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Hello and welcome to this next lecture, in the series on the subject of wavelets and 

multirate DSP. And in broader sense, the subject that deals with joint time frequency 

analysis. Today’s lecture is titled as, towards selecting wavelets through vanishing 

moments. So, in this particular lecture, we are going to understand the significance of 

vanishing moments. However, before we start our journey, let us spend few minutes in 

recalling what we did last time, because after all what we are going to do in this 

particular lecture, it in a way stands on the shoulder of what we did in the last couple of 

lectures.  

So, let us quickly revisit, what we did in last couple of lectures. If you remember in the 

last to last lecture we mentioned, and we in a way expressed our belief, that if last 

hundred years, where the hundred years of Fourier transform. Then probably next 

hundred years are going to be the hundred years of wavelet transform. And this belief 

comes out of the fact, that when it comes to dealing with non-stationary type of signals, 

Fourier transform has its own limitations, and that is where, we will have to go beyond 

the purview of Fourier transform, and start looking into the characteristics of wavelet 

transform. 



(Refer Slide Time: 02:14) 

 

We started our journey with a basic fundamental principle; that wavelet transform can 

decompose an underlying signal into two separate series; a single series to represent the 

most course version of the information, and that leads us to scaling function, and double 

series to represent the refined version, or that gives us the details, which are present in 

the underlying signal or function, and that leads us to wavelet function. 
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We furthered on this, and then we realized; that when it comes to wavelet transform, 

scaling, translation and dilation, they are indeed the hallmarks of wavelet transform, and 



they together need us to MultiResolution analysis, which is very popularly also known as 

MRA. 
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The whole philosophy of MultiResolution Analysis is in a way based on the underlying 

framework. And this framework comes out of the presence of nested subsets, and these 

nested subsets, they in a way give us the entire MultiResolution framework. 
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We also looked at, the two band MRA filter bank, and this structure is very typical. For 

any input signal let us say p of n, if in the analysis side, I have analysis low pass filter, 



presented by h 0 of z, and analysis high pass filter, given by g 0 of z, and they are 

followed by down samplers or disseminators. This is quite essential to keep total number 

of samples same. For example, if I am starting off with four samples, then I should be 

able to produce two samples here, and two samples here.  

However, the moment you introduce disseminator, or down sampler, the whole structure 

becomes something that can be called as a multirate structure. The sampling rate is not 

uniform, and that is why for all the unirate DSP structures, we aim at designing filters, 

digital filters. And for all multirate structures like the one shown in this particular 

diagram, we always aim at designing filter banks. So, we have low pass filters and high 

pass filters, they are duals of each other, and they together formulate filter bank. And that 

is the whole point, when it comes to design of a multirate structure. 
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We also typically saw, that if we have a given input signal p of n that belongs to V 1. 

Then the virtue of having these disseminators, we end up with projections of the same 

signal let us say p 0, that belongs to V 0, because we are talking about low pass filter, the 

scaling function, and correspondingly q 0 n W 0, because we are talking about the high 

pass filter, which comes out of the wavelet function. And then if we see the ladder 

structure once again, then we realized that I can draw this ladder structure like this. 
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V of minus 3, just contained V of minus 2, and this will continue. And if we are starting 

in V of 0, not necessarily, we have to start in V of 0, this is just one example. If we start 

in V of 0, then by virtue of having a two band filter bank structure, we in a way move 

down the ladder. And typically it is easier to move down the ladder, because if I have the 

information, and if that information is projected in a subspace V of 0, then what I can do 

is, I can throw away the information which is W 0, and what I will be left with is V of 

minus 1. Similarly, form V of minus 1, I can throw away the information, which is W of 

minus 1, and I can have the information projections in V of minus 2. So, when it comes 

to moving down the ladder, you have the piece of information and just keep on losing the 

details, and you get the approximations, in the lower scales.  

