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More Thoughts on Wavelets: Zooming In 
 

 Hello and welcome to lecture number two. We have title this lecture as the zoom in and 

zoom out features from wavelet transform, and we are going to continue where we left in the 

first lecture.  
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We saw in the last lecture, that wavelet transform essentially decomposes signal into two 

separate series; a single series to represent the approximations, that would lead us to scaling 

function, also popularly known as the father function, and the double series to represent the 

details; that would lead us to the wavelet function or the mother wavelet.  
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Then we also looked at the fact, as to what is this specialty of wavelet transform, and we 

realized that scaling, translation and dilation, they together are the hallmarks of wavelet 

transform, and together they lead us to multiresolution analysis or popularly also known as 

MRA. 
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We also saw the nested subsets, and we wanted to move up the ladder. We saw one peculiar 

way in which multiresolution analysis can be implemented.  
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And it is a two band filter bank structure, and then we focused only on the analysis part of it.  
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And then we realized that this kind of structure would help us move down the ladder. And 

then we pose this question, if at all I want to move up the ladder, if at all I want to go on 

adding up the details, then what kind of framework will help me achieve that, will help me 

do that. And in this particular lecture, we are going to achieve the same, we are going to first 

of all define the framework. Once we have done with defining the framework, we will then 

move on and solve one problem, make our hands dirty to really understand the integrities of 



the entire procedure. So, let us start that process; we have realized that the whole MRA 

multiresolution analysis, is in a way based on the underlying nested subsets.  
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And we can really bring out the essence of this, through two mathematical equations; first 

the equation of scaling function, which can be written as, phi of t to be equal to summation 

over k h of k phi of twice t minus k. And to normalize this lets add this factor of square root 

of 2. Now this equation is very special, if I take this factor down, then we can clearly 

understand that this is indeed phi of 1 t, and 1 essentially indicates two to the power 0, and 

then I can say this belongs to subspace V 0. Similarly, I can also take this factor down, and 

then we will realize that this is phi of twice t minus k, and this essentially means 2 to the 

power 1, and this belongs to V of 1. So, this feeling of nested subsets, is very nicely captured 

in this beautiful scaling function, scaling equation. This holds true for the other type of 

function as well, which is the wavelet function.  
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So, we can write down wavelet function like this; psi of t, again summed over k values g of k 

phi of twice t minus k. And I can once again sense, that this is simply psi of 1 t 2 to the 

power 0, and then I can say this function belongs to W 0 subspace, and this function once 

again belongs to V of 1, because I have phi of twice t minus k and 2 to the power 1, so this 

still belongs to V of 1. Under looking at these two mathematical equations, now we can once 

again sense the same equation that we wrote towards the end of last lecture; that V of j 

would indeed V equal to V of j minus 1, orthogonally added with W of j minus 1. And this 

once again leads us to the beautiful ladder; that we have been talking about.  
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Once we realize that V of j and W of j, together can take me to V of j plus 1, and if I have W 

of j plus 1, then together they can take me to V of j plus 2 and this continues. And so once 

again we can write down the same nested subsets; V of minus 2 V of minus 1 V of 0 and this 

could continue, and last time we pose this question that if I start my analysis, let say in V of 

0. Then how I can move in the upward direction so that I will keep adding up different 

details, and by virtue of doing that I can go really close to the actual signal or the actual 

function under consideration for analysis, how to achieve that. Now, let us write down the 

framework for the same. Let say, I have some function, and I have the corresponding 

projections of that function, so how this entire assembly will help me move in the upward 

direction.  
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Let say I have function and I am representing that function, so that it belongs to some 

subspace V of j, and I can do this with the scale value of 1 upon 2 to the power j. Obviously, 

in order to be able to span this V of j subspace, I will require the basis function, and since we 

are talking about V of j spaces; obviously, the basis function is going to be phi of t. So, the 

basis function that will make use of, to span these spaces will be this, for all different values 

of k. Here k is the translational parameter, and 2 to the power j by 2, this is the normalizing 

factor, this is for normalization, and because of this normalizing factor my orthogonal basis 

will get converted into orthonormal basis.  



