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We are discussing non-linear fiber optics, that is, when the pulse has high intensity, the 

refractive index of the material gets modified because of the pulse and that leads to the 

modification in the pulse propagation. So, in our last lecture we looked at the 

phenomena, what is called the group velocity dispersion and assumed, that the 

nonlinearity is not playing a role, but the dispersion is there. We solved the non-linear 

Schrodinger equation only for dispersion and then, we saw something interesting, that if 

you have a Gaussian pulse, then the shape of the pulse remains Gaussian as it travels on 

the optical fiber, but it goes on broadening. 

We also saw, that internally the pulse gets frequency modulated and the chirp has a 

different nature depending upon whether you are in the normal dispersion regime or you 

are in anomalous dispersion regime. So, in the normal dispersion regime the frequency 

chirp is positive as a function of time, whereas if you are in an anomalous dispersion 

regime, which is for a wavelength greater than 1300 nanometer, then we have the 

negative chirp, that means, the frequency decreases as time inside the pulse. 

Today, we are going to consider the non-linear effect of pulse propagation, that means, 

we assume for time being, that the dispersion is not playing a role. We choose the 

parameter for the pulse in such a way, that the dispersion effects are negligible, but the 

non-linear effects are present and when that can happen? 

It can happen if the pulse width is large, then the dispersion length is much larger. So, for 

physical length of optical fiber, the dispersion length could be much larger than the 

actual length of the fiber. So, the dispersion effects can be neglected, but the power in the 

optical pulse is large enough to have the nonlinearity length smaller than the optical fiber 

length. And in this situation, then what happens is that the refractive index, which the 

pulse sees is different at different location within the pulse because now you are having a 



refractive index, which is a function of intensity of light. So, at the center of the optical 

pulse, you see large refractive index. As I go on either side of the peak of the pulse, the 

refractive index decreases. 

So, we have created some kind of a refractive index variation of them, material inside the 

pulse itself and since this pulse is moving inside the optical fiber, this refractive index 

profile also moves along the pulse inside the optical fiber. But since the refractive index 

is changing at different locations inside the pulse, so the velocity changes and because of 

that then you are getting the phase change inside the pulse. So, because of the 

nonlinearity there, what we see is that there is a phase change, which is going to be time 

dependent inside the pulse and this change in phase is created because of the pulse itself. 

Because of the pulse intensity changes the refractive index and that refractive index 

changes the velocity, which changes the phase. So, you are adding a phase change, 

which is produced by the pulse itself and that is the reason this phenomena is called the 

self phase modulation. 

So, today we are going to discuss in detail the self phase modulation, which is coming 

because of the nonlinearity, the Kerr nonlinearity, inside the optical fiber. 
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So, we are assuming that the dispersion is not playing a role, but only nonlinearity is 

present in the optical fiber. So, this one we call as the self phase modulation. One can 

also show, though we are not going to go into the details of that, that because of the self 



phase modulation, a continuous beam of light is not a steady propagation. So, a small 

perturbation on the beam, essentially, breaks the beam into small, small pulses. So, in the 

presence of this nonlinearity the continuous propagation is unstable, so beam naturally 

gets split into the pulses. And therefore, we investigate the propagation the pulse 

propagation in the, in the optical fiber when we are having the nonlinearity present. 

So, here, since we are interested only in the self phase modulation, we have the 

dispersion length, which is much, much greater than the physical length of the fiber, but 

the physical length is less a nonlinearity length, it is opposite, sorry. That means, the 

nonlinearity is present, now the dispersion is not present because this condition is 

satisfied. 

So, in this case, now if we look at the Schrodinger equation, which we got last time with 

the normalized parameters, we all, what we have done is we have defined this 

normalized pulse function and then we got a non-linear Schrodinger equation, which was 

this we are saying now, that in this equation. Now, since the dispersion is not playing a 

role, this quantity is negligibly small, so we have only this term and this term. So, in this 

situation, then the NLS can be written as dU by dz, that is equal to minus j e to the power 

minus alpha z divided by L NL mod U square coming because of the nonlinearity term. 

