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A warm welcome to this session; continuing the theme of wavelets and multiresolution 

signal processing and multirate filter banks. It is my proud privilege today to introduce a 

guest speaker that we have in this series. And I would like first to mention some of his 

biographical details, before bringing him before you. And also to stress and emphasis the 

role - the very important role that he has played in the construction of this course, in the 

construction of this series of sessions in lectures. Professor Aditya Abhyankar is going to 

come before you today, and the most important qualification that he has is, that he is 

very well known in the area of wavelets and filter banks in the country. It has been my 

proud privilege to have him as a reviewer for this series, and he has carefully and 

meticulously given suggestions on the content, and the manner in which the lectures 

have been constructed. And therefore, it is both out of gratitude in pride, that I have 

invited him today to speak on the theme and to present some of his own experience, and 

some of his own thoughts, in this broad field of wavelets multiresolution signal 

processing, image processing, filter banks and so on.  

Professor Aditya Abhyankar obtained his degree of Doctor of philosophy from Clarkson 

University New York, USA in 2005. He has for quite some time been on the faculty of 

the University of Pune. In fact, currently he is a professor and head of department in the 

University of Pune, in the department of technology. In particular as I said, he has 

worked to a great extent on the themes of signal processing pattern recognition, and I 

know for sure that he has made some very important contributions to the area of 

biometrics, specifically finger prints. You will recall that some stage we had said little bit 

about, the importance that wavelets have had in finger print analysis, finger print pattern 

recognition and so on.  

Professor Aditya Abhyankar has important contributions in this field. In addition, he has 

been leading several initiatives in the University of Pune. And as I said earlier on, a very 

important role that he has played in this series, is to review and give us very valuable 



inputs on these lectures, and therefore without taking too much time in this session, I 

would like straight away to put before you professor Aditya Abhyankar, will now talk to 

you on some theme related to wavelets. Thank you.  

Hello, and welcome to this session on the topic of wavelets, and in the broader 

perspective, a topic that deals with joint time frequency analysis. It is my proud privilege 

that I was called upon to review the beautiful video lectures given by Doctor Gadre; who 

is a professor at double E department IIT Bombay. And there is a reason as to why am 

saying this. We have quite a few numbers of books written on wavelets. In fact, today 

wavelet has become a buzz word. However, almost all the material that has been written 

on wavelets, it is written by mathematicians and predominantly it is written for 

mathematicians. For engineers, to understand the concept behind these mathematical 

formulas, it was required, by someone to simplify those mathematical formulas, and 

bring out the physical significance, associated with these mathematical formulas. It was 

pleasant experience, going through the beautiful video lectures recorded by Doctor 

Gadre, and that is because, he has simplified so many beautiful concepts associated with 

wavelet transform.  

It is also my privilege, that he has given me an opportunity, to record few of my thoughts 

on this beautiful subject of wavelets, and this very first lecture, we have title this lecture; 

as zoom in and zoom out using wavelet transform. Let us begin, now a days, wavelet 

transform has become a buzz word, I honestly believe that if last hundred years were the 

hundred years of Fourier transform. The coming hundred years are going to be hundred 

years of wavelet transform, and that is because wavelet transform has so many beautiful 

facets, so many beautiful characteristics associated with it. And in this session, we try to 

bring out one such beautiful facet, which is the zoom in and zoom out feature of wavelet 

transform. If we compare wavelet transform, with the conventional methods of 

representing the signals or functions, then relatively it is a new field, and then we might 

pose few questions, and those questions will be answered by a beautiful property, 

associated with wavelet transform which is known to us as multi resolution analysis or 

very popularly it is known as MRA. Let’s pose more fundamental question first. 



(Refer Slide Time: 07:37) 

 

Why transform; not all the operations are called as transforms. For example, when it 

comes to image processing, there are certain operations like histogram equalization. We 

do not name that operation as histogram equalization transform. there are only very few 

certain class of operations which are termed as transforms, and y at all take this pain of 

transforming information from one domain to another domain. There are multiple 

reasons; however, the strongest reason is pure convenience, for the analyzer it becomes 

extremely convenient to understand the representation of the information in one domain 

rather than another domain, and we have already seen one example; the example of 

music. We do not understand music as just few time domain signals with varying 

voltage; not really. We understand music as a sequence of frequencies, and so it makes 

sense to actually transform this signal into frequency domain, and then the analyzer will 

be more comfortable dealing with those frequencies.  

Ultimately we want to design those beautiful filters, and it is more convenient to design 

filters in frequency domain, compare to time domain or partial domain. So, the main 

theme behind doing most of these transformations, is purely the convenience of the 

analyzer. Wavelet transform in a way is strikingly different than most of the 

conventional transforms. If we go through most of the conventional transforms that we 

have studied, with the likes of Fourier transform, Laplace transform, z transform, and 

probably the first transform to which we get formally introduce to, is the logarithmic 

transform. For all this transforms, the basis function comes out of a beautiful constant, a 



constant e. And in a way all this transforms they have some common thread in all of 

them. All the basis functions: the kernel functions, they are of the nature e to the power 

some variable. It could be frequency or it could be any variable. However, wavelet 

transform differs from all these transforms, and we have to go little beyond the purview 

of all these transforms, to really make sense of the wavelet framework. 