Now, I can very well write down f j of x in terms of the basis function, and the formula 

would be summation over k, because k is my translational factor, alpha j k 2 to the power j 

by 2 phi 2 to the power j x minus k, and we can very well calculate alpha values like this. 

We are purposely taken the function to be a function of variable x, just to point out that this 

is just some variable, it need not be always f of t or x of t. So, we are looking at f dot to make 

it more generic. So, this is how we can span V j subspaces, and correspondingly find out the 

approximation values which are the alpha values. Let’s also write down the framework for 

W subspaces, and let say same function. 
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Now, I am going to call that function of g of j of x, it belongs to subspace W j. And we will 

make use of same scale which is 1 upon 2 to the power j, and in order to be able to span 

these subspaces, I will require the basis which will be now psi, and k is once again the 

translation factor, translation parameter so to say. And I can write down similar equations 

once again, g j of x will be equal to summation over k beta j k 2 to the power j by 2 psi j x 

minus k, and we can very well calculate these beta values with the similar formula. So, this 

is how we can calculate beta values.  

And since we are talking about W subspaces, these beta values will give us the details, 

which are very much required to actually move from one subspace to another subspace. 

Now, using this framework how can we actually move up the ladder, that is the next 

question. And in order to be able to answer this question, let us solve one simple problem, let 



us take a sample signal, a sample function, and we will apply the framework that we have 

designed to that signal, to really understand how we can move from one subspace to another, 

keep on adding the details, and really move in upward direction, in order to be able to then 

achieve l 2 r norm. 
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Let’s take a simple signal, let say f of x is defined as x for values of x between 0 and 3, and 

let us say it is 0 elsewhere. We can also think of keeping this interval open by omitting this. 

And if we plot this signal, it would look like this. So, I have my x axis this is my f of x. Let 

say this is the simple looking signal, and we want to analyze this signal, using the framework 

that we have written down. Let us write down the objectives that we really want to achieve. 
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We will first of all find out f 0 of x, which belongs to V 0; then we will find out g 0 of x 

which belongs to W 0. And then we will add these to orthogonally to produce f 1 of x which 

would belong to V of 1, and this is definitely moving up the ladder, from V 0 and W 0 where 

able to generate V 1, correspondingly we can also find out g 1 that belongs to W 1, and add 

V 1 with W 1 to produce V 2 and so on. So, it is very important to understand the process 

first and so we will restrict our exercise to this. And at the end of it what we really want to 

prove is V 0 plus W 0, gives us V 1, this is what we really want to achieve. So, we have this 

objective in our mind. Now, let us begin with the first task. 
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And that first task is, we want to find out f 0 of x which belongs to V 0; that essentially 

indicates j value is 0. The scale over here is going to be 1 upon 2 to the power j, which is 1 

upon 2 to the power 0, which is 1. This essentially indicates that my window of analysis is of 

length 1. And then this is my basis function that I will make use of, and if I plug in j is equal 

to 0, then this would reduce to, this will go to 1, and I will be left with x minus k. So, this is 

my basis function, that I am going to make use of, in order to be able to find out, projection 

of f on V 0, so let us do that. Recall the formula, and I can very well write f 0 of x, will be 

equal to summation over k.  

Now, if you remember our signal, the signal exists between 0 and 3, and now my analysis 

window is of length one, and so as a result of that I will have to translate my basis function 

twice. So, the first window of analysis will be from 0 to 1, then one to 2, and then 2 to 3. 

And I will have to carry out the analysis in three different steps. So, my summation of k will 

run from 0 to 2. Then I have alpha j k j 0, so I would write alpha 0 k 2 to the power j by 2 

goes to 1, and then we have already calculated that this will be x minus k. So, boils down to 

calculating the values of alpha. Let us begin with the first value when k is equal to 0. So, let 

us focus on alpha 0 0. It will be integration from minus infinity to plus infinity, f 0 of x into 

2 to the power j by 2, and now we will plug-in j is equal to 0, and k is also equal to 0.  

We also understand, that the moment you say k is equal to 0, we are talking about phi of x; 

that is the version which is not translated. We will have to here define, which phi of x and 

which psi of x we are going to make use of, and this is one another beautiful property of 

wavelet transform. As far as Fourier transform is concerned, or z transform is concerned, the 

basis is fixed. However, the beauty associated with wavelet transform is, you have choice. 