As you know, that this quantity here, L NL is defined as 1 upon gamma P naught, where 

P naught is the power inside the optical pulse. Now, this equation can be solved by 

assuming some, some solution to this equation. So, let the solution U be having some 

envelope V and some nonlinearity phase is given by phi N L. So, I can calculate dU by 

dz. So, from here I get dU by dz, which is if I differentiate this I will get dV by dz e to 

the power j phi N L plus differentiate this, so j V e to the power j phi N L d phi N L by 

dz. 

So, this quantity now is equal to this quantity because this is equal to dU by dz. So, this 

is equal to minus j e to the power minus alpha z by L NL mod U square, which is V 

square times U, which is this quantity. So, V e to the power j phi, we can separate out 

real and imaginary part. So, this, first of all this term is common, e to the power j phi N 

L. So, this will be common. So, this is gone, this term is purely imaginary now. So, what 

that means is that this quantity, the real term here has to be equal to 0. 
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So, this gives, that two equations we get from here, one is that dV by dz equal to 0, that 

come from, this is real term, this term is imaginary, this term is imaginary, so there is no 

real term on this side. So, that means, dV by dz is equal to 0. From the imaginary part we 

get d phi by dz phi N L that is equal to minus e to the power minus alpha z by L N L 

mod V square. So, the important thing to note here is that now since dV by dz equal to 

constant, this means, that amplitude does not change as the function of distance when the 

pulse propagates. So, the amplitude does not change in the evolution of the pulse, only 

the phase changes as a function of distance. 

So, this is saying, that phi N L changes with distance. So, that means, the V, which is U 

z, T that is same as what was initially at z equal to 0. So, the envelope of the pulse in 

time domain remains intact, but the phase inside the, inside the pulse changes as the 

function of time. So, from this equation, then one can get phi N L. I can integrate this as 

a function of distance, so this is 0 L minus e to the power minus alpha z upon L N L mod 

V square dz. 

And since this quantity is not changing as a function of distance, that is equal to minus 

mod U 0, T square divided by L N L, then the integral symbol e to the power minus 

alpha z dz, which is a very simple integral to solve. So, you get 1 minus e to the power 

minus alpha z upon alpha. This quantity is nothing, but the effective length over which 

the power is, is propagating inside the optical fiber. Say, as we know, as the power 



propagates on the optical fiber, the power is continuously reducing because of the loss. 

So, that is the approximate length over which you will have substantial power. So, this is 

the one, which we can call as the L effective, that is, the effective length at which the 

non-linear effects can be seen inside the optical fiber. 
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So, the non-linear phase, which you see in the pulse, then phi N L, that is equal to minus 

the pulse envelope square into L effective divided by L N L. So, one can calculate what 

the maximum value, the phase change you would see. So, the maximum value of the, of 

the phi N L, which you see on the fiber, that will be equal to minus L effective divided 

by L N L because the maximum value of this quantity is 1. We are considering the 

normalized pulse, so that is equal to gamma p naught to L effective, but the important 

thing to note here is that here also, now the phi, which is the non-linear phase change. 

Since this function is not a linear function of time, the non-linear phase also is not a 

linear function of time. And as we saw earlier, that if the phase is not a linear function of 

time that leads to the frequency change. So, that means, even because of self modulation 

there is a change in frequency, which is a function of time because this phase is the 

function of time. So, because of self phase modulation also we see the change in 

frequency and this change in frequency, delta omega, is given as d phi N L by dt. So, that 

is equal to L effective minus divided by L N L mod of U 0, T square. 



