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A very warm welcome to the eighth lecture on the subject of wavelets and multi rate 

digital signal processing. In this lecture, we shall build more intimately the connection 

between the filter banks that we talked about in the previous lecture and the underlined 

continuous time functions, the scaling function phi t and the wavelet psi t. We suspect all 

the while that this connection exists. After all, we built the filter banks out of the idea of 

multi resolution analysis with the Haar multi resolution analysis as an example. Before 

we go further we must now make a few generalizations which will help us tend to built 

that connection more intimately. So, let me quickly put down what we intend to do in 

today’s lecture. 
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We intend today to relate the scaling function phi, the wavelet psi and the filters that we 

talked about in the filter banks namely, the analysis and the synthesis filter banks. 



Towards that objective the first step is putting down a generic structure for the analysis 

and the synthesis filter banks. So, you see let us consider the generic structure for the 

analysis filter bank first.  

(Refer Slide Time: 02:31) 

 

(Refer Slide Time: 03:18) 

  

Incidentally, we should be talking about a two band filter bank here and that is because 

we are talking about dyadic m r rays here, recall that dyadic prefers to powers of two 

changes. So, what we are talking about is the generic structure first of a two band filter 



bank, two band analysis filter bank. Now, I am start from the Haar. In the Haar, it look 

like this Haar M R A I mean, it look like this recall. 

This was the structure, and we also analyze the frequency domain behavior of these two 

filters. In fact, this turned out to be a crude low pass filter and this turned out to be a 

crude high pass filter of course, high pass and low pass as understood in the discrete time 

sense. Now, we also recall two other properties of these two filters that we had brought 

out last time. One else what we called magnitude complementarity. Magnitude 

complementarity in the sense if we simply summent, the filter system functions together 

you got the identity system function one. 

The second was what was called power complementarity. So, if you sum the magnitude 

square you got a constant, a constant independent of omega I mean which means, if you 

took a sine wave and looked at the power of the sine wave emerging from each of the 

two branches. Those powers would add up in a complementary way for each frequency 

magnitude complementarity, power complementarity. Now, you know if we looked at 

the Haar case, it was not very clear which idealization we are moving towards, but then 

we had put down the idealization the last time. So, let us now put down the complete 

idealization. We have a crude low pass filter there, what would be the refined low pass 

filter towards which we are moving in this analysis filter bank. 

Now, when we say towards which we are moving, what do we mean? Why should we 

move? Why cannot we content with the Haar multi resolution analysis? That is also 

question that we need to answer. We have to take the answers to these questions one by 

one. So, let us first answer the question, what is the idealization towards which I am 

trying to move? So, let me put down first the actual frequency responses once again and 

then the ideal frequency responses towards which we are trying to move. 
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So, the actual Haar analysis filter responses. The 1 plus z inverse by 2 filter had a 

response that looks like this. Essentially, mod cos omega by 2 between 0 and pi of 

course, we call this periodicity. And the 1 minus z inverse by 2 filter had essentially a 

response that look like mod sine omega by 2 and when we call that there was magnitude 

and power complementarity here. In fact, cos square plus sine square is 1 and therefore, 

there is power complementarity. And if you just add up the system functions together 1 

plus z inverse by 2 plus 1 minus z inverse by 2, you get 1 and that is magnitude 

complementarity. 

Now, you know if you look at these two responses and if you mark them around the 

centre, the centre is pi by 2. So, if you mark them around the centre you see a certain 

symmetry in these responses about the centre that gives us a hint where we are moving 

towards in the ideal sense. Ideally, we are trying to make this a low pass filter with pi by 

2 as the cut off. And again we are trying to make this a high pass filter, again with pi by 

2 as the cut off. So, let us put down the ideal analysis filter responses towards which we 

intend to move. 
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So, the low pass filter should have a response that looks like this between 0 and pi, it 

must be 1 between 0 and pi by 2. And 0 between pi by 2 and pi and this entire pattern 

must be mirrored between minus pi and 0; I am of course that repeated. The whole 

pattern between minus pi and pi then repeated at every multiple of 2 pi all this is of 

course, naturally from the properties of a discrete time Fourier transform or a discrete 

frequency response. So I am just showing the region between 0 and pi and what happens 

between minus pi and 0 and then at around every multiple of 2 pi follows naturally. So, 

this is the low pass filter response. Similarly, the high pass filter response which I will 

draw here. 