You cannot only select, this scaling function and the wavelet function from whatever is 

available, if you are smart enough, you can also think of designing your own scaling 

function and wavelet function. We are going to take up this particular topic in the next 

lecture. However, for the time being, let us restricted to Haar scaling function and wavelet 

function. So, as far as Haar scaling and wavelet functions are concerned, we typically know 

how they actually look.  
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So, we will use Haar scaling and wavelet function. And in case of Haar we know, since we 

are using x, phi of x looks like this, and we also know psi of x looks like this. So, we will 

make use of these two functions, to actually solve the problem at our hand. So, this 

integration bounds limits are now restricted from 0 to 1, and between 0 and 1, we know the 

nature of our signal f of x, it is going to be x between 0 and 3. So, between 0 and 1 it will be 

x. So, I can very well write x over here, 2 to the power j by 2 this will go to 1, I do not really 

have to worry about it. Now, between 0 and 1, when k is equal to 0, I am talking about phi of 

x, because this 2 to the power j is also going to go to 1, and between 0 and 1 this function is 

going to take a value of 1, and as a result of that, I can plug one for all of this, and then d of 

x, and this will be x square by 2, that leads us to half. So, alpha 0 0 is half. Correspondingly, 

let us try and find out the other values of alpha. 
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Lets calculate alpha 0 1. Now my integration would range from 1 to 2, between 1 and 2 my f 

of x is once again x 2 to the power j by 2 is going to go to 1, and I have phi of x minus 1 d x. 

Now, how this function looks, if my phi of x looks like this, then obviously, this is how my 

phi of x minus 1 would look. So, it will have value of 1 between 1 and 2 as simple as that. 

So, I can very well plug 1 over here, and this will be x square by 2 for limits 1 and 2, and 

this boils down to. So, alpha 0 1 comes out to be 3 by 2. And then correspondingly, we can 

calculate alpha 0 2, which will be equal to integration between 2 and 3, x phi of x minus 2 

would be 1 between 2 and 3 into d x, and this would come out to be 5 by 2, what does this 

indicate. These alpha values are nothing else, but the approximate values of this function, 

that we started off with. We have already seen that f 0 of x, is going to be a projection of 

function in subspace V 0, and the formula is this. And so it goes without sign; that I can now 

very well write f 0 of x, in terms of all the alpha values that we have calculated. 
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And I can write f 0 of x is equal to half into phi of x plus 3 by 2 into phi of x minus 1 plus 

phi by 2 into phi of x minus 2. So, this is how I can very well find out the projections of 

signal f in subspace V of 0. And if we try and plot it, it will look like this. So, this is my 

alpha 0 0, this is my alpha 0 1, and this is my alpha 0 3. So, these are neat approximations of 

the underlying signal.  
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Now, the next task, and the next task is to find out the projections of signal in W 0, and we 

have already written down that we are going to call this projections as g 0 of x, that would 



belong to W 0, this scale will be once again 1 as j is equal to 0, and the basis function will 

be. We will once again make use of the Haar wavelet function, and since j is equal to 0, this 

will reduce to a very simple form, k is once again the translation parameter. And now I can 

write down the g 0 of x will be summation for k values from 0 to 2, and then beta j 0 k 

values into psi of x minus k. And the next important task is, to find out all the beta values. 

And since these are the projections, in W 0 subspace, these beta values will now give the 

details associated with the signal. So, let us calculate the beta values now. 
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Using the formula, we can very well say beta 0 0; that means, j is equal to 0, and k is also 

equal to 0, integration from minus infinity to plus infinity g 0 of x into. Now k is 0 so we are 

talking about psi of x, and how this function actually looks. We have already seen the nature, 

we are going to make use of Haar psi of x, and so it is of this particular nature, and as a 

result of that, in order to be able to solve this integration, we will have to split it into two 

parts. So, for k value of 0, the integration would exists only between 0 and 1, g 0 of x is x 

again, and then we have psi of x into d x, and due to the very nature of psi of x, we will split 

this integration into 2 parts, from 0 2 half x into. Now between 0 and half psi of x takes the 

value of 1, and between half and 1, it takes the value of minus 1. So, we will plug in these 

values x into 1 into d x, and then plus between half and 1 x into minus 1 into d x, and this 

will result into x square by 2 between 0 and half minus. I will bring this minus sign out x 

square by 2, between half and 1. 
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And thus beta 0 0 will result into 2 by 8 minus 1 by 2 plus 1 by 8, this will result into minus 

