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A very warm welcome to the ninth lecture on the subject of wavelets and multi-rate 

digital signal processing. 

We continue in this lecture to build further on the relationship between the filter bank 

and the scaling function and wavelet functions. Let me put before you some of the 

important conclusions that we had drawn towards the end of the previous lecture. We 

had said that there is a generic dilation equation that relates the filter bank to the scaling 

function and the filter bank to the wavelet. 
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In fact, if hn is the low pass filter impulse response, we had said that phi t obeys a 

dilation equation like this. As far as the wavelet is concerned, we had said that if we take 

the high pass filter in the filter bank, say if g of n is the high pass filter impulse response, 

then psi of t is summation n going from minus to plus infinity, g of n phi 2t minus n 

again phi note not psi. 
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So, this is not surprising. What we said was after all phi t belongs to v1, psi t also 

belongs to v1. So, therefore, both phi t and psi t should be expressible in the basis of v1 

and that is what we are essentially written down. What is noteworthy is that the 

coefficients of the impulse response of the low pass filter and high pass filter act as the 

coefficients in the expansion in terms of the basis. 
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Now, in particular for the Haar MRA, we had noted hn is this sequence. Recall that this 

is a way of denoting finite length sequences and this means that add n equal to 0. The 



value of the sequence is 1 and then points after and before take values as shown. So, for 

example, here if this is n equal to 0, this is going to be n equal to 1 and of course, other 

points which are not shown are automatically 0.  
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GN is this for the Haar system and in fact, we said that what these equations told us was 

something much deeper than the containment of phi t and psi t in v 1. In a sense, these 

equations tell us how to go from the filter bank to the wavelet and from the filter bank to 

the scaling function. We are just hinted at this in the previous lecture but now, we make 

that idea very very concrete.  

So, let us begin by looking at the Fourier domain. As I said last time, we need to take the 

Fourier transform because that is where we shall see something very interesting. So, let 

us take the first of the two dilation equations. You know incidentally just as you have 

differential equations, you have difference equations, you have dilation equations here. 
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So, you often encounter differential equations. Example could be yt is a1 dxt by dt. Let 

us say plus a2xt. So, differential equation, we have difference equations. 
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For example, y of n is half x of n plus x of n minus 1 is an example of a difference 

equation which describes the discrete system and now, we have a dilation equation.  
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This is a new class of equations. It is a new class of equations and this new class has a 

reason from our discussion of wavelets. In fact, from the relation between wavelets and 

multi rate filter banks. Anyway, with this little aside, let us come back to the issue of 

relating that filter completely in generative terms to the scaling function and the wavelet.  
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So, let us take this very general dilation equation, phi of t is summation n going from 

minus to plus infinity h of n phi of 2t minus n and we take its Fourier transform on both 

sides. Indeed, let us denote the Fourier transform of phi t as phi cap omega.  



Now, remember this is the analog frequency variant or the frequency variable 

corresponding to the continuous time context. So, I should say analog angular frequency 

variant, to be very precise and we know the relation between phi t and phi cap omega. 

So, we have phi cap omega is integral from minus to plus infinity phi te raise the power 

minus j omega tdt and we operate this on both sides. 

So, we write down integral from minus to plus infinity summation hn over n times phi 2 t 

minus n e raise the power minus j omega t dt and integrated all the way from minus to 

plus infinity. So, we have this integral here. Now, let us you see if converges which is 

does because it is the Fourier transform of phi t. We could interchange the order of 

summation integration. 
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So, we would have this is equal to summation n going from minus to plus infinity h of n 

integral from minus to plus infinity phi 2 t minus n e raise the power minus j omega tdt. 

So, we isolated the part that operates with dt here. Let us evaluate that part separately.  

Put 2 t minus N equal to lambda where upon we have t is equal to lambda plus n by 2 

and of course, one can also write down dtdt is essentially half d lambda and substituting 

this, we have the integral becomes integral from minus to plus infinity phi of lambda e 

raise the power minus j j omega lambda plus n by 2 d lambda and a half outside. We can 

do a little more work on this.  