However, we also realized, that for many of the applications, it is desired it is required to 

actually move up the ladder. And if I really want to move up the ladder, for example if I 

have to move from V of 0 to V of 1, then I have to have this information with me. I can 

add these two pieces and only then I can move to V of 1. From V of 1 if I have to move 

to V of 2, then I have to have the corresponding projections in W of 1, and these two 

together can be added, to produce the corresponding projections in V of 2. So, how to go 

about doing this, and last lecture we in a way put down the framework for doing the 

same, and what we saw in the last lecture was this. 
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If I have some signal, let us say f j of x that belongs to V of j. And for the scale of 1 upon 

2 to the power j, I can span the whole space, whole linear space using this kind of basis 

function, where 2 to the power j by 2 is the normalizing factor, and by adding this factor 

we not only make sure that my basis functions are orthogonal, but I normalize my 

orthogonal basis function, and such kind of basis functions are indeed orthonormal basis 

functions. And then phi of 2 to the power j x minus k, where k is the translation 

parameter. So, this gives me normalization. This parameter over here will give me 

scaling, and k is obviously, meant for translation. And by using this assembly, then I can 

represent f j of x like this, where all the alpha j k values are the approximated values, 

which can be calculated using this formula. 
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We went ahead and we also looked at the framework, for finding on projections in W j 

subspaces. Let us say these are named as functions g j of x, just for the sake of 

nomenclature we are talking about the same function, which belongs to a subspace W j. 

And with the scale of one upon 2 to the power j again, I can span these linear subspaces 

using this kind of orthonormal basis function, 2 to the power j by 2 psi, which is my 

wavelet function, 2 to the power j x minus k, where k is again the translation parameter. 

And I can write down g j of x like this, where beta of j k are indeed the details, present in 

the underlying signal, and beta j of k can be calculated like this.  
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And then we wanted to really ensure that this assembly helps us move up the ladder. If I 

have projections in V 0 and W 0, and if I orthogonally add these projections, then I end 

up with projections in V of 1. So, from V of 0, my journey takes me to V of 1. So, I have 

start moving up the ladder. And we use this orthogonal summation formula for doing the 

same. 
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If you remember, last time we solved one problem. The problem where we took f of x as 

the sample function, where x, f of x is equal to x for all the values of x between 0 and 3, 

and it is a simple straight line. And then we started finding out the projections of this f of 

x, first of all in V of 0.  
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We know the formula and it all boils down to finding out the alpha values, so alpha 0 0, 

we plugged in everything, and we realize that alpha 0 0 was half. We went ahead and we 

also calculated alpha 0 1, and then we realized that alpha 0 1 value came out to be 3 by 2, 

and correspondingly alpha 0 2 value came out to be 5 by 2. And as the name suggests, 

these are indeed the approximations, which are shown in green. So, all these green values 

are the approximated values of the original signal, it is corresponding projections in V of 

0 using Haar scaling function.  
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We then went ahead and did the similar exercise, for finding out the projections in W 0.  
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And then we realized that g 0 of x which belongs to W 0, is indeed summation over the 

details and the corresponding translated version of the basis function. 
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So, the whole task was, when to find out the beta values. And then we did that, we 

initially calculated beta 0 0, we went ahead and calculated beta 0 1, and also beta 0 2.  
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And then we realized that all beta values, were indeed minus 1 by 4, and if I have these 

beta values with me, I can correspondingly find out g 0 of x. 
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Then came the important task of moving from V 0 to V 1. We can go on adding up the 

alpha 0 and beta 0 k values, to find out alpha 1 k values. We can also calculate alpha 1 k 

values using the normal formula.  
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And in the end, we are able to tally all the different values of alpha 1 k. We solved the 

problem of alpha 1 0, and we realized that we do not really have to worry about this 

particular factor of square root of 2, because when it comes to plugging in the value of 

alpha 1 0 in the formula for f 1 of x, it will be taken care of, and so we should focus only 

on 1 by four. And then we calculated all the alpha values by adding up alpha 0 k and beta 

0 k values. So, we added up all the alpha 0 k and beta 0 k values. For example, in order 

to calculate alpha 1 0, we added up the first half of alpha 0 0 and the first half of beta 0 0, 

and that is how we are able to calculate the value of alpha 1 0, and then we continued for 

the rest of the values, and that is how we are able to generate all these values of alpha 1 

k. 