1 by 4. So, this is the first beta factor that we have obtained beta 0 0. Let us work on the next 

one; that is beta 0 one j is 0 and k is equal to 1, and the integration is going to last between 1 

and 2, g 0 of x will be x again into psi of x minus 1 into d x, and how would this look. We 

know if psi of x looks like this, and psi of x minus 1 will be the translated version of the 

same. This will exist between 1 and 2. So, this is how psi of x minus 1 is going to look, and 

we will split the integration again between 1 and 3 by 2 x into 1 into d x minus between 3 by 

2 to 2 x into 1 into d x. We can solve this and confirm that this comes out to be minus 1 by 4 

as well.  
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Correspondingly, we can also calculate beta 0 2. V 0 k is equal to 2, and I will leave it to the 

viewers to verify, that beta 0 2 also comes out to be minus 1 by 4. So, all the 3 beta values, 

they have the same value of minus 1 by 4, and what does it indicate. So, we will try and 

analyze what it actually depicts. But before that, once we have calculated all the beta values, 

now it is time to write down g 0 of x in terms of its corresponding beta values, because then I 

can very well write, this will be beta 0 0 psi of x plus beta 0 1 psi of x minus 1 plus beta 0 2 

psi of x minus 2. And we can think of plotting this g 0 of x on top of the original signal, and 

what projection it would have in V 0 that we have already plotted. So, the green lines they 

indicate the corresponding representation or projection of signal f of x in V 0. 
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Now, we will draw its corresponding projection in W 0, and it is going to look like this, 

because all my beta values are negative, the first half is going to be negative, and this will be 

of value minus 1 by 4, and this is of value plus 1 by 4. So, these are the projections in W 0 

subspace and these are my projections in V 0 subspace. Now, if you recall our objective, we 

wanted to orthogonally add or findings in V 0 and W 0, to then achieve the projection in V 

of 1. So, let us see if we can really do that.  
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Now, if I want to find out the projections of the same signal in V 1, I can write down f 1 of x 

which belongs to V 1.So, now we can clearly see and sense, that j is equal to 1, and we are 

actually moving up the ladder. So, my scale is now going to change, the scale is going to be 

now 1 upon 2 to the power j, which will be equal to half. So, this scale will get reduced to 

half. And what kind of basis function, will have to make use of, 2 to the power j by 2 and 

then phi 2 to the power j x minus k, k is still remains the translation parameter. And since j is 

equal to one in our case, this would reduce to square root of 2 into phi twice x minus k. So, 

this will be the basis function that we will make use of.  

Correspondingly, I can also write down that my f 1 of x, will run over different values of k, 

and how many values of k. Our original signal lasted from 0 to 3, now my window of 

analysis is half, and so I will obviously need 6 different windows in order to we will span the 

entire thing. And so my k value, is now going to run from k is equal to 0 to 5. I will have to 

calculate alpha 1 comma k, because I am in V 1 subspace, so j is equal to 1. And then square 

root of 2 into phi of twice x minus k. So, this is how my f 1 of x. The projection of my 

original signal on subspace V 1 is going to look. And what we really are interested in at this 

point and time, is to really see if I can really match, all the alpha values that I will obtain 

numerically, to the alpha values that I can obtain by adding the alpha values in V 0 with beta 

values in W 0. And if I can matchup these values, then I would say oh this is definitely 

working, and I can really move up the ladder. So, let us calculate the alpha 1 k values. 
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And let us begin with alpha 1 0, and k is equal to 0. And we know the formula minus infinity 

to plus infinity, and then you have f 1 of x into 2 to the power j by 2, phi of. And we are 

discussing a very special case, when j is equal to 1 and k is equal to 0. So, obviously, I am 

talking about the first interval that would last from 0 to half, between 0 and half f 1 of x will 

be equal to x 2 to the power j by 2 would go to square root of 2, and then I am talking about 

phi of twice x k is 0. Now, between 0 and half, what value phi of twice x will going to take.  
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We already know that if my phi of x looks like this, then phi of twice x is going to be the 

shrink version of it. And let us not worry about the area under the curve at this point and 

time, let us worry about the nature, and if we can actually preserve the entire energy or not. 