So, we keep the terms dependent on lambda inside and we have j lambda rather j capital 

omega here, n by 2 emerging outside this is j capital omega n by 2 and this is minus 

infinity to plus infinity phi lambda e raise the power minus j omega by 2 lamda d lambda 

and this is familiar. This is essentially phi cap evaluated at omega by 2 as one can say the 

Fourier transform evaluated at the point capital omega by 2. So, now, we have a very 

beautiful relationship. You see what we are saying in effect now is that we can express 

the Fourier transform phi cap omega in terms of itself which is not surprising because 

you have a recursive dilation equation on phi t. 

So, there is a corresponding dilation equation on the Fourier transform. What is that 

dilation equation? That dilation equation is phi cap omega is summation n going from 

minus to plus infinity h n times half e raise the power minus j omega by 2n times phi cap 

omega by 2. Now, you know this part of the summation that involves n is familiar to us 

again. Indeed, we note that summation n going from minus to plus infinity hn e raise the 

power minus j omega n would be essentially the DTFT, the discrete time Fourier 

transform of h evaluated at capital omega. 

So, all that we have done in this expression is that we have replaced capital omega by 

capital omega by 2 from this point and we will give it, we will again use the notation that 

we have been using. So, we are saying if h of n has the discrete time fourier transform or 

DTFT given by capital H of omega. Now, note here I am using the continuous or analog 

variable that is because I want to retain my discussion in the analog domain or in the 

continuous time domain. 
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 So, I am substituting small omega by capital omega here for the sake of consistency in 

notation and if hn has the discrete time fourier transform given by capital H of capital 

omega, then what we have here is the following dilation equation. The frequency domain 

dilation equation is phi cap capital omega is half capital H evaluated at omega by 2 times 

phi cap evaluated at capital omega by 2. 

You see the beauty is that a dilation equation which involved summation over minute 

term has now become a dilation equation involving of a simple product. Then how do we 

interpret this? The Fourier transform of phi t is the same Fourier transform evaluated at 

omega by 2. So, evaluated omega is equal to evaluated omega by 2 times the DTFT. 

Now, the beauty is that what we have done here to go from phi cap omega to phi cap 

omega by 2 can be done to go one step lower. So, the same equation can be re-written at 

capital omega replaced by capital omega by 2 and doing that, we would have phi cap 

evaluated at capital omega by 2 is half H evaluated at omega by 4 times phi cap 

evaluated at omega by 4.  



(Refer Slide Time: 18:06) 

 

So, now we have a recursive process. Every time, you have phi cap omega by 2, you 

replace it in terms of a product of phi cap omega by 4 and then a DTFT. So, ultimately 

we have something like this. We have phi cap omega is like a product, it is a product m 

going from 1 to n capital N if you like, half H omega by 2 raise the power of m, this 

product and then multiplied by phi cap omega by 2 raise the power capital N. 
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So, we have a product of these discrete, so called Discrete Time Fourier Transforms. 

Here, the only catch is, now we need to use the analog frequency variable because we are 



dealing with analog frequencies here and here. Now, we can take the limit or continue 

towards N going towards infinity.  

Now, what is going to happen when you make capital N go towards positive infinity 

here? Any finite capital omega is going to be taken closer and closer and closer to 0. 

Again, if you wish to be very finicky, you should use the opponent proponent model 

where you say no matter how small I ask this argument to be, I can make it small enough 

and so on but I think we understand well enough that you can make capital N as large as 

you desire and you get a larger and larger number of terms in this product. You can take 

this argument to as small a value as your desire whenever capital omega is finite. 

 (Refer Slide Time: 20:55) 

 

For finite capital omega, we have the limit as capital N tends to positive infinity of 

capital omega divided by 2 raise the power of N equal to 0. So, therefore at least on the 

finite frequency axis, the left hand side is equal to the right hand side well and the right 

hand side has essentially the fourier transform of the left hand side at the point 0. 

So, what do we have here? Let me write that down mathematically phi cap omega. 

Therefore, it is essentially a product m going from 1 to infinity, positive infinity. 

Remember, the half occurs with each of these terms in the product. 
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Now, we have to be careful and say, for finite capital omega but that is not a very serious 

problem. You see if you look at the Fourier transform of the Haar scaling function for 

example, let us look at it. Let us look at the fourier transform of phi t in the Haar context. 
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Essentially, it is this and the Fourier transform is easy to calculate. Now, we can simplify 

this using the standard trick of taking out e raise the power minus j omega by 2 term and 

then we note that we have a sine hidden there and doing away with the j’s we will have 

((Audio not available: 24:16-24:42)).  