We plotted everything and then finally, all the red points, all the red approximated values 

are indeed alpha 1 k values, and they will help us find out the projections of f of x in V 

of 1. And we confirmed that indeed we are able to move from V 0 to V of 1, and 

visually, graphically, we can now verify that V of 1 gives us better approximation of the 

original signal, when we compare it with the corresponding approximations given by V 

of 0. So, we are indeed able to add these details in W 0, and then moved on to V of 1, 

definitely a better approximation of the underlying signal; that is a reason, as to why we 

revisited this entire example that we solved in the last lecture. What we are going to do 

in today’s class, is in a way based on this particular example that we solved. We are 

going to pose few interesting questions, based on this particular example.  



And then correspondingly try and solve these two questions, and that will formulate the 

reminder of today’s lecture, but before that, let us quickly go through a matlab 

simulation of the same problem that we just solved. This is a very simple matlab 

program; c l c is meant for clearing up the command prompt, clear all is going to clear all 

the variables, and close all is going to close everything. Now let us define our x axis, and 

this could be our time axis for example, and since my signal f of x exists between 0 and 

3, x of 0 is 0 and x 1 is 3. The level is selected to be 9 and this level gives us the 

resolution step, while moving from x 0 to x 1, and that will be clear when we see the next 

line written over here. So, we have written that x is equal to x of 0. So, it begins with x of 

0, and then it increments in a step size, and this step size is 1 upon 2 to the power level.  

So, the step size that we have selected is dependent on the value of level variable that we 

select. In this step size, it will start from x 0, and with this step size it will go all the way 

till x 1, which is 3, minus one of the steps; that is 1 upon 2 to the power level. And the 

underlying function is f of x is equal to x and; that is why we have written f is equal to x, 

and then we have saved this variable f in a mat file, which is test underscore f dot mat. 

So, let me run this program, and after running this program, we can very clearly see the 

mat file; that is test underscore f dot mat, that has been generated. Now let us invoke the 

wavelet tool box, and let us look at the one dimensional analysis. Now for this analysis, 

let us provide the signal that we have generated as the input; that is test underscore f dot 

mat, so this is how our signal actually looks. 

And let us tries and analyzes this signal, using a simple Haar wavelet, and let us does the 

analysis till the third level. So, this is how the analysis actually looks. And now let me be 

interested in the different mods; that can help us understand what exactly goes into the 

system. So, these are the separate mods of doing the analysis, and as you can absolutely 

clearly see, as far as the approximation in a 5 is concerned, it is quite crude. And as we 

start moving towards a one it gets better and better and better, and we also know the 

reason, we add a 5 into d 5 to generate a 4 for example, and this would continue. Let me 

super impose these modes to really understand it better, and instead of using 5, let me 

use 10 scales and then try and super impose everything on top of one another.  

And now, this particular plot will really help us understand what kind of things we are 

actually doing, and let us start one step at a time. So, instead of selecting all, let me start 

with only the most crudest level approximation. And now let us start adding up the 



details by virtue of which, we will start moving up the ladder. So, you can clearly see, 

that approximation is better now, and as you continue doing this, you will get a better 

and better and better approximation. And then right at the end you go tantalizingly close 

to your real signal. So, if we just place the last value that we have obtained, then this is 

indeed very close in terms of representation, to the underlying function, or the underlying 

signal. Excellent; so, as can be seen from the slides, this particular framework indeed 

gave us the power to move either down the ladder or up the ladder. 
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And we can clearly see; that the zoom in and the zoom out properties of the wavelet 

transform are indeed met. I can really zoom in and zoom out, and in order to be able to 

achieve this, I have not only my scaling parameter, but also the translation parameter. 