We can again consider the Gaussian pulse shape. So, this function will be square of that 

Gaussian function, like we have taken derivative of this quantity is d, d phi by dt. So, 

this, which has to be d by dt. So, whatever is this pulse shape, you take a time derivative 

of that and that quantity, essentially, will give you the change in the frequency as a 

function of time inside the pulse. 
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So, let us consider the Gaussian pulse as we have taken in the previous case. So, let us 

say, we have this Gaussian pulse as the function of time, this is T equal to 0, this is the 

leading edge, this is the trailing edge. So, first thing we will note here is that the change 

in frequency is the derivative of square of this envelope function. This is the quantity, 

which you have, which is U 0, T. See, if I consider this pulse and if I take square of this 

and take a derivative, then at this location the derivative is 0, that means, there is no 

change in frequency at the center of the pulse. 

So, if I chirp turbo change in frequency, this is time, this is delta omega. The delta omega 

is 0 at the peak of the pulse, which is at this location. At this location the derivative of 

this function is positive, but I have a negative sign here. So, that means, the frequency, 

change in frequency is negative on the leading edge of the pulse as the same token, the 

slope here is negative. That means, the change in frequency is positive on the leading 

edge of the pulse. 



Also, since it is going to be the derivative of this function, this quantity here, we will see, 

that it has a maximum, which goes somewhere here and as do you reach in this region, 

again we will see the derivative will be almost equal to 0. So, now, if I look at the, the 

change in frequency, the change in frequency would look something like that. So, you 

will see the center of the pulse, the frequency almost changes linearly; it goes from 

negative to positive, that means it has a positive chirp. 

So, in this case also we have a frequency chirp because the frequency is changing inside 

the pulse. Only thing is now the frequency is always going to change from the negative 

to positive as the time increases because if I consider any pulse kind of shape like this, 

then on this edge the slope will be always positive, on this edge the slope will be always 

negative. So, you will always see the change in frequency, which will look typically like 

that. So, one can then see, that when z equal to 0, that time we do not have any change in 

frequency, I can take this function from here. 

So, when I take z equal to 0, this quantity will be equal to 0, so this is equal to 0. So, I 

have no change in frequency. So, that is the change in frequency I will get at z equal to 0. 

As I move further, z increases. So, because of that, that this quantity, the phase will 

increase and I will see the change in phase, which will look like that for z greater than 0. 

If I go still further we will see, that the thing will become like that. So, this is for z, let us 

say z 2 greater than z 1, where this quantity let us say z 1. 

So, as you can see in this situation now, as the pulse propagates inside the optical fiber 

this chirp, which you say linear chirp, which is always a positive chirp, the slope of that 

goes on increasing as a function of distance, but the slope always remains positive. As 

we have seen when this is the kind of chirp, which we have, this means, that the high 

frequencies are accumulating on the trailing edge and the low frequencies are 

accumulating at the leading edge. 

So, as you have seen in earlier case, if I consider the pulse shape like that and if I look at 

the carrier now you will see, that the frequency is little less compared to the center 

frequency here. So, originally, we had the carrier frequency, which was exactly same 

everywhere like that. Now, we will see, that the frequency is little lower on the leading 

edge. So, the frequency spectrum would look something like that. So, high frequencies 

are accumulating here and the low frequencies are accumulating on this edge. That 



means, here you are having some kind of a red shift and on this edge of the pulse, you 

have the blue shift. 

So, the important thing which we note from this analysis is that when you are having the 

self phase modulation, the self phase modulation does not change the envelope of the 

pulse. However, what changes we have now? The change in the phase, so the time 

function, the envelope remains constant, but each frequency undergoes a phase change, 

which is non-linear as a function of time and that now modify the spectrum of the pulse. 

So, this is exactly opposite of what we used to see for dispersion in the, dispersion, what 

was happening in the dispersion? The pulse spectrum was remaining constant, different 

frequencies are undergoing different phase change and as a consequence of that the pulse 

in time domain was getting modified. What we are saying for self phase modulation is 

that the time function remains same; different frequencies, there is an odd-even phase 

change across the pulse as a function of time and that gives a change in the frequency 

spectrum. 