Now, as you can see this Fourier transform goes towards 0 as capital omega goes 

towards infinity. So, the Fourier transform vanishes as capital omega goes towards 

infinity and in fact, we can even sketch the magnitude to get a feel of this.  
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The magnitude of phi cap omega looks like this. You see at omega equal to 0, you will 

notice that one can use Lapthal’s rule and show that this is equal to 1 in magnitude. So, it 

has a pattern like this. Of course, we know where this comes? This will come at omega 

by2 equal to phi or at 2 phi. This would come at 4 phi and so on. This is how the 

magnitude looks. 

Now, you know this very clearly shows that phi has a concentration around 0 frequency. 

So, this is interesting. We begin from the low pass filter, we construct a dilation 

equation, a recursive dilation equation starting with the low pass filter and we get a low 

pass function. Phi t is essentially a low pass function.  

A low pass function means it is predominant in the frequency domain around capital 

omega equal to 0. Low pass function of course, is an informal term. You may always 

argue with that after all, it does have bands at higher frequencies too but the point is its 

prominent bands are around 0 and the farther you go away from 0, the more the spectral 

magnitude drops off. In that sense it is low pass.  



In fact, just as we try to build the idea of ideality in a filter bank, we also would like to 

build the idea of ideality in this phi t. The ideal phi t is actually the ideal low pass 

function. So, low pass function which is like a brick wall. 
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So, in some sense phi t in the spectral domain or phi cap omega for that matter is moving 

towards the ideal. You know this is where we are moving and where we are is 

somewhere here, very far away from it of course. Not surprising after all that is what we 

saw in the Haar multi-resolution analysis too, ideal here and actual there. 

Now, once again there is the same conflict that drives the engineer, the scientist or the 

mathematician. We know that we want to go towards the brick wall ideal but we also 

know the brick wall ideal is unattainable for various reasons. The reasons are similar to 

what I talked about last time for the unattainably of the idealism in a filter bank. 

So, you would not need to repeat them once again here. However, what we will now do 

is to see, what is the relationship? Whether, ideal or practical. What is the relationship 

between phi cap omega and the discrete time Fourier transform of the filter bank? Low 

pass filter in terms of construction. 

So, in another words we have written down a dilation equation in the frequency domain 

but we need to translate that dilation equation into a constructive step. How do we 

construct phi t given the low pass filter impulse response? In a way, if we do that we 



have answered the question. How is the design of the filter bank related to the design of 

the multi resolution analysis? 

So, let us do that. Towards our objective, let me put before you once again that infinite 

product here. So, you know now, you also understand why phi cap 0 should not be 0, phi 

cap 0 must be non 0. In fact, phi cap 0 is very often the maximum value of the magnitude 

of phi cap omega because of that low pass character. 

So, we have seen this low pass character in the Haar context. Now, we shall assume it to 

be true of most multi-resolution analysis and proceed from there. So, this is just a 

constant, you know a non 0 constant to be vary but what we need to identify is this.  
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So, we need to focus on this infinite product here, phi cap 0 is just a constant. So, let us 

take just two terms in this product instead of infinite terms. In fact, you know now we 

need to interpret this continuous analog variable little more carefully here. When we 

bring in the idea of a continuous analog frequency variable here, then we need to 

remember that we are taking a Fourier transform of a continuous function. 



(Refer Slide Time: 32:32) 

 

Now, what is the idea of the discrete time Fourier transform which is of course, of a 

sequence becoming the Fourier transform of a continuous function. Well, that is simple. 

So, suppose you thought of the sequence that train of impulses located at the integers. 

So, the sequence h n can be thought of as a train of impulses at the integer locations and 

the train of impulses, therefore is of course a continuous function.  

So, you can take its Fourier transform and use the continuous analog frequency variable. 

Now, one must interpret capital H of capital omega in that sense. 
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So, capital H of capital omega is the Fourier transform of this analog function or a 

continuous variable function. Maybe, I should say continuous time function to be precise 

and now, what is half h omega by 2. Then for that purpose, let us assume that we have a 

function h of t whose Fourier transform is capital H of omega. 
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Of course, we know capital H omega is integral from minus to plus infinity h t e raise the 

power minus j omega tdt and if we happen to consider alpha times h omega by alpha 

with positive alpha. So, what I am saying is consider alpha times h alpha times omega 

with alpha positive. 