The high pass filter needs to have a response of 1 between pi by 2 and pi and of course 

whatever is between 0 and pi is mirrored between minus pi and 0, the response is 0 

between 0 and pi by 2 and then of course, periodically repeated at every multiple of 2 pi. 

Let us call this L P F ideal so L P F ideal, and high pass filter H P F ideal, these are the 

frequency responses of the analysis filters towards which we desire to move. Let us now 

put down the ideal frequency responses of all the filters analysis and synthesis in a two 

band filter bank. So, where are we moving, what direction are we moving?  
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So, the ideally two bank filter bank would have the following structure. The input 

sequence here being fed to L P F I D ideal here, H P F ideal there down sample by 2 

subsequently, this is the analysis portion followed by up sampled by 2. Again low pass 

filter ideal here, high pass filter ideal here and the outputs from this are to be added to 

produce the overall output. So, here I have just marked the outputs to fit into the 

drawing, the output from this and the output from this are added together and produce 

the overall output. This is the ideal two band filter bank. 

Notice in the ideal two bank filter bank, the analysis filters and synthesis filters are 

identical. There is no difference. In fact, on one of the branches both of them are ideal 

low pass filters with a cut off of pi by 2. On the second branch, both of them are ideal 

high pass filters discrete time filters with the cut off pi by 2 once again. So, you know 

you see complementarity there in some sense. And in fact, if you look at it these are 

obviously magnitude and power complementary, if you take the frequency responses and 

add them together they add up to a constant. If you take the square of the frequency 

responses add up the squares they again add up to a constant, trivially. Because there is 

no region of overlap, that is simple in fact, that we were moving towards. 

Now, it is a moot point so far as I said, why we need to move any farther form where we 

are, why do we need to work harder than what we do for the Haar wavelet, are we 

lacking something in Haar wavelet? Well, of course, one thing that you can see we are 



lacking is the distance from the ideal filter, we are far from the ideal. If we look at the 

two frequency responses of the Haar’s analysis side and therefore, also the synthesis 

side, I would left it as an exercise to calculate the frequency responses for the synthesis 

side almost the same. 

We are I mean, we are very far from the ideal. So, that is of course clear, but why we 

need to move farther from the Haar can be answer a many ways. We shall take up this 

answer slowly part by part, but before we take up that answer what we need to do is now 

to go the other way. We came from continuous time to discrete time. Now, slowly we 

want to see if my design of a multi resolution analysis relates to the design of the two 

band filter bank that I have just drawn here. So, you see we have ideal filters here and we 

written down the frequency responses of the ideal filters, but in practice the ideal filter 

can never be attained. 

Now, you know without going too deep into each point I would like once again to 

recapitulate, why the ideal filters cannot be attained? So, it is nothing to do with 

technology or the lack of computational power, there is something fundamentally 

troublesome about these ideal filters that makes them unachievable or unattainable. Let 

me site these points one by one for the sake of completeness and revision from a more 

basic course, so, why these ideal filters are unattainable? 
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Well, the first reason is that the ideal filters are infinitely noncausal and this can be 

checked by constructing the impulse response. So, from the frequency response we can 

go to the impulse response. We also know how to do that.  
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We can go to the impulse response by taking what is called the inverse discrete time 

Fourier transform. So, you will have the ideal frequency response let us call it H ideal as 

a function of omega and the corresponding impulse response can be obtained by the 

inverse D T F T of this. And, how do you calculate the inverse D T F T? I leave this 

calculation for the class to do, but I would like to put down the important steps here. 
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That is down as 1 by 2 pi integral from minus pi to pi H ideal omega e raise the power j 

omega n d omega. And in fact, I leave it to class to compute this for the ideal low pass 

filter and the ideal high pass filter with a cut off of pi by 2. I shall just put down the 

answer for the ideal low pass filter. 
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So, for the ideal low pass filter this put down out for an example to be sin pi by 2 n 

divided by pi n wherever n is not 0, this is the impulse response h n and it can be half for 



n equal to 0. I leave it as an exercise to verify this integral and I also leave it as an 

exercise for the class. 
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Calculate the ideal high pass filter impulse response. I leave it as an exercise easy to do 

once one has the basic introduction to inverse discrete time Fourier transform from a 

basic introduction to the discrete systems. Anyway, the point was if we looked at this 

impulse response there are three things that forbid one from realising this filter. Coming 

back the first thing was infinite non causality. 
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The disqualifications of the ideal filter. Point number 1: infinite sine causality. Now, 

when is a discrete linear shift invariant system causal, it is causal if the impulse response 

is 0 for all negative values of the t integer index. So h n is equal to 0 for all negative n is 

the requirement necessary and sufficient for causality. In this case after that matter in the 

case of any ideal filter you could take either the high pass or the low pass filter in this 

case. So, both of them you would notice it is infinitely non causal meaning that even if I 

were to delay the impulse response frequency by few samples, any finite number of 

samples you could never make it causal. So, it is infinitely non causal, a serious 

disqualification which means, that if you wish to realize a causal filter bank, you cannot. 

