding. 

So, the phenomena essentially which we utilize for establishing this, was that inside the 

core we have a interference phenomenon and because of that we expect that the field 

variation would go through maxima minima. Whereas, if you go inside the cladding then 

the field should die down monotonically as we go away from the core cladding boundary 

and that variation was appropriately given by the modified Bessel function k. Whereas, 

the variation which was of oscillatory in nature, that was given either by the Bessel 

function or by the Neumann function. 

However, we found that for the Neumann function, if r equal to 0 point is included, then 

the field would go to infinity and because of that the Neumann function would not 

appropriately represent the field variation inside the core. 
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So, with this understanding essentially we got the expressions for the longitudinal 

component of the electric and magnetic field inside the core which is given as A J nu u r 

e to the power j nu 5 minus j beta z plus j omega t. Similarly, if the magnetic field also is 

given by some on arbitrary constant B and the same variation J nu ur e to the power j nu 

5 minus j beta z plus j omega t. This quantity u, what we can call as the radial 

propagation constant inside the core is given by the square root of beta once square 



minus beta square, where this beta is the face constant of the mode or the field 

distribution which is going to propagate inside fiber and beta 1 is the phase constant of 

the medium which is feeling the core, that is refractive index n 1. So, if you assume that 

you have an infinite medium of refractive index n 1 and if you ask what to do the phase 

constant of a wave in that medium? That essentially would be equal to beta 1 and that is 

essentially given by this 

(Refer Slide Time: 04:43) 

 

So, beta 1 square is beta naught square multiplied by n 1 square n beta naught square is 

the phase constant of a wave in vacuum. Inside the cladding we had the field variation 

which was given by modified Bessel function. So, we had this arbitrary constant C and 

then we have this K which is modified by Bessel function of order mu and then we have 

this argument which is w r, where w is given by beta square minus beta 2 square, where 

beta 2 is the phase constant intrinsic to the medium of refractive index n 2. And we saw 

that this quantity u and w both have to be real for appropriate representation of the field. 

So, if u become imaginary then the J function will not remain oscillatory function, in fact 

it will become modified by Bessel function. Similarly, if the w becomes imaginary then 

the modified Bessel function will become normal Bessel function and they will not 

represent appropriately the fields. 
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So, what you find is that once we have chosen this functional form for the fields inside 

the core and cladding, we are essentially put the condition on beta in an indirect fashion. 

That is beta has to lie between the two bounds which are given by beta 2 and beta 1. So, 

the lowest value of beta is equal to beta 2, which is nothing but beta 0 into n 2 and the 

highest value of beta is beta 0 into n 1. So, now if I get the face constant beta and if I 

divide this quantity beta by the free space constant which is beta naught, we get a 

number which would lie between n 1 and n 2. 

So, essentially we can say that if I define this quantity beta divided by beta naught as 

something what is call the effective refractive index of the model propagation. So, let us 

say this is n effective then the n effective would lie between n 1 and n 2. So, you have 

this quantity n effective its lowest value will be n 2 and its highest value will be n 1. So, 

either we can talk the propagation characteristic in terms of the phase constant beta or we 

can talk in terms of what is call the effective model index, what is called n effective, 

which gives you the velocity of wave on their structure. So, we will later understand the 

physical meaning of, why you have this two bounds here? n 2 and n 1, but let us 

complete our analysis of the wave equation. 
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 So, once you have got a longitudinal component of electric and magnetic fields then as 

we seen earlier, we can use the expressions for transverse fields in terms of longitudinal 

components and we can get the total electric and magnetic field inside core and cladding. 

So, essentially now we have got six components E r, E phi, E z, H r, H phi, H z and 

suffix 1 denote this quantity inside the core. Similarly, you have E r, E phi, E z, H r H 

phi, H z this suffix 2. Theses quantities represent inside the cladding. Once you get the 

six components, then we can apply appropriately the boundary conditions at the core 

cladding interferes that is at r equal to a 

(Refer Slide Time: 08:32) 

 



So, we have a boundary conditions now at r equal to a, which is the core cladding 

interference. And from our basics of electro magnetics we know that there are four 

boundary conditions which you can impose, we can apply the continuity of the tangential 

component of electric field, we can apply the continuity of normal component of 

magnetic field and so on. However, in this case since we are talking about the media 

which are purely dielectric media, there are no surface currents. For the conductivity, for 

the cladding and the code is 0. In this situation not only the electric field, tangential 

component is continues across the boundary, but even the tangential component of 

magnetic field is continue across the boundary because the surface currents are 0. 