So, if this is of my phi of twice x is going to look. Then between 0 and half phi of twice x is 

going to take a value of 1, and then I can bring out square root of 2 outside, and this will be 

integration from 0 to half, x into 1 into d x, and so this will be equal to square root of 2 into x 

square by 2 between 0 and half, and this will lead us to square root of 2 into 1 upon 8. And 

probably I can write down a convenient form of the same, and I can say this will be 1 upon 4 

square root of 2, essentially the same thing. So, this is how my alpha 1 0 is going to look. 

Now, let us try and tally this alpha value, with the geometrical representation that we have 

over here.  

Now, in order to be able to calculate alpha 1 0, what we will have to do, is to concentrate on 

the portion between 0 and half, and correspondingly add the alpha 0 0 with beta 0 0. Well 



alpha 0 0 value is known, and beta 0 0 value is also known. So, what we are saying is, I can 

calculate alpha 1 0, which will be equal to alpha 0 0 minus. So, I am talking about only the 

first half of alpha 0 0, plus beta 0 0 minus; that is what we are saying, and we already know 

these values. So, as far as alpha 0 0 minus is concerned, it is half and as far as beta 0 0 is 

concerned, it is minus 1 by 4. So, this will eventually lead us to 1 by 4. So, value that we are 

getting after solving this integration is 1 by 4 square root of 2, but we do not really have to 

worry about this square root of 2, because this is going to get cancelled out. You remember, 

we have already done the normalization of our basic functions, and so our basis is not just 

orthogonal it is also orthonormal. And as a result of that, when I am going to plug-in this 

alpha 1 0 in the formula, for f 1 of x, this square root of 2 is going to get canceled out, and 

then this will match up with the value that we have obtained graphically. 
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Let see that formula, what I am saying is, I can very well write down f 1 of x to be equal to, 

summation for k is equal to 0 to 5, and then alpha 1 k values square root of 2 into phi of 

twice x minus k. So, if you consider the first term in this summation, when k is equal to 0; 

that is going to be alpha 1 0 into square root of 2 into phi of twice x. And alpha 1 0 that we 

have calculated is 1 over 4 square root of 2 into square root of 2 into phi of twice x, 

obviously we have the rest of the series, but I am juts focusing on the first element. And so 

this square root of 2 will get cancelled with this square root of 2, and will be left with 1 by 4. 

And this definitely matches with what we have solved in graphically, this is indeed 1 by 4. 



Likewise, we can go on finding out the rest of the values of alpha, and convince that it 

indeed matches up.  

(Refer Slide Time: 44:33) 

 

The alpha values in V 1 would look like this; 1 by 4 alpha 1 1 will be 3 by 4 alpha 1 2 will 

be 5 by 4 alpha 1 3 will be 7 by 4 alpha 1 4 will be 9 by 4, and alpha 1 5 will be 11 by 4. 

And if I want to plot these values, again on the same graph, now it is going to be interesting, 

because I am starting with 1 by 4 3 by 4 5 by 4 7 by 4 9 by 4 and 11 by 4, and you will agree 

that. So, these are my projections in V 1, and it is very easy to see that the approximations; 

that are obtained in V 1 are much better compare to the approximations those were obtained 

in V 0. We are able to add some details in V 0 from W 0, and then finally, achieve the 

projection in V 1. So, this is the mechanism using which, we can not only think of moving 

up the ladder, but we can also think of making the choice of the scale.  