So, you know it requires anticipatory behavior, if you are doing it in time. You need to 

use the future to work in the present a strange situation to be in. 

Now, you know noncausality by itself is not always a disqualification, it is infinite 

noncausality which creates a problem. Infinite non causality means, one cannot make the 

filter causal by introducing some delay that is what is a disqualification here, 

disqualification number 1. 
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Disqualification number 2: the system is unstable that is if you look at summation n mod 

h n it is divergent, a terrible thing to happen. Now, this is also indicative of a subtle point 

you know, just because it is a filter does not it meant has to be stable. What it means? 

You know the moment you say filter the moment you say it has a frequency response, 



what it means is that when you give a sinusoidal input a bounded input of course, the 

sinusoidal input. The output is bounded in fact, the output is a sinusoidal of the same 

frequency. 

But that is to do with sinusoids, you could very well have some other peculiar input 

where the output is unbounded now, that is troublesome. So, you know you could have a 

situation where, you get a certain behavior as far as sine waves go, but you not 

guaranteed that the output will always remain within boundaries for a bounded input. A 

bounded input may not produce a bounded output, the system is unstable. A discrete time 

system is stable, if it is impulse response is absolutely. Of course, we are taking about L 

S I system here, linear shift invariance systems. 

So, this linear shift invariance system whose frequency response corresponds to the ideal 

low pass filter whether cut off pi by 2 or any other cut off. After that matter the ideal an 

ideal high pass filter. All such systems are unstable which can be shown by showing that 

the impulse response is not absolutely sum able if you try and calculate the absolute 

some of the impulse response it would diverge. Again I leave this as an exercise for you 

to show. Take the ideal impulse response of the low pass filter for example, with a cut 

off of pi by 2 and try and show that it is absolute sum is divergent not very difficult, but 

an interesting exercise. Disqualification number 2, unstable. Disqualification number 3: a 

serious one too, the ideal filter is irrational.  
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And what does this mean? Now, let first me first explain the meaning of irrational 

literally. You see we say a filter is rational or linear shift invariance system is rational, if 

you look at the system function that means z transform of the impulse pulse response and 

find there it can be expressed as a ratio of two finite series in z. So, numerator a finite 

series in z denominator a finite series in z. If a system function of the L S I system could 

be expressed as a ratio of two finite series in z we say this system is rational. So, of 

course, when we talk about rational system we are automatically talking about linear 

shift invariant systems. It is only linear shift invariant systems which could be rational or 

irrational. 

And rational or irrational refers to systems who have a system function, linear shift 

invariance systems who have a system function which means, the Z transform of the 

impulse response exists in some non null region of convergence. Now, the z transform of 

the impulse response of the linear shift invariance system could either be rational which 

means, it is a ratio of two finite series in z or it could be irrational which case it is not. 

Let me give you an example of an irrational system function.  
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Example of an irrational system function could be e raise the power of z inverse with 

mod z greater than 0 as a region of convergence. And of course, the corresponding 

impulse response can easily be seen to be1 by n factorial u n. Where n factorial is 

defined by 0 factorial is 1 and n factorial is equal to n times n minus 1 factorial 



recursively for n greater than equal to 1. Interestingly, this system is stable so, it is not 

that all irrational systems are unstable, but irrational systems have a fundamental 

problem. Irrational systems are unrealizable at least today. 

We do not know any neat way of realizing irrational systems. Rational systems can be 

realized with a finite amount of resource, what do we mean by resource? Adders, 

multipliers, delays, these are the basic resources of a discrete time realization. A rational 

system can be realized with finite resource, and irrational system in principle requires an 

infinite amount of resource to realise. Now, this is all falling in place. The non causality, 

infinite non causality an instability came as a bit of a surprise, but this third 

disqualification is not quite a surprise. 