The best part is, this makes the entire framework extremely scalable. Scalability stems 

out of, obviously the whole framework being multiresolution framework. And we make 

use of scalable systems every now and then, for example all the images which are stored 

on internet, they are in a way stored in a pyramidal structure, when we Google search for 

a particular type of image, what gets retrained back, are only the thumbness; that is the 

upper most slice of the pyramid, and when you select or click on that particular 

thumbnail, then probably one of the slice, from the underlying framework, of the entire 

pyramid, will get selected depending upon the resolution of the kind of hardware that 

you are using. Same holds true even for video analysis, almost all the video codex that 

we make use of these days, they demand scalability, and that is where wavelets have 



started replacing many of the conventional b c structures, for example, in spec discreet 

cosine transform use to get used. In spec 2000 will all know, we make use of 5 by 3 

biorthogonal tab, which is a wavelet basis function, and so scalability is indeed the need 

of the time. 
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Let us go back to slides, and we have seen the framework, we have studied the 

framework, and this framework in a way leads us to two very important questions. 

Question number one, how do we go about selecting the mother wavelet and the scale of 

analysis. So, both the questions are very important, which are the sub questions of the 

first question, which mother wavelet, whether I should use Haar mother wavelet or 

daubechies or shannon or Meyers, there is there is tremendous amount of variety, and 

what scale of analysis I should select. Should I stop after two scales or three scales or 

four scales, what is this stopping criteria? These are two important questions. And 

correspondingly, there comes the second important question as well, and the second 

question is, what is the procedure to calculate scaling and wavelet coefficients? We have 

been using the coefficients which are readily available to us, given by doctor Haar, given 

by doctor Daubechies. Can we think of finding out our own wavelet, can we think of 

finding out our own coefficients, for doing the analysis. It is a tall order; it is a very 

difficult preposition all together.  



However, at least we can get into the head of the scientists, who in a way discovered 

these different mother wavelets, and understand the procedure, and who knows that will 

need us to finding out something of our own. However, we will do that in the next 

lecture. In the reminder of this particular lecture, we will try and answer the first 

question, and if we refer to the slides again, the first question is of great significance. The 

first question in a way asks us, what is the significance of selecting the mother wavelet? 

If I have an underlying application, and I know what kind of data or information I am 

going to deal with, then how I can appropriately select the mother wavelet, in order to be 

able to carry out the analysis effectively and efficiently; that is the question, that we will 

try and answer in the reminder of this lecture.  

And we are going to invoke one important property of wavelets, which is called as 

vanishing moments. We are slowly and gradually move towards vanishing moments, 

through correlation. We are very familiar with correlation and convolution. So, through 

correlation we will slowly and gradually move towards moments; we will define 

moments, we will understand the concept of moments getting vanished, and we will also 

try and understand why this is of great importance, great significance. 

(Refer Slide Time: 28:13) 

 

In order to be able to bring out the correlation parameters in wavelet domain, let us first 

of all convenience ourselves, that in a way, that is precisely what we were doing as far as 

the Fourier domain is concerned. In Fourier domain we made use of this correlation to a 



large extent, and this particular property of correlation is of great importance, what is 

shown in this particular slide, these are the basis functions, so typically the real part of 

the basis, and the imaginary part of the basis. We know the basis function of Fourier 

transform is e to power j omega, and this is the real part, which is the cosine part, and 

this is the imaginary part, which is the sin part.  

(Refer Slide Time: 29:07) 

 

And then, if we pose this particular question, that how indeed Fourier transform works. 

Then one way of looking at Fourier transform is understanding the correlation between 

the underlying function and the basis function, and this can be done using simple dot 

product philosophy. So, what we will do, is we will go back to one sample matlab 

program. So, in this particular matlab program, as can be seen on the screen, we have 

generated a function, and we want to analyze this particular function, let us say y. And 

this function is a good looking stationary function; that means, all the frequencies there 

present all throughout this function, and as can be seen, in fact there are two frequencies 

which are present in this particular function; sin of 3 and cos of 8, x is a variable again 

and you can add a 2 pi in order to make this normalized. So, this function has 2 

frequencies; sin of 3 and cos of 8. And let us find out the dot product.  