So, we essentially apply two boundary conditions here. So, we said tangential component 

of electric field is continues at the core cladding interphase and then we said tangential 

component of magnetic field is continuous since there are no surface currents. So, now if 

I go to my geometry here, the cylindrical geometry, you will see that the two components 

are tangential to this interphase. Now here when I say the interphase, they interphase 

essentially defined by this cylindrical surface. So, any field which is along the z direction 

is tangential to this cylindrical surface; that means, the z component of either electric 

field or magnetic field is tangential to the interface, between the core and the cladding; 

similarly, if I consider if a field, which is phi oriented that will be tangential again to this 

interphase.  

So, when I apply the boundary conditions, essentially we have this four quantities here 

that the phi component of the electric field is continues, z component of electric field is 

continues, phi component of magnetic field is continues and z component of magnetic 

field is continues. So, we get here if E phi 1 equal to E phi 2, E phi 1 equal to E phi z 2, 

H phi 1 equal to H phi 2 and H z 1 equal to H z 2. So, once I get the expression for the 

longitudinal components and the transpose component, by equating this essentially I 

have got four equations now. And how many unknowns we have? We have five 

unknowns overall, we have four arbitrary constants a b c and d which are representing 

the magnitude of the electrical magnetic fields and the component beta which is the 

phase constant of that field is distribution in the fiber. 
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So, overall we have five unknowns and from the boundary condition we get four 

equations. So, essentially what we can do is we can eliminate these quantities a b c d 

from this four equations and then what we get is the characteristic equation of the model 

propagation in the optical fiber. So, if I equate the tangential components and eliminate 

this arbitrary constant a b c d then we get the characteristic equation of a mode which 

essentially given by this. Here you have this quantity here J nu prime u a and K nu prime 

u a, where the prime denotes the derivative of the Bessel function or modified Bessel 

function with respect to argument. 

So, essentially the J nu prime x is d by d x of J nu x. And similarly, K nu prime x that is 

d by d x of K nu x; so, just for the simplicity, we write down in the characteristic 

equation in this from. So, you have here the derivative of Bessel function, you have 

derivative here for the modified Bessel function and this equation essentially now 

represents the characteristic equation for a general mode which is having all six 

components, because we have taken all the six components, started with a two 

longitudinal components E z there H z and all these four components, which are 

transverse. We got a characteristic equation now which is in general true for any 

arbitrary field distribution with six components. 



(Refer Slide Time: 14:17) 

 

So, this mode as we saw earlier that if all the six components are present, then we 

designate this mode as the hybrid mode; so, this is nothing but the characteristic equation 

for the hybrid mode. The quantities u and w as we defined earlier, the u square is omega 

square mu epsilon 1 minus beta square and w square is equal to beta square minus omega 

square mu epsilon 2. Now, if I consider the special case of this equation, that is for nu 

equal to 0 and what is nu representing here? The nu represents the variation of the field 

in the azimuthal direction or in the phi direction, because we have the functional form for 

this field which is it the power J nu 5. So, we get a variation of electric or magnetic field 

in the phi direction which is given by e to the power J nu phi. 
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So, if I take nu equal to 0 then that represents a circularly symmetric field or field we 

does not have a variation in the azimuth direction. So, if I look at the function which is 

into the power J nu phi, the nu equal to 0 gives me circularly symmetric field and if nu is 

not equal to 0 then we do not guess circularly symmetric field, it will have a variation in 

the phi direction. For example, if I take nu equal to 1 then I will have 1 cycle variation as 

I move in the direction of phi if I take nu equal to 2, I will have 2 cycle variation in the 

azimuth and so on. So, for nu equal to 1, if I consider the fiber like this, it will have a one 

cycle variation in the azimuth. That means, this will be, let us start with 0 here, it will be 

maximum in this direction, it will go to 0 here again and go to minus maximum in this 

direction. So, as I move along this in the phi direction the field will see a variation in 

going from 0 to maximum, to 0 to negative maximum. 