(Refer Slide Time: 25:00) 

 

So, if I look at the self phase modulation, the phenomenon essentially looks like this. So, 

in the self phase modulation, because of nonlinearity we have the phenomena, what is 

called, spectral broadening. The time function is not changing, the pulse in time domain 

remains exactly intact, only thing it gets frequency modulated and because of that 

frequency modulation, you get the widening of the frequency spectrum. 



So, initially, if you start with the spectrum like this, after certain distance the spectrum 

will become like this, after certain distance it will become like this, like this and so on. 

So, what it means is that in the presence of nonlinearity there are more new frequencies 

are getting generated into the signal. In the dispersion phenomena there was no 

frequencies getting generated, whatever frequencies were there, these frequencies were 

undergoing different phase change and because of that the time function was modifying 

in the presence of nonlinearity. We see that the new frequencies do get generated though 

the time function remains constant. The frequencies get generated because the 

nonlinearity phase, which is created inside the time pulse. 
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So, if I compare now these two phenomena, the self phase modulation and the dispersion 

the phenomena look exactly like this. So, this is the dispersion regime, so you have time 

pulse as a distance on the optical fiber. The pulse goes on expanding, it broadens, but the 

spectrum remains exactly same. On the contrary to this, when we are in non-linear 

regime, then the time function remains constant, the pulse shape does not change, but the 

spectrum goes on expanding or new frequencies go on getting generated. 

Also, as we saw that accumulation of the frequencies in the dispersion regime and 

nonlinearity regime, the nonlinearity will always give you the frequency chirp, which is 

positive, whereas for the dispersion the frequency chirp could be positive or it could be 

negative. 



(Refer Slide Time: 27:34) 

 

So, we have seen, in case of the dispersion the frequency chirp could be either positive 

for the normal dispersion or it could be negative for the anomalous dispersion regime. 

That mean, if you are working at 1550, then the dispersion is anomalous and then the 

chirp frequency chirp is negative. 

Now, imagine a situation, that the pulse broadening, which was taking place inside the 

optical fiber because of dispersion was primarily due to this frequency modulation, 

which is created because of the dispersion phenomena. So, the pulse modification, shape, 

pulse shape modification, which you used to see is essentially, because of this chirp, 

which is created. Since this chirp was not there, the pulse broadening also would not be 

there. 

So, imagine a situation, that suppose, now we choose the parameters of the pulse such 

that the dispersion and nonlinearity, both play a role and they play role in such a way, 

that the frequency chirp, which is created by the dispersion in anomalous regime, which 

is negative, dispersion is negative, that negative slope is now balanced by the positive 

slope, created by the self phase modulation. 

So, we have seen both the phenomena give the frequency modulation, they give 

frequency chirping. Non-linear phenomena always give frequency chirping, which is 

positive, that means, as a function of time the frequency always increases, is always 

positive chirp, whereas for dispersion the chirp would be positive or it could be negative. 



So, if you are operating in the normal dispersion regime the chirp is positive. So, if the 

non-linear effect were present along with the dispersion, essentially what happens? The 

chirp further enhances, but if you are operating in the normal, not normal, dispersion 

regime, but in anomalous dispersion regime where the chirp because of dispersion is 

negative, then the two phenomena together can cancel this frequency chirp. And if this 

frequency chirp is cancelled, you have got the constant frequency all across the pulse, 

and if that happens, there is no pulse broadening also in the time domain, or in other 

words what we are saying is that the non-linear effect can be used to kill the dispersion 

on the optical fiber. It can compensate the pulse broadening, which is taking place 

because of dispersion and that is a very, very attractive proposition. 

So, essentially, what we are saying is that when we are dealing in the normal regime 

without nonlinearity, as we transmitted data on the optical fiber the pulse was always 

broadened and then, there was a limit on the data rate, which you could transmit on the 

optical fiber because after distance, the pulse would have broadened so much, that you 

would not be able to distinguish between the pulses that keeps upper limit on the data 

rate, which one can transmit on a certain length of optical fiber. 