Well, the concept of dot product is very useful, particularly for engineers while doing the 

analysis of signals, because in a way dot product means instantaneous product. We can 

look at all the instances on x axis, which is time axis, and carry out the multiplication as 



simple as that. So, keeping that in mind, let us say to analyze this particular underlying 

signal, I invoke this particular basis in Fourier transform. Now we have understood that 

Fourier basis is e to the power j, which can be disintegrated into real and imaginary parts, 

which is cosine and sin part, and let us say I am invoking this underlying signal, with the 

basis of cos of 6 x, and if I do so, then let us see what kind of response we get. So, this is 

my underlying function or a signal, which is stationary signal and it contains two 

frequencies.  

This is my basis function with which I am doing my analysis. So, this is cos of 6 that is 

the basis I have used, and you can clearly see, since cos of 6 is not present in the original 

signal, there is poor correlation, between the signal to be analyzed which is shown in red 

and the basis function which is shown in blue. And as a result of that if I do, if I take the 

dot product between these two then this is what I get. And if I integrate this dot product, 

which is shown in green, then you can clearly realize that there are as much as positive 

parts, as much as there are negative parts, and they would cancel out each other, and as a 

result of that I will not get any peak for a frequency of 6, and it make sense, because I do 

not have that frequency in my original signal. So, in my original signal, I have only two 

frequencies sin of 3 and cos of 8.  

So, it make sense, when these parts they would in a way cancel out each other, and that 

essentially indicates that the underlying signal and basis they are not correlated. Now, 

instead of using the basis, which is not present in the original signal, using a frequency 

which is not present in the original signal. Let us invoke the underlying signal with a 

frequency which is present. For example, sin of 3, this frequency is indeed present in the 

signal, so let us try and invoke with sin of 3. And if I run this again, then this is the 

original signal that we are trying to analyze, and this is now sin of 3, and you can clearly 

observe a good amount of correlation, this is positive cycle and there is lot of activity in 

positive area, very little activity in the negative area.  

This is the negative cycle, and again very little activity in the positive area for the 

underlying signal. So, the in general correlation is much better, and that is because this 

frequency is actually present in the original signal. And now if you find out the dot 

product, then you will realize that there are very less negative parts, and the area under 

the positive part is much more. So, when I integrate this dot product, I will definitely get 

some positive value, and that will be the peak at 3, at a frequency of 3, when I am trying 



to plot the frequency response or the Fourier response of this underlying signal. So, that 

is precisely why we end up with a peak, at a frequency of 3. The dot product essentially 

tells us, that the basis of sin 3 is highly correlated with the underlying signal. This is 

indeed true for all different varieties of basis. Let us go back to the slides, and let us run 

through few of the examples quickly.  
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As can be seen in a slide this is the same signal sin of 3 and cos of 8, when invoked with 

cos of 1, obviously poor correlation, and so the dot product would result into the parts 

that would in a way cancel out each other. Same signal when invoked with sin of 1, again 

this frequency is not present in the original signal.  
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So, poor correlation and the dot product parts would cancel out each other. So, no peak 

will be generated at a frequency of 1.  
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Now if invoke this with cos of 3, you can clearly see that cos of 3 is not present in the 

original signal. So, once again the dot product will have the parts that would cancel out 

each other. However, as we have seen in the matlab demonstration, if we invoke this 

with sin of 3, which is now present in the underlying signal, then definitely dot product 



will generate a peak and frequency of 3. The same holds to for cos of 8, because cos of 8 

is present in the original signal.  