Similarly, if I take nu equal to 2 then I will get the variation which will be going into two 

cycles now. So, it will be the like this, it will be 0 going through positive maximum, will 

be 0, will be negative maximum, will be 0, will be positive maximum 0 and negative 

maximum. So, this quantity the index nu essentially is telling us, how the field amplitude 

is going to very in the azimuthal direction for a given value of r in given value of z. One 

thing you immediately notice here is that, if I consider no variation which is this 

circularly symmetric case then, the field will have a maximum that the center of the 

fiber. Whereas, if I consider any value of nu which is not equal to 0 then on this side of 



this line, you have the value which is positive and on another side you have value which 

is negative. It should have a continuity of the fields from this part to this part. 

So, essentially the field must be identically 0 at the center of the fiber. So, if I take a nu 

equal to 0, then we get circularly symmetric fields and these fields would have a 

maximum intensity at the axis of the fiber. Whereas, if you take new equal to 1 or 2 or 

any other value of nu then essentially the field must go to 0 at the center of the fiber. 

Now, if you recall the discussion in the ray model, we had two types of rays. One was 

the meridional ray and other was the skew ray. And the property of meridional ray was 

that all the ray start the again coming join the axis. So, you have a constructive 

interference of the rays at the axis of the fiber. So, you have intensity maximum at the 

axis of the fiber. Whereas, if you go to the skew rays, then we saw that the skew ray 

always spirals around the axis of the fiber and because of that you have low intensity at 

the axis of the fiber.  

Precisely that is what these two quantity are telling us that if I consider, a circularly 

symmetric case which corresponds nu equal to 0, then these modes or these field 

essentially correspond to the meridional rays. Whereas, if you take any other field 

distribution or modes, which correspond to nu equal to 1 or any other higher values then 

they correspond to the skew rays. So, these are the one skew ray. Where as this one is the 

meridional ray. So, you can see one to one correspondence between the ray model and 

the wave model. And that is always good, because whatever understanding you have to 

developed from the ray model, that should support the mover deeper understanding what 

we are going to develop for the wave model. 

So, now this set of rays which correspond nu equal to 0 these are circularly symmetric 

and these are special rays. So, that is the reason we want to find out what would be the 

characteristic equation for nu equal to 0. Because they are the one which are going to 

represent the meridional rays. So, if I put nu equal to 0, essentially the equation, the right 

hand side of the characteristic equation goes to 0, because here nu is appearing here. So, 

this quantity is 0 and then we get the characteristic equation essentially reduce to this. 

Seen the product of these two term equal to 0, we may have two solutions either this 

bracket going to be 0 or this bracket going to 0. 



So, what we find here is, that if I taken a transverse electric case or transverse magnetic 

case and go on through the whole exercise of matching boundary conditions and so on. 

These brackets equal to 0 would come as the characteristic equation for the transverse 

electric mode. Whereas, this bracket equal to 0 will come as the characteristic equation 

for the transverse magnetic mode. 
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 So, this bracket here essentially is representing the T E mode and this bracket here, 

equal to 0 is representing the characteristic equation for the transpose magnetic mode. 

So, if I take this bracket and equated it to 0, this will be the characteristic equation for the 

transverse electric mode. And what we can do is we can use the recurrence relation for 

finding out the derivative of J function. So, the J 0 prime x is nothing, but minus J 1 x 

and same is also true for the K also. So, if I substitute now into this, we get the 

characteristic equation for the transverse electric mode which is given by this. And 

important thing is that the transverse electric mode is always going to be circularly 

symmetric.  

Similarly, if I take this bracket and equated to 0, we get the characteristic equation for 

the transverse magnetic mode. So, we are a very important conclusion and same thing we 

are seen for the ray model also, that transverse electric mode and a transverse magnetic 

mode have field distributions which are circularly symmetric. Whereas, if you take a 

hybrid mode, the hybrid mode has a field distribution which is essentially circularly non 



symmetric, because that corresponds to the nu equal to 1 nu equal to 2 and so on. So by 

this now, one can write down the field distributions for various modes. 

So, if I know take this characteristic equation here and I saw this characteristic equation, 

immediately it will be clear that this equation has multiple solutions. And why multiple 

solutions? Because J 1 and J 0 both this functions or oscillatory functions. So, they cross 

0 they become negative and so on. So, essentially depending upon the value of a, you 

will get multiple solutions to this problem. 