We can think of also making the choice of the translation parameter, and then specifically 

zoom on to a particular point in my signal or function, which is of greater importance, to 

really find out something interesting. To convince more on this point, we are going to see 

another example. We are going to build one function; this function is very specifically 

design. We are going to understand the beauty associated with this function, and then we 

will see, what kind of things it will have, when we will try and analyze this function using 

the wavelet toolbox in matlab.  
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So, if you look at this slide, we will try and find out a hidden jump discontinuity, from a 

particular function. Let us consider this function; g of t, and looks very interesting, because 

we can very clearly see, that at half there is a clear discontinuity. Please carefully notice, that 

t is only less than half, and then over here it is less than or equal to half. So, at half, there is a 

clear discontinuity that we can notice. However, such kinds of discontinuities are easier to 

detect. We will complicate the matters slightly, what we will do is, we will integrate that 

signal g of t, and by virtue of doing the integration, we know that integration essentially is a 

low pass filtering operation, and we will smooth out that signal. So, the discontinuity, is now 

not very much visible, however there is still a cusp jump at t is equal to 0.5, and now I virtue 

of integrating the original signal g of t, this is how the new signal h of t would look. We will 

complicate the matters further more, and we will integrate h of t as well.  
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We will integrate h of t and finally we will generate f of t. And now this function f of t 

appears absolutely smooth to our eye, and we may not be able to perceive the discontinuity 

at point t is equal to half. We will pose this challenging problem to our wavelet toolbox in 

matlab, and we will see if the toolbox will be able to really find out this discontinuity at t is 

equal to 0.5. So, this is a simple matlab program that is written. This is how we have 

declared the timestamps; t 0 is equal to 0 t 1 is half, and we know this is the point where 

there is discontinuity, and t 2 is equal to 1.  

The level of analysis that has been selected is 9, and this is selected out of trial and error and 

honestly speaking, there is no thumb rule that says to what level one should go, and after 

doing analysis to what level one should stop. However there is a slight mention of this in the 

book written by Ingrid Daubechies, which says that if you lose more than seventy percent of 

the total energy in your signal, then you should actually stop doing further analysis. Based 

on that we have selected the level to be 9, and this is how the original signal t would look. 

You can clearly see, that for a given timestamps. The original signal g would look like this, 

it was t only when t was less than t 1, and t 1 is 0.5. It was t minus 1 between all the values 

of t which are greater than t 1. So, between t 1 and t 2 0.5 and 1, and correspondingly we 

have generated signals h and f.  

Just a gentle reminder that g original signal had a discontinuity at 0.5. We did the integration 

of that into h and again integrated h to finally get f. So, first of all, lets plot these signals, and 



let us see the nature of these signals, and as expected this is my original signal, we can 

clearly see the discontinuity at 0.5. Then this is the cusp discontinuity, after doing the 

integration, and after doing the integration of this signal that is double integration of the first 

signal, there is no visible discontinuity at 0.5. So, this is fairly difficult signal now. Let save 

this signal. So, I am going to save f, and let save thus this signal as test underscore s i g. And 

now we can clearly see that there is a mat file called as test underscore s i g dot mat.  

We will invoke the wavelet toolbox in mat lab, and we will select the 1 d wavelet. We will 

load the signal that we have generated, which is test underscore signal. So, this is how the 

signal actually looks. And now I have freedom of selecting any of these wavelet mothers. 

Let say we select Daubechies 3, for a level of 9, and we want to carry out the analysis. And 

you will see a strange thing, at d 1 you can clearly see, that we are able to detect the 

discontinuity at 0.5. And as we start losing out the information, the crispness of the detection 

of the discontinuity eventually goes away. Since we have done the entire analysis using Haar 

wavelets, lets also workout that exercise. So, I am going to select Daubechies 1, which is 

nothing else, but the first member of Daubechies family and it is Haar.  

And if, we do this analysis again, then now you can clearly see that, we are once again able 

to detect the discontinuity, but with lesser efficiency. So, there is point in selecting the 

mother wavelet. However, what is striking about this wavelet analysis is, even though we 

smooth out the function by doing double integration, and now to the naked eye I cannot 

sense the discontinuity, wavelet transform can still find out such underlying discontinuities. 

And hence, it makes lot of sense, to invoke the zoom in and zoom out properties of wavelet 

transform. With this we will conclude this lecture, and we will continue working on, how we 

can go about generating this scaling function coefficients and wavelet function coefficients 

in the next lecture. Thank you.  

 