And as a result of that you can clearly sense, that correlation parameter is very high, 

correlation index is very high, and if you take the dot product, then that is going to give 

you a peak at a frequency of 8. So, this idea of correlation we have been using with 

Fourier transform for quite some time. Now this is a good time to invoke the same 

property of correlation in the context of wavelets. So, let us do that. We know the 

formula for convolution very well. So, we will start with the convolution formula, move 

towards correlation formula, and then see what the significance of movements, when it 

comes to deciding the basis wavelet function, for analyzing a particular type of 

underlying signal.  
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So, let us write down the formula for convolution first, because we are quite familiar 

with convolution, and if we want to find out the convolution between f 1 of x, convolved 

with f 2 of x. Then that is going to be equal to integration, from minus infinity to plus 

infinity, f 1 of x minus t into f 2 of x into d x. Now, if we get rid of this flipping 

operation, then the convolution will become correlation. So, I can very well write down 

the correlation formula like this.  
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I would say correlation between two functions; say f 1 and f 2, will be f 1 of x. Well this 

stands for correlation; this is not a very familiar mathematical notation, so please pardon 

me for abuse of mathematical notation, but just to understand. So, this is correlation 

between f one of x, and f 2 of x and that is equal to integration from minus infinity to 

plus infinity, I would say f 1 of t minus x now, into f 2 of x, into. We used d x in the last 

formula. It should be d t, just a correction. So, this is the correlation formula. Now see 

since we are often interested in detecting sensitive activities in the signal; such as spike 

or jump discontinuity, and it is higher order derivatives. We would like to know about 

what kind of wavelets, will be able to see such activities, and indeed it turns out that we 

can find wavelets, that can detect or see linear or quadratic or higher polynomial 

structures, and that brings us to the subject on maximum order of vanishing moments. 

So, let us define, what do we mean by moments first, and then we will understand the 

significance of moments, when it comes to selecting a particular type of mother wavelet.  
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So, moments; the moment of order m, say m of m, of function f of x on interval a comma 

b, can be given as m to be equal to integration from a to b, x to the power m, f of x into d 

x. So, this is how I can go about defining moments, and this is of order m. So, I can find 

out zeroth moment, by plugging in m small m is equal to 0. Correspondingly, I can go 

about finding out first moment and second moment and third moment and so on. Now, 

when these moments of higher order they vanish. They in a way tell us something very 

special about the underlying wavelet. So, what special information these moments 

convey, we are going to understand in few minutes, but before that to understand 

whether the moments actually vanish or not. Let us very quickly solve a simple problem 

with the Haar wavelet once again, to really convince ourselves that the moments indeed 

vanish out. 
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So, let us take a case of Haar, which is also the first member in the daubechies family, so 

Haar which is equal to daub 1, psi of x. So, let us try and solve for this particular mother 

wavelet, and let us say I want to find out, what happens to the 0 moment, and we know 

the formula, and I can plugin the values from 0 to 1; that is because this psi of x exists 

only between 0 and 1, we typically know how this psi of x looks. So, this is my psi of x, 

which exists only between 0 and 1, and that is why integration limits are from 0 to 1, and 

then x to the power 0 psi of x into d x.  

And now, we will have to spread this integration into two parts; from 0 to half, we have 

x to the power 0 is going to go to 1, so 1, into from 0 to half this value, this function 

takes a value of plus 1. So, I can plug-in 1 of d x minus, because it is going to take a 

value of minus 1 between half and 1, and then 1 into d x. So, that will result into x 0 to 

half minus x from half to 1. And so we are talking about a situation, where we have half 

minus half, and this goes to 0. And so I can very well say that this zeroth moment of 

Haar mother wavelet vanishes. Whether this holds true for the first moment, as far as 

Haar mother wavelet is concerned. Let us try and find out.  
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Let us do the same exercise for Haar psi of x, but let us try and find out the first moment. 

So, m of 1 is going to be equal to between 0 and 1, and then now I have x to the power 1, 

psi of x into d x, and that leads us to from 0 to half, x into d x minus, half to 1, x into d x. 

and typically we know that this is x square by 2, between 0 and half minus x square by 2 

between 0 and half. And if you solve this, this is going to go to minus 1 by 4. It is not 

equal to 0, and so we can very well conclude, that the first moment of Haar mother 

wavelet does not vanish, or in other words as far as the Haar mother wavelet is 

concerned, it has only one moment which vanishes, which is the zeroth moment; 

interesting.  
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Now, that will take us to one very interesting question, and that is vanishing higher 

moments, and by higher we mean; higher order moments of wavelet, how this is a 

measure of quality. So, this is one interesting question that we are going to in a way 

pose. And there are two ways in which we can answer this question, and these two ways 

are; I can probably say, that as far as my vanishing moments are concerned. 
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These vanishing moments, they definitely number one; gives me savings in 

computations, and number two; they are definitely useful in detecting higher derivatives, 



and this second property, is of great importance, it is of great significance. Now, why this 

is important? Well we are going to revisit the problem that we solved last time.  