But now, what we are saying is that if we increase the power inside the optical pulse, so 

that the non-linear effects becomes observable and if we adjust the power in such a way, 

that the chirp created by the nonlinearity is balanced by the chirp created by the 

dispersion, then the pulse can propagate inside the optical fiber without any distortion in 

time domain. That means, the pulse can be transmitted over much longer distances 

because now the pulse is not broadening. So, there is no limit coming because of the 

merging of these pulses because of the broadening of the pulses. So, this balancing of 

these two phenomena together give you now a pulse, which can propagate without 

broadening, without contracting over long distances on optical fiber, provided the non-

linear effects are maintained on the optical fiber. 

We will see little later, that since there is a loss present on the optical fiber as the pulse 

propagates on the optical fiber, even if initially the non-linear effects were strong 

enough, the power was good enough to give you non-linear effects, and as the pulse 

starts propagating the non-linear effects become weaker and weaker and weaker. So, 

soon we will see that the non-linear effects are unable to compensate the effect created 

by the dispersion. So, if you create a situation where the power can be maintained inside 



the optical fiber, then the nonlinearity and the dispersion keep on balancing each other 

and then the pulse can travel on the optical fiber over much, much longer distances. This 

phenomenon, that these two are balanced by each other, so that the pulse does not go in a 

distortion, that is, what is called a soliton. 

So, what we are going to now see is a phenomenon in which the nonlinearity and the 

dispersion, both are present. We adjust the power such a way, that the nonlinearity length 

and the dispersion length becomes comparable and then we look at how the pulse 

evolves. Actually, should not evolve because we are saying, now since these two are 

balanced, then you, you would actually get pulse without any distortion travelling on the 

optical fiber. So, that is the phenomena, essentially, we would like to, like to investigate 

and if you can create that kind of environment of the optical fiber, then one can imagine, 

then the data can be sent over long distances without any limitation coming because of 

dispersion as has been happening in the linear optical fiber. 

So, just to give an analogy how these two would be would be balancing each other, let us 

look at the some, some mechanical analogy and see how this balancing would take place. 
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So, let us say consider that we are having a marathon, a marathon race. So, you are 

having a ground and there are lots of people are collected here to participate into the 

marathon race. So, everybody at some, sometime they all were accumulating here, all, 

everybody. Now, once the marathon race starts, you will see in this crowd there are some 



runners, which are going to be fast running, there are some runners, which are slow 

running runners. So, the fast runner would go ahead, the slow runner will be left behind. 

So, you will see, there are, somebody is here, somebody has gone here, somebody has 

gone here and so on. 

So, the initially the whole crowd, which was, which was this; the crowd actually is 

spread into this move. Further, you will see that the slow runner will be further left 

behind and fast runner would have gone further ahead. So, if I do this I will see that 

phenomena, which will look something, like that. So, I will see, the crowd has become 

like this. This is the phenomena, which is exactly same as what we say is the dispersion 

phenomena, that you have a crowd here, which slowly get dispersed as it starts moving 

into this marathon race because each one does not run with the same speed. That is the 

phenomena, which gives you the pulse broadening on the optical fiber. 

Imagine now a situation, that this marathon race, which you are going to hold is not on a 

hard terrain. Let us say, we, we have a huge mattress on which we want to conduct the 

marathon race. So, we have a thing, which is, which is like a soft material. Now, as soon 

as everybody assembles here for the marathon race, you will see, since this material is a 

soft material it does not remain like this, but it sort of sacks. So, now, material becomes 

like this people are standing they are, they are, they are different locations here because 

the material is sagging. 

So, when everybody assembles there for the beginning of the marathon, they are 

essentially standing into this valley, which is created because of this soft material. Now, 

as people start running, as the marathon race starts, the person who is here, who is 

running has to essentially climb this slope, whereas the person who is standing on this 

side, he has to run down the slope and person who is standing here in the middle of the 

valley, for him it appears as if he is running on the flat terrain. 