What we are saying in effect is that if you want an ideal filter be willing to put in infinite 

resource to get it. This is the whole I mean I would say actually irony of discrete time 

system design. I keep mentioning this whether it is a basic course or an advanced course 

like this. The irony of many design problems is that you know which ideal you are 

striving towards and you also know that you cannot achieve that ideal with finite 

resources. But what keeps engineers and mathematicians and scientist and what have you 

active all the time is that you also know that you can go arbitrarily close to the ideal 

provided, you are will to invest more and more resources and there are many ways of 

doing it. 

There are different ways of investing resources and going closer to the ideal. Perhaps, 

some parts take you closer to the ideal faster at least in a certain range of resources and 

some parts slower and again there are compromises. If you go faster in one sense, you 

may go slower in the other sense. Nature drives the engineer, scientist and mathematician 

to no end. Anyway, that was just a philosophical diverge. Coming back to this problem 

the ideal two band filter bank is unrealizable, but we can go tantalizingly close as we 

desire. 

So, you can build a two band filter bank arbitrarily close to ideal if you are willing to 

invest more and more resources. And over the past 15 to 20 years people have come out 

with so many different designs. Now, why have people sort these difference designs? 

Again that question needs to be answered, but then now we will first answer the easier of 

the two questions. Suppose, I do happen to design different two band filter banks. So, 



first what would a realizable two band filter bank look like? We must first put that we 

must write down in terms of a drawing first. 
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So, a realizable two band filter bank is like this. 

So, I straight away write it in terms of system functions here. 

This is a realizable two band filter bank provided. 
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H 0 z G 0 z H 1 z G 1 z are all rational functions, rational system functions.  
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And of course, H 0 z and G 0 z aspire to be ideal low pass filters with cut off pi by 2. 
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H 1 z and G 1 z aspire to be high pass ideal filters with cut off pi by 2. Now, having put 

down the structure more generally we must now ask, what is the connection between the 

multi resolution analysis and this filter bank that we are trying to design? So, to answer 

that let us look at the Haar once again. 
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In fact, let us begin with phi t in the Haar. So, for the Haar M R A, we notice something 

very interesting phi t belongs to V 0 which is a subspace of V 1 so, phi t should be 

expressible in terms of the basics of V 1. And what is that basis of V 1? it is phi 2 t 

minus n for integer n. It should be expressable in these terms, it is very interesting. You 

know, phi t is an element of V 0, V 0 is a subspace of V 1 and the basis of V 1 is again 

the dilates of phi t by a factor of 2 and their integer translates. So, phi t can be expressed 

in terms of it is own dilates and translates. This leads to what is called a recursive 

dilation equation on phi t. And low and behold, what is a dilation equation that is also no 

difficult to determine that we can even say graphically. 
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Indeed, you know, (if you) if you recall phi t looks like this, (( )) kind of scale that a 

drawing. And all that you need to do to get this recursive equation is to notice that this 

can be redrawn like this so, it has two components in it. And the first component is phi 2 

t, the second phi 2 t minus 1 and the whole thing is phi t. So, we have a beautiful dilation 

equation which governs phi t. 

(Refer Slide Time: 41:32) 

  



Phi of t is phi of 2 t plus phi of 2 t minus 1, a beautiful dilation equation which governs 

phi t. Now, let us look at the coefficients in that dilation equation. So, let me put the 

dilation equation before you once again, the coefficients are 1 and 1.  
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Let me try and call this a sequence you know, so if you agree I will talk about the 

sequence which is 1 at n equal to 0 and then 1 subsequently as shown at n equal to1. This 

is a way of denoting a finite length sequence the number below the arrow tells us the 

value at the point of the arrow and all other numbers tell the value of the sequence at 

adjacent points. So, this for example, means at n equal to 0 the sequence takes the value 

1 and at the next point which is of course, n equal to 1 the sequence will take the value 1 