(Refer Slide Time: 49:10) 

 

So, we will refer to the slides once again. We solved this particular problem last time if 

you remember, and this is a very typical application, which is required in many real life 

situations, where we are trying to in a way find out, the hidden discontinuity, the hidden 

jump in the underlying signal. And we took this particular function as an example, where 

g of t is equal to t between 0 and half, and t minus 1 between half and 1, and there was 

this clear jump at t is equal to 0.5. We did the integration of the original signal g of t, by 

virtue of doing this integration, we are able to generate signal h of t. And still in h of t, 

we realize that there is this cusp jump at time t is equal to 0.5.  
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So, we integrated this h of t again in order to finally generate f of t. And now if we plot 

this f of t, then this function would definitely appear very smooth to our eye. And if you 

remember, last time we did this small exercise in matlab. So, we are able to generate 

these different functions, and these different functions they look like this. So, in the 

original function, the discontinuity is obvious. In the integrated version, there is a cusp 

discontinuity, and then by virtue of integrating twice we get a very smooth good looking 

function. And we also save this function, in a test underscore sig underscore f dot mat. 

And if you remember we did this small exercise last time, that we invoked the windows 

menu of wavelet toolbox given by math works, and we tried to interpret this particular 

functions, I am loading this particular signal, that we have generated which is test 

underscore sig.  

And we know that in this particular signal, exactly midway through there is a 

discontinuity, which is hidden, because we have done double integration of the original 

signal. So, it is not apparent to the i, it looks like it is a smooth signal, but we know that 

there is a hidden discontinuity over here. And now if we try and do the analysis, let us 

say using Haar, and I am selecting the maximum possible scale. I am going all the way 

till level number nine, and if I do the analysis and if I see the detail after scale one. Then 

Haar wavelet analysis misses out this discontinuity. So, I cannot really detect this 

discontinuity using Haar. By the way Haar is also known as Daubechies 1. So, Haar is 



the first member in the Daubechies family. So, Daubechies 1, if I do the analysis then it 

is the same thing, and we clearly miss out this discontinuity.  

As against that if we invoke Daubechies 2, and now if we try and analyze, then you can 

clearly see that, I can now very clearly find out the discontinuity over here. I can zoom 

on to this part to really understand it better, and you can clearly see at 256, because we 

are doing a 2 512 level analysis. So, exactly midway is 256. At 256 this pattern goes 

abrupt, and it tells us that there is a discontinuity at 256. So, Haar was not able to detect 

this, but Daubechies 2 was definitely able to detect this, and if you allow me to select 

Daubechies 3; the discontinuity will be more apparent.  

So, it tells us that, there is indeed this discontinuity present at this point in the original 

signal. Correspondingly, we can go on selecting Daubechies 4 and the discontinuity will 

become more and more apparent. So, what we are trying to say, is which mother function 

should be selected, is one very interesting question, and it depends on what kind of data 

we are trying to analyze. Discontinuity or the hidden jump was detected only using those 

wavelet functions, which are above Daubechies 2, and there is a strong connection 

between number of vanishing moments, associated with these different mother wavelets, 

and their capability in doing the underlying task.  

We will stop here as far as this lecture is concerned; and in the next lecture, we will 

continue happing on the same lines. We will realize that vanishing moments are of great 

importance, and only certain type and certain kind of wavelet mother wavelets, they are 

capable of doing certain type of jobs, certain type of tasks. Through the correlation, 

through the vanishing moments, we will try and make sense of what we covered in this 

particular lecture that we will conclude in the next lecture. Thank you  

 