So, earlier what was happening was, that the fast runner was to run faster, slow runner 

was left behind and the pulse used to get broader. But in this situation, now the fast 

runner, since it is going to run up the hill because there is a slope is like that, his 

efficiency of running is reduced, now he cannot run as fast as he was running in this 

situation. Whereas, if I consider somebody here, then since he is going down the hill, he 

now can run much little faster than what he was otherwise running. So, as a result, what 



happens is that this person has to put more exertion, this person see little more easy way 

of running and this person sees as if nothing has changed as if he is running on the flat 

terrain. 

So, everybody thinks that he is doing the best of his abilities, but this valley does not 

expand as it used to happen in this situation because everybody does his best and since 

the valley will be like this, so maybe some adjustment will take place to the valley like 

this. But this, once that adjustment has taken place, then everybody will keep doing to 

best of his ability, but even then this shape will remain same. 

So, this valley go here, go here, exactly the same thing will remain, or in other words 

what we are saying is this change in the medium, which has taken place because of the 

mass, which you put inside this. This is the phenomena similar to what we are seeing 

because of nonlinearity because that is what nonlinearity was doing, that the intensity of 

the pulse used to modify the refractive index of the material; that is what precisely has 

happened here. And then, in this situation, the dispersion is unable to play a role as 

dominantly as it used to play in this situation. 

So, a certain adjustment takes place for the valley you create. A shape, which is like this 

and this shape, now keeps on travelling undistorted. This is what is called a soliton. So, if 

we take this shape, which is readjusted shape and if it starts moving, then the 

nonlinearity and the dispersion, they will keep counteracting each other and then this 

pulse shape will travel on the optical fiber over long, long distances without a distortion 

So, as I said, this is a very attractive proposition, that if you can keep maintaining 

nonlinearity on the optical fiber, then one will be able to send the high speed data over 

much long distances, which otherwise was limited because of the dispersion or the pulse 

broadening on the optical fiber. 
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So, let us look at now the simple analysis of the solitonic propagation. So, let us consider 

here optical solitons. So, let me say here, what we have said, we said here the group 

velocity dispersion is balanced by SPM, the self phase modulation. So, we are saying 

here, that the dispersion length and the nonlinearity length are very comparable and in 

the regime, essentially we would like to look at how the non-linear Schrodinger equation 

would look like and what would be its solution. 

So, let us define now certain normalized parameters as we have done earlier also. So, let 

us define normalized parameters, say as U define A by square root P naught. Let us 

define now all the distances by this zeta, which is the actual distance normalized with 

respect to dispersion length. And as we were defining the normalized time tau, which is 

now normalized with respect to the pulse width, now neglecting the loss. So, let us say 

the loss is neglected, that means, this P 0 , power inside the optical pulse remains 

constant as it travels on the, on the optical fiber. 

Thus the non-linear Schrodinger equation, which we have seen earlier, that now can be 

written as dU by d zeta minus j sign of beta 2 1 upon 2 d 2 U by d tau square plus j N 

square mod U square U, that is equal to 0. Then, we have defined this parameter N here, 

that is, the ratio of the dispersion length to the nonlinearity length. So, by substitute for 

dispersion length and nonlinearity length, essentially this quantity will be gamma P 

naught T 0 square upon mod of beta 2. 



This quantity N now is what is called the order of a soliton. And when L D is equal to L 

NL, that time this N is equal to 1 and we call that as the fundamental soliton. So, this 

quantity is what is called order of a soliton. So, N equal to 1 gives you fundamental 

soliton. Now, this we can do little more algebra to essentially eliminate N from, from this 

equation. 
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So, let us define another parameter, which is, so define some parameter U, that is, this 

order N times U that gives a U, which is normalized u by N. 