So, for a given size of the optical fiber, one has multiple solution for the problem. So 

now I have, for designating a mode, have two quantities now. One is, what is this 

azimuthal index nu, which tells how many cycle variations the field has in the azimuthal 

direction and second which solution of the equation is representing the mode. So, if I get 

the first solution then I have a combination of some nu and the first solution. If I take 

second solution, then I have combination of nu and second solution and so on. 

(Refer Slide Time: 24:51) 

 

So in general, then we can designate a mode which is T E and for T E this is the nu 

always equal to 0, first index will also put as 0. And then depending upon the solution, 

whether it is the first solution or second solution or third solution, we put some index M. 

So, we get the modes for the transverse electric, which could be T E 0 1 mode or T E 0 2 

mode and so on. The same argument is true for the transverse magnetic case also. So, we 

have a transverse magnetic case, again the nu is 0 for transverse magnetic case. So, this 



index is 0 and then depending upon with solution we have, you get index m. So, you can 

get a mode which could be transverse magnetic 0 1 are transverse magnetic 0 2 and so 

on.  

Similarly, if we take a general mode which is given by this characteristic equation, then 

we know for this one, now the nu essentially has to be now 0 and then we can designate 

this hybrid mode by a g mode . So, we get a mode which is H E and here the index is nu, 

which is not equal to 0 and the solution which could be the first solution or second 

solution or third solution. So, now inside the optical fiber, we have three sets of mode 

which are propagating, the transverse electric mode with the first index 0 and first index 

here gives number of cycles in the azimuthal directions and second index tells the 

solution number of the characteristic equation. Also this quantity essentially tells us, how 

many maxima we have in the function in the radial direction. 

So, if I consider the first solution, then we have only one maximum which is at a center 

if I take m equal to 2 then one 0 would have cross in the Bessel function and so on. So, 

now this two indices which we have for each of the mode either T E or T M or hybrid 

which is H E, the first index tells the variation of the field of the amplitude in the 

azimuthal direction or in the phi direction. And this one, second one index, tells us how 

many is 0 crossing you have in the radial direction. So, 0 crossings are theses quantity 

minus 1. So, if m equal to 1 that is no crossing and radial direction, if m equal to 2 will 

be one 0 crossing and radial direction and so on. 
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So, if I say that I have a T E 0 1 mode and then this mode is circularly symmetric and 

does not say 0 crossing an radial direction. So, if I take this and try to draw the fields for 

this, it is a circularly symmetric. So, if I draw the field distribution this the function of 

radial direction, the field distribution would go something like this .No 0 crossing is 

reach till the end and them the field is decays exponentially in the cladding. 
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Whereas, if I consider a more which is let us T E 0 2 mode, then the field variation is 

circularly symmetric, it does not have an variation in the phi direction, but one 0 crossing 



is there in the radial direction So, if I will look at the field for this, the field would be it 

will be maximum at the center somewhere it will cross through 0 till be reduce to this 

point, 1 0 crossing as taken place and the speed exponentially decays as I go inside the 

cladding. So, the field distribution would look something like this. If I look at the 

intensity pattern of this mode, then this will show me intensity maximum at the center 

and then the intensity will slowly reduce toward the core cladding boundary and it will 

keep reducing as I go inside the cladding.  

So, if I draw here, the intensity variation I get a very bright spot here at the center and 

then slowly the intensity will reduce as I go away from this and then it will simply merge 

with the intensity in the cladding. Whereas, if I take the intensity distribution, in this case 

there it has a very bright spot at the center which corresponds to this then, the field in 

intensity reduces it become 0 at this and here the field become a negative that mean the 

field direction reverses. 

So, will get very bright spot here, it will reduce slowly here, go to 0 and then it will 

become a negative field here, I think like this. So, we will get a bright region at the 

center then there will be dark ring somewhere between and again we will see bright ring 

of light, with a electric field orientation opposite to what you are having at the center 

because the functional has become negative. So like that, we can visualize now the field 

distribution inside the optical fiber by the nomenclature which we have define that the 

first index tells us the variation of the field amplitude in the azimuth direction and second 

index minus 1 tells us the number of 0 crossings in the radial direction.  

With this understanding, then now one can go and look at some more features of this and 

if I look at this quantity u square which you define here. 
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Which is u square is equal to omega square mu epsilon 1, beta 2 and w square is equal to 

beta square minus omega square mu epsilon 2. You find that some of these quantities is 

independent of beta. So, u square plus w square if I take, that is nothing but omega 

square mu epsilon 1 minus omega square mu epsilon 2 and this quantity as we know is 

beta 1 square; so, this beta 1 square minus beta 2 square.  