2. So, this is this the sequence corresponding with dilation equation coefficients. Let us 

carry out a similar exercise for the wavelet now. So, let us take the Haar wavelet and let 

us express the Haar wavelet also in terms of the basis of V 1, and what is our ground for 

doing so let us put it down clearly. 
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You see recall that psi t or the Haar wavelet for example, also belongs to V 1 so, it 

should be expressible in terms of it is basis. What is that basis? Phi 2 t minus n for 

integer n. And again if we look at it graphically it is not difficult to do.  
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Graphically, one can sketch phi t actually and psi t too, this is psi t. And you can see the 

phi t is embedded in it so, you have one here, and you have one there. This is easily seen 

to be phi of 2 t and this is easily seen to be minus phi 2 t minus 1. And therefore, we 



have a very simple dilation equation for psi t. now, here it is not recursive, but it is a 

dilation equation all the same. 
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So, dilation equation for psi t, Psi (t) is phi 2 t minus phi 2 t minus 1 and once again let 

us put down the coefficients of this dilation equation as we did previously. So, you know 

the coefficient again would be the coefficients involved in expanding in terms of phi to t 

minus n. As I (As I) can see from this dilation equation the coefficients are 1 and minus 1 

respectively at 0 and 1 so, I put that down. 
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Now, things are beginning to make sense and perhaps even ring a bell. Let me put both 

these coefficients equations before you once again and there I am sure it will ring a bell. 

Look at the dilation equation coefficients for the (the) phi t itself so, in fact let me write it 

down, dilation equation coefficients for phi t. And let me then put before you the dilation 

equation coefficients for psi t. 
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So, let us write it down in this for psi t. Does this ring a bell? Yes, indeed. If you look at 

the impulse responses either on the analysis side or the synthesis side of the low pass 

filter and the high pass filter, these coefficients are essentially those impulse responses. 

A minor difference we see on the analysis side only factor of half for the moment keep a 

side that factor of half. Otherwise, these dilation equation coefficients are just those very 

impulse responses. Synthesis side similar perhaps with a plus minus ambiguity, but 

otherwise the same. 

So, we have very intimate relation which we have seen here, the coefficient sequences in 

these dilation equations that govern phi t and psi t are actually the impulse responses of 

the filters. Now, in fact I will go one step further. We shall now progress to show that if I 

know these impulse responses, I can go the other way too. So, here I have by serendipity 

so to speak by surprise or chance discovery come up with this relationship. Now, we will 

take that serendipity that discovery further. So, indeed let us note at the moment that 

within a scaling factor. 
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If H of n so to speak is the impulse response of the low pass filter in question in the two 

band filter bank, then essentially what we have is the following dilation equation. 
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So, we will continue the dilation equation phi (t) is summation on n, n over the set of 

integers H n phi 2 t minus n this is the essential dilation equation for phi. And 

conversely, if g n is the impulse response of the high pass filter in the two band filter 

bank. Then we have psi t is summation n over the set of integers g n phi 2 t minus n. So, 

in the time domain, we made an intimate relationship. The low pass filter impulse 



response allows us to expand the (the) essentially phi t in terms of it is own dilates and 

translates. The scaling function in terms of it is own dilation translates. 

The high pass filter helps us expand the wavelet in terms of the dilates and the translates 

of the scaling function. Once again, low pass filter impulse response a recursive 

expansion of the scaling function in terms of it is own dilation translation. The high pass 

filter impulse response and expansion of the wavelet in terms of this dilates, translates of 

the scaling function. Now, we want to go a step further. We want to show that once you 

have this dilation equation, we can actually completely characterize phi t and psi t 

knowing the two band filter bank. 

I shall in the next couple of minutes only give the strategy for doing so, but we shall 

actually do this in the succeeding lecture, the lecture to follow. Let me put before you the 

strategy we are going to follow and for that purpose let me put down the equations 

before you once again. So, let us recapitulate the two equations we written. We have this 

dilation equation relating phi t to it is own dilation translates. What we shall do in the 

next lecture is to take the Fourier transform on both sides and noting that we can express 

the Fourier transform of phi t or rather phi 2 t minus n in terms of that of phi t. We shall 

have a recursive equation in the Fourier domain on the Fourier transform of phi. 

From this we shall be able to completely characterize the Fourier transform of phi in 

terms of the discrete time Fourier transform of the sequence h. Having done so, we shall 

then progress to this dilation equation here, and we will relate the Fourier transform of 

the wavelet to the Fourier transform of the scaling function effectively. And then noting 

that the discrete time Fourier transform of this sequence g n can be used to make this 

relationship, we shall obtain the wavelet from the scaling function. So, it is with these 

two steps that we shall begin the next lecture for the time being let us keep our curiosity 

alive to see how beautifully we can enmesh the design of the two band filter bank and the 

design of a scaling function and a wavelet for building a whole multi resolution analysis. 

With that note of curiosity and anticipation let us conclude this lecture. Thank you. 