And now, since we are interested in the soliton and we know, that the soliton can be 

formed only in the non-linear dispersion regime in the anomalous domain because that is 

where the two chirps can be cancelled, so we are considering anomalous dispersion, that 

is beta 2 is less than 0. So, sign of beta 2 is minus 1; this equation sign of beta 2 is minus 

1. So, this will become plus j and then substituting for this capital U in terms of this U 

and N, you get now the equation, which is dU by d zeta plus j 1 upon 2 d 2 U by d tau 

square plus j mod U square U that is equal to 0. 

This equation actually has to be solved by what is called the inverse scattering method, 

but we can solve this in a different way. So, if you are having a general solution when 

the order of N is not 1, then one has to go to the inverse scattering method. However, for 

this case when N is equal to 1 we can solve this equation rather easily. So, since we are 



now looking for phenomena where the pulse shape remains intact, that is, the soliton, 

that is what we physically argued. 

One can solve this equation by assuming this U, which is a function of zeta and tau, that 

is, some function of tau, that means, it is not changing as this phenomena moves on the, 

on the fiber and some phase function, which is a function of distance and time. So, if I do 

that, so I substitute this, I take this quantity, substitute into this and separate out real and 

imaginary parts, you will see, that you get two equations. One, you will get the equation 

for phi, other one will get equation for V and one can show, that the solution, which you 

get for phi as a function of g and tau, it is same as the wave propagation and a 

phenomena, which will give solution like that delta tau. 

So, this quantity then would represent frequency and this quantity would then represent 

the phase constant. If we assume, that the frequency shift is not there when this 

phenomena is moving, one can take this delta is equal to 0. So, this phase as a function of 

zeta tau, that will be equal to minus k times zeta. 
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Once you get this, then you can substitute into the equation and the equation, which will 

get for, for, for V, that now can be obtained as this. This, the whole data of algebra you 

have to put in this because we are going to separate the real and imaginary part of this 

equation. So, from, from the, from the phase equation we get this expression; from the 

amplitude equation we will get the equation, which will be like this. 



Now, this equation can be solved trickily. So, what one can do is, I can multiply both 

sides of this equation by this quantity, which is 2 times dV by d tau and then integrate 

this as the function of tau. So, what we will see here, that by multiplying this, this term 

here, this will become integral 2 dV by d tau d 2V by d tau square d tau, that is equal to 

integral 2 V k minus V square 2 dV by d tau to d tau. We will continue with this equation 

to see little more evolution of the pulse. 

So, what we have done let me summarize. We started with the non-linear effects, we 

neglected the dispersion effects and then we saw, that in the presence of nonlinearity a 

phenomena, what is called self phase modulation takes place. The self phase modulation 

phenomena, it modifies the spectrum, the new frequencies are generated, but the time 

function is not modified. It is exactly opposite to what happens for the dispersion where 

the pulse shape is modified, but the spectrum is not modified. 

We also saw, that these two phenomena give different frequency chirps. So, then, we 

said, that if we combine this two phenomena such that this frequency chirps are 

cancelled, that means, the dispersion is balanced by the nonlinearity, there will not be 

any frequency chirp inside the pulse. And if that happens, there will not be any change in 

the pulse shape also, and that is the phenomena, which we call as the soliton where the 

wave behavior becomes more like a particle. And that is the analysis, essentially we 

started doing, that if we consider a situation where the nonlinearity length and the 

dispersion lengths are equal. And if the fiber length is much larger than this, then we will 

see the evolution of a pulse, which will be in the balance of these two phenomena in 

solitonic equation. 

So, by taking the simple, then functional form, we separated out real and imaginary parts 

and we are trying to get essentially solution for the solitonic wave. So, we will continue 

this analysis. So, in the next lecture when we meet, we are going to just take this 

equation, which you have got and then try to see what is the solution of this equation and 

then we see further, what is the behavior of the solitonic pulses in the optical fiber  