So, for a fiber of radius a, now we can define a quantity which is a square multiplied by 

the this one, which is a square multiplied by beta 1 square minus beta 2 square and if I 

write down explicitly beta 1 and beta 2 as beta 0 square to n 1 square minus beta 0 square 

and n 2 square, we get this parameter which is a characteristic parameter for the optical 

fiber. Why it is characteristic parameter? Because there are only three quantities involved 

in defining this optical fiber, the refractive index of core, the refractive index of cladding 

and the radius or the diameter of the optical fiber core. 

So, you recall that the parameter which we define the numerical aperture that was a 

characteristic parameter for optical fiber, but the size of the core was not coming into 

picture while defining numerically aperture. The numerically aperture is purely defined 

in terms of the refractive indices of core and cladding. 

But we are seen, that just the difference in the refractive index does not completely 

characterize the fiber propagation because depending upon the size of the core, that 

different modes or different numbers of modes can propagate in the fiber. That means, 



just parameter which is defined on the basic of refractive indices, does it completely 

describe the propagation characteristics. So, now we find here this parameter is a more 

complete parameter for describing the fiber. If I simplify this quantity v, will be equal to 

a, you can take beta common from here; so, a into beta 0 square root of n 1 square minus 

n 2 square. And a 0, beta 0 is the free spaces propagation constant which is given by 

omega upon c, where c is a velocity of light in vacuum. You get this quantity v, which is 

a omega upon c, square root of n 1 square minus n 2 square. 
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So, if I write this quantity, realizing that this quantity we already know, which is nothing 

but the numerical aperture of the optical fiber. We can define this characteristic 

parameter for the optical fiber which is what is called the V number of the optical fiber. 

So, V number is a more comprehensive parameter for the optical fiber because it has is 

radius included in this, it also has a numerical aperture included in this and radius is 

normalize with respect to the wave length. Where if I write down this quantity here c, 

omega is 2 point to frequency c upon frequency will lambda. So, you get V number 

which essentially is given by this. 

Now, this V for a given parameter since n 1 n 2 is constant, the radius is constant, the V 

number of an optical fiber is directly proportional to the frequency omega. That is the 

reason, many times this parameter is also refer to has the normalize frequency. And later 

on, we will see this is the parameter which essentially used to compare different types of 



fibers. So, this parameter V number of an optical fiber is one of the extremely important 

parameters, that is one which is going to describe the propagation characteristics inside 

the optical fiber. 
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Now, before you make use of this parameter, the V number, let us come back to our 

understanding that your beta had two bounds, which were given by your beta 2 and beta 

1. And you have is, relationship between u and w which is essentially given by this. So 

now, if I look at this quantity here w and w times r, is the argument of the modified 

Bessel function. If w becomes 0 or if this w becomes imaginary, then the modified 

Bessel function does not remain modified Bessel function, that what we saw earlier. That 

means, if this quantity w becomes imaginary, then the field variation will not be 

appropriately described like a exponentially decaying fields in the cladding and we will 

say that, these mode is no more remain a guided mode, then energy will start leaking 

inside the cladding. 

Since we want that there has to be sustain propagation energy only along the axis of the 

optical fiber, the field must die down monotonically in the cladding or in other words as 

we saw that this quantity beta has to be greater than this quantity. So, when beta 

approaches this quantity or when beta becomes equal to this quantity or beta becomes 

equal to beta 2. That time, your modified Bessel function gets converted into the normal 



Bessel function and then there is no confinement of the energy inside the core because 

the field does not die down monotonically in the cladding. 

So, we define this condition as what is called the cut of condition for more. So we define 

a condition, what is called a cut of condition, when beta tends to beta 2. What does this 

physically tell me now? That you let us say, beta is equal to beta 2. Suppose what that 

means is, that whatever energies propagating inside this medium its sees, is basically 

refractive index n 2. That is why the propagation constant which is beta 2 or in other 

words it is telling us that most of the energy associated with these fields is lying in a 

medium, which is having refractive index n 2. That means, most of the energy is lying 

inside the cladding. 

So, as we, beta approaches beta 2 more and more energies spreaded inside the cladding. 