(Refer Slide Time: 34:49) 

 

It is equal to alpha times integral from minus to plus infinity h t e raise the power minus j 

alpha omega t d t. Now, we have a simple step that we can perform. If we simply put 

alpha t equal to lambda and we would get, you see alpha t equal to lambda, alpha is 

strictly positive. So, when t runs overall from minus to plus infinity, lambda also runs 

from minus to plus infinity. 
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So, therefore we would have this is equal to alpha times integral minus to plus infinity h 

lambda by alpha making the substitution e raise the power minus j omega lambda. 



Now, d t is d lambda by alpha and now, if we just cancel the alpha here and the alpha 

here, we get integral from minus to plus infinity h lambda by alpha e raise the power 

minus j omega lambda d lambda which is essentially the fourier transform of h of lambda 

by alpha as the argument. So, we have divided the argument by the positive number 

alpha. 

So, what we are saying in effect is if h t has the fourier transform h of omega, then ht by 

alpha has the fourier transform alpha times h of alpha omega where alpha is of course, 

strictly greater than 0 here. Now, of course one can generalize this for alpha real and 

negative. All that one needs to do is to take a modulus outside and no modulus inside but 

I leave that as an exercise for you. 

We do not immediately require it. One can easily generalize but coming back to the 

point, then what h omega essentially means? What h omega by 2 essentially means with 

a factor of half outside is a dilated version of the train of impulses. 
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So, we have this train of impulses corresponding to the impulse response h of n which 

we have called h of the continuous variable t. 
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 It is a continuous time fourier transform or analog fourier transforms. So, to speak is 

capital H of capital omega and then half capital H of capital omega by 2 is then the 

continuous fourier transform of h of 2 t. That is easy to see because you have chosen 

alpha equal to half there. 
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What you mean by h of 2t? h of 2t means you have squeezed ht by a factor of 2 on the 

time axis on the independent variable. So, you have brought the impulses closer. Now, 



when you multiply 2 fourier transforms, the corresponding continuous functions are 

convolved. 

So, essentially you may think of h of t here. So, to speak for the Haar case, h of t looks 

like this. There is an impulse at 0 and a impulse, a continuous impulse at 1. These are 

impulses as understood continuous time and h of 2t will look like this. You know if I 

really wish to be finicky, I should be putting down the strengths of the impulses carefully 

to but let us not get that finicky. This is what h of 2 t will look like.  

There are impulses 0 and half H of 4t for example, will look like this. Now, this one 

squeezed again by a factor of 2 that we an impulse at 0 and an impulse at 1 by 4 and so 

on and so forth. Of course, the rest of it is 0 just 2 impulses. So, what do we have now? 

We have a product. Let us just take two terms in that product. 

So, if you take just the first two terms half capital H capital omega by 2 times half capital 

H capital omega by 4, it corresponds to h of 2 t convolved with, this is continuous time 

convolution here. Convolve with h of 4t.  

Now, as I said I am being a little careless about constants but if you really wish to be 

finicky you can. I am more interested in getting a feel of the shape of the convolution. I 

am not so concerned about the precise heights and so on right. Anyway, let me convolve 

them and show you. So, let us put back h of 2 t and h of 4 t as we add them here. So, we 

had h of 2 t here. 

Essentially, 2 impulses located at 0 and half, we have h of 4 t with 2 impulses located at 

0 and one fourth. Now, what will happen when you convolve these? You know when 

you convolve a continuous time function with an impulse; a unit impulse gives you back 

the same continuous time function. 
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So, as I said if you ignore the high note, the heights are equal here. Then when you 

convolve this h of 4 t with this, you could treat it as the convolution of this, with this 

impulse plus the convolution of this with just this impulse and you could sum these two 

independent convolutions.  

When you convolve this with this impulse, you simply relocate this at the position 0 and 

in fact, that gives you back h of 4 t. When you convolve h of 4 t with this impulse 

located at half, it simply shifts this function to lie at half. So, in effect when you have h 

of 2 t convolve with h of 4 t, you get something like this.  
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You get an impulse located at 0, 1 at one fourth, 1 at half at 1 at half plus one fourth 

which is 3 by 4. So, you get impulses here. Now, convolve this again to take the next 

term with h of 8 t as that infinite product asks you to do. Say, if you take three terms, 

then you would be convolving this with h of 8 t. 