Similarly, if I situation where beta approaches beta 1, then more and more energies 

confined inside the core because most of the energies see the refractive index which is 

equal to n 1. Now we can understand this physical picture very easily, that why beta lies 

between these two limits beta 1 and beta 2 because, for an optical fiber part of the 

energies lying inside the core, part of the energy is lying inside the cladding.  

If you are left to themselves in the fields which are lying inside the cladding would travel 

with a phase constant which is beta 2, the field which are lying inside the core would 

travel which a phase constant which is equal to beta 1, but now these fields are tied 

together by this mode, by the boundary conditions. 

So, the field inside the cladding and core, they cannot move with arbitrary phase constant 

way they like, but they have to come to an agreement that the phase constant for the 

fields in the cladding has to increase little bit, for the fields which are inside the core 

have reduces little bit, so that they can travel together with the same phase constant beta 

So, essentially the limit of beta, beta 2 and beta 1 is telling us that the energy is there in 

this two regions and because the energy which is outside the core has a tendency it will 

travel with phase constant beta 2 and energy in the core has tendency to travel with a 

phase constant beta 1, there has to be a mutual agreement so that, they can travel with a 

phase constant that lie between these two limits.  



But it also tells you something more, what it tells is, if I look at the behavior of beta. If 

beta is very close to beta 2, then most of the energy lies inside the cladding. So, without 

even worrying or without even finding out, how to the total fields are distributed and so 

on. If I can get this parameter beta and if this beta lies close to beta 2, we can 

immediately say that most of the energy is the lying inside the cladding compared to 

inside the core. If we can get a situation, where beta lies very close to beta 1 then 

immediately we can conclude that most of the energy lying inside the core and very little 

energy is lying inside the cladding. 

So, as beta goes towards beta 1 the energy gets more and more confined inside the core 

and very little energy remains inside the cladding. And that is a very desirable feature, 

that is what we want in the propagation of light because if the light has to be free from 

interference from the external world, the light should be very well confined inside the 

core. So, we have to create a situation, we have to operate in a domain, where beta 

should be as closed to be beta 1 as possible and as away from beta 2 as possible.  

So, this condition what is called the cut off condition, at which the mode propagation 

essentially seizes or the mode starts now leaking out inside the cladding beyond that the 

mode propagation does not remain any meaning full, because we very quickly loose the 

energy inside the cladding. 

So, for a good welcome find propagation of light inside the core, we should make beta as 

large as compare to beta 2 and as close to beta 1 as possible. Now with this stand, one 

can say that, if I now look at the variation of beta as function of frequency, if forever the 

interest falls. Let me recall, we started this analysis to understand how the beta is related 

to omega. Because once we understand the relationship between beta and omega, then 

we can get find out the phase velocity, which is omega by beta, we can find out the 

group velocity which is d omega by d beta. 

So, the whole exercises was essentially to find out the relationship between the phase 

constant beta and frequency omega. And what we found here is that the V number now is 

related to the quantity which is the frequency, which is proportional to frequency. So, x 

of the personality constant for given fiber, we can use for omega the number V. 

Similarly, for beta what we can do is that we can define a parameter, what is called 

normalize propagation constant, which can be defined like this.  



Now, we are seen earlier that this quantity the effective refractive index which we got 

has a limit which goes between n 1 and n 2. So, when the mode approaches cut off, the n 

effective essentially approaches n 2 and when the mode is far from cut of then n effective 

will approach n 1, most of the energy will get confine inside the core. So, instead of 

plotting now beta as a function of frequency, we can get a plot of beta which is respect to 

v because v is proportional to omega or we can have a normalize plot of this quantity, 

which we call as b which is defined as n effective square minus n 2 square upon n 1 

square minus n 2 square. 

And this will now always between 0 and 1 because at the cut off n effective will tell to n 

2. So, this quantity will go to 0, when we go very far from cut off n effective will tend to 

n 1 and that times this quantity will become equal to 1. And that is the reason we can call 

this quantity, the normalize propagation constant.  

So, beta will vary from beta 2 to beta 1, but is normalize propagation constant will 

always vary between 0 and 1 irrespective of what more we are talking about. 
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So, whether we have a T mode or we have a T M mode or we have a hybrid mode or 

whatever the index is, the limits of this is always between 0 to1 and limit for beta is 

always between beta 2 and beta 1. So now, instead of having a plot or variation of 

propagation constant beta, as a function of frequency, we can get a variation of this 



normalize propagation constant as the function of V number because V number is 

proportional to frequency and this quantity essentially is quantity beta.  

So, here we have plotted here, the quantity beta divided by beta naught, which is nothing 

but your n effective as we seen n effective will range between n 2 and n 1. For a 

particular mode, we can vary the V number and ask how the beta varies. So, essentially 

the characteristic equation which we have got, you have to solve that characteristic 

equation numerically, get the value of beta for various values for V numbers. And note 

here the size or the refractive index of core and cladding, they individual do not matter, 

what matters is the total together what is called the V number.  

So, we can have this quantity V number which is the representation of frequency on this 

axis and on in this axis we have the normalize propagation constant b, which will vary 

between 0 and 1 or a effective refractive index, which is going to vary between n 2 and n 

1. So, what we find is that, as the V number increases, all these graphs are monotonically 

increasing graphs. This is the graph which corresponds to H E 11 then we have the graph 

here, which are T 0 1, T M 0 1 and H E 2 1 and so on. So, first thing to note here is, that 

this quantity V, which is proportional to frequency. There is only one mode which can 

propagate down to V equal to 0 there is the value here is very small, essentially this 

curve can extend up to 0. 

So, no matter how small value of frequency is, this mode H E 1 1 mode is the one which 

is always going to propagate on the optical fiber. Where as if I consider a mode T E 0 1 

mode which is the first mode in transpose electric or T M 0 1 mode, then the V number 

has to be greater than certain value. And this quantity here is 2.4. What is special about 

2.4? 2.4 is the first root of J 0 Bessel function. So, the cut off for the T or T M is given 

by the roots of J 0 Bessel functions. 

So, a first 0 since it is 2.4, you see that for T E or T M mode to propagate, the V number 

has to greater than certain value or for a given fiber the frequency has to be above certain 

value. If it is not above certain value than the T and T mode will not propagate. Whereas, 

this mode which is the H E 1 1 mode, this will always propagate because its cut off 

frequency is 0. So, we find something very interesting that between the ray in between V 

number 0 and 2.4 only one mode propagates. 



And that mode is not transverse electric or transverse magnetic, that mode is a hybrid 

mode. So, it is very interesting that the mode which is predominantly propagating on the 

optical fiber, has in general all six components associated with it. It neither transverse 

electric not transverse magnetic, if I compare this with the metallic wave guides that a 

metallic wave guides, the dominant modes are transverse electric modes.  

Whereas, if I go to the dielectric wave guide like optical fiber, then the dominant mode is 

not transverse electric, but, the dominant mode is hybrid. So now, if I check this back 

with my ray model essentially what it tells me is that, this mode which is going to 

propagate here, between this and this numbers that must correspond to the ray which was 

going along the axis of the optical fiber. Because all other rays had to satisfy certain face 

condition for total internal reflection. Only the ray which was going along the axis of the 

optical fiber was independent of all these quantities. So, even if I take the size of the 

optical fiber very small, one ray which goes along the axis of the optical fiber will 

always go. 

So, this mode H E 1 1 mode, is the mode which corresponds to the ray which travels 

along the axis of the optical fiber. So, as very important conclusion, that the ray which 

goes along the axis optical fiber, if I see only in terms of ray, it would look as if its 

transverse electromagnetic light which is going to propagate. So, from the wave of 

analysis we find that, that ray is not transverse electromagnetic in nature, this wave is 

hybrid in nature. 

So, now we got a very important conclusion and that is we got essentially a analytical 

answer to the range of parameters or the frequency over which only one mode will 

propagate inside the optical fiber or the condition for which the fiber will be single mode 

optical fiber. Recall we have said, when the large number of rays propagate, there is 

going to be more broadening of the signal for a dispersion; whereas on single mode there 

was no dispersion because of the multiple ray propagation. 

So, we wanted to know what is the quantitative measure, which tells us whether the fiber 

is going to single mode or the fiber is going to be multimode; here is the quantitative 

answer, that if the V number of the optical fiber is less than 2.4 then the fiber will be 

single mode. If the V number of the optical fiber is greater than 2.4 then the fiber will be 

multimode. And as the V number increases higher and higher, more and more modes 



starts propagating inside the optical fiber. So, in conclusion essentially our analysis 

which we have carried out, has given us a very important information about the 

quantitative parameter of the fiber what is call the V number, that if the V number is less 

than 2.4, then the fiber remains single mode optical fiber. 

 