How will h of 8 t look? h of 8 t looks like this, become even closer together 0 and 1 by 8. 

I am convolving h 2 t convolved with h 4 t and then the whole convolved with h 8 t. 

What will you have? Essentially, this has to be located here, here, here and here and all 

these relocated h of 8 t should be added together. Now, when you locate h of 8 t here, 

you get an impulse at 0 and 1 by 8 here in the middle. When you relocate h of 8 t here, 

you will get an impulse here and at one fourth plus one eighth. That is one eighth plus 

one eighth, three eighth. So, let me straight away now draw. This convolution results in 

impulse at each of these places. ((Audio not available: 46:32-47:20))  

Now, you know we seem to be getting where we want to. What is happening if you think 

about it? Each time you bring in one more term, you are getting a train of impulses 

where the train has doubled the size but it lies at the same support. H of t lay on the 

support 0 to 1, H of 2 t lies on the support 0 to half. 
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Of course, I would not really say 0 to half, you know there is an impulse at 0 and an 

impulse at half but then when you go to h 2 t convolve with h 4 t, you get an impulse at 0 

at one fourth at two fourth and at three fourth. When you go and bring in one more term, 

you get 8 impulses. When you bring in one more term next time, you are going to get 16 

impulses and then 32 impulses and the last impulse comes to closer and closer to 1. 
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So, what we have here effectively is h 2 t convolve with h 4 t and so on and so forth up 

to h 2 raise the power of N t is essentially, how many impulses? You see which you 



reach h of 8 t you have 8 impulses. So, when you reach h 2 raise the power of N t, you 

have 2 raise the power N impulses located at k divided by 2 raise the power of N, k 

going from 0 to 2 raise the power N minus 1. 

So, you know the last impulse as you can see the last impulse is located at 2 raise the 

power of N minus 1 divided by 2 raise the power of n. So, last impulse goes closer and 

closer and closer to 1.  
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The last of these impulses goes closer and closer to 1. So, you know when you have 

impulses located closer and closer and closer together, you are ultimately coming to a 

continuous function. You remember that idea of expressing a continuous function in 

terms of impulses essentially captures this. When you say x of t is a conglomeration of 

impulses located every point t with strength equal to the value of x at a point t. That is 

exactly what you are saying. 
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When you bring impulses closer and closer together, they fuse together to form a 

continuous function and it is very easy to see here what continuous function we are 

moving towards it is flat and indeed, it is very clear that we are moving towards ((Audio 

not available: 50:49-51:20)) which is essentially phi t low and be hold a very beautiful 

relationship. We have started from the Haar low pass filter. We have repeatedly 

convolved a train of impulses. 

So, for a first time it is a train of impulses located at 0 and half and then 0 and one fourth 

and you have repeatedly convolved these iterated the filter bank. Repeatedly convolved 

these strange of impulses and you moving towards the continuous time function which is 

indeed, phi t as you can see when you put those impulses closer and closer and closer 

together. 

So, now we see the connection between iterating the filter bank and producing phi. We 

now need to complete a little detail. How do we get psi but that is very easy. We already 

got phi and we know the dilation equation for psi.  

So, we have phi now. How will psi look psi t is essentially summation n going from 

minus to plus infinity gn phi of 2 t minus n and for the Haar case, we know what gn is g 

n is essentially 1 and minus 1. So, we can write down psi t in terms of phi t and construct 

from there, phi 2 t minus phi 2 t minus 1. This is phi 2 t this is minus phi 2 t minus 1 

when we put these two together, we get psi t. 



There we have completed this iteration and building phi t and psi t starting form h n and 

g n. Now, we have a convincing reason to conclude that there is an intimate relationship 

between the low pass filter and the high pass filter in the two band filter bank and the 

scaling function and the wavelet function in the multi-resolution analysis. 

In fact, we have constructively established that relation. We have shown a procedure by 

which we can construct phi t and psi t from these impulse responses and therefore, we 

are now convinced that if we understand how to design two band filter banks and if this 

iteration is going to converge each time we design a properly designed two band filter 

bank which allows this iteration; we get a new multi-resolution analysis. 

With that back ground, we shall conclude the lecture today and proceed in the next 

lecture. Therefore, to explore the two band filter bank more deeply. 

Thank you. 