(Refer Slide Time: 11:04) 

 

So, why at all do this, we already know how to analyze linear time in variant systems, 

and if we see this particular slide; traditionally we have two methods, based on 

convolution or based on difference equations.  



(Refer Slide Time: 11:13) 

 

And typically convolution comes out of the fact, that given any signal x of n, I can 

decompose that signal n 2 sequence of shifted impulses.  

(Refer Slide Time: 11:28) 

 

And once I do that, I can very well right x of n as the scale summation of shifted version 

of impulses. Remember we can do this because we are talking about linear and shift in 

variant systems. 
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Because my system is linear, I can go on accumulating the information. I can add up 

everything, because the system would follow supper position theorem; the additive and 

homoginative properties. And because my system is time in variant or shift in variant, I 

can go on shifting my impulses.  

(Refer Slide Time: 12:12) 

 

And once I do this, what we say is, if I understand how my system reacts to these shifted 

versions of impulses, I can characterize my system completely. This is what is known to 

us as an impulse response.  
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And if I know the impulse response of my system, and let say we call this impulse 

response as H of n. And if I excide my linear shift in variant system with an exponential. 

Then what kind of output the system would produce, that was the question that was 

posed by Doctor Fourier. And if we call this output as why of n, then we realize that this 

is a very interesting situation that we are in. We have linear shift invariant system. We 

have characterized that system, by virtue of impulse response. And we are stimulating 

that system with an exponential, with known frequency, e to the power j omega 0 n and 

omega 0 is the known frequency. This formulates one very interesting pair of Eigen 

value and Eigen system for linear and shift in variant systems.  
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And that is purely, because if I split the term e to the power j omega 0 n minus k. Then 

definitely the summation happens for variable k, and I can take out e to the power j 

omega 0 n outside the summation. 
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And this is very interesting, the system was excited with e to the power j omega 0 n and 

what comes out of the system, is again the same exponential, with the same frequency 

plus something. This exponential e to the power j omega 0 n is known to us as in Eigen 

function. And mod it produces along with it, is known to us as an Eigen value, and this 



Eigen value in broader sense is known to us as furrier transform. What is really 

interesting, is to observe the common thread in all these transforms, and like we said 

before for all the different transforms; like Fourier transform, Laplace transform and z 

transform, the kernel function remains almost same. In case of z transform, the basis 

function is z to the power minus n, where z is again equal to e to the power j omega. So, 

we are talking about essentially similar looking kernel function or basis function, same 

holds to for Laplace transform. And where exactly this constant e comes from, that is an 

interesting thing to notice.  

(Refer Slide Time: 15:32) 

 

It is a combination of the efforts put in by three great genius scientists. There is a wake 

story about how Doctor Bernoulli was able to invent this constant e. For that matter, 

most of the inventions and discoveries are pure accidence, or we can say they are 

apparent accidents, they appear as accidents. However, there are tremendous dedicated 

efforts by the respective scientist or researches, that actually goes in and only then the 

elevated minds will be able to grasp and capture that particular idea. Something similar 

happened in this case also. This is the wake story and there is no authentic source to the 

story, however it is very interesting. Doctor Bernoulli was trying to help out his banker 

friend, and his business was not actually picking up, and he gave him a beautiful 

solution, which was based on the formula of compound interest, and typically we know, 

how the formula actually looks. The formula goes like this.  
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If you are investing one rupee as the principle amount, then the formula found compound 

interest is, one plus one upon n bracket raise to n, and Doctor Bernoulli simply brought n 

the series expansion, by putting limit as to when n tends to infinity. We can very well 

solve this limit. Let’s very quickly do a small excise in matlab. Let us define for n is 

equal to one to some large number, we cannot go all the way till infinity, and then let us 

implement this formula; one plus one upon n bracket raise to n, and lets end this for loop. 

And then we will see, that after few iterations it will saturate to value of two point seven 

one eight three. This is the value which is known to us as the constant e. So, it is simple 

compound interest formula, and Doctor Bernoulli was able to help out his banker friend, 

but in the mean while he was also able to discover this beautiful constant e, that was not 

enough, and then comes the second genius in this story, as can be seen from the slides is 

name is Doctor Euler. And Doctor Euler, he gave a different meaning all together to this 

constant e, and he gave us this beautiful identity which is known to us as Eulers identity, 

and the identity goes like this.  
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He told us, e to the power i pi is equal to minus 1, this is notice known to us as Eulers 

identity. For almost last three hundred odd years or so, mathematicians they have been 

trying there level best, to come up with a formula mathematical proof of this identity, but 

they are not yet successful. So, once again and elevated mind, and he was able to capture 

the e sense of that particular idea. What is so special about this identity, is an extended 

version of Eulers identity. He told us that e to the power i theta, can be disintegrated into 

cos theta plus i sin theta, and we know cos theta and sin theta together they formed and 

orthogonal system. So, the beauty associated with this exponential curve is, you can take 

any point on this curve and draw a tangent. the why intercept and the slope of this 

tangent will match, and we know an equation of straight line is y is equals to m x plus c, 

that essentially indicates that on this curve, at any point on this curve I can resolve that 

entity, along to axis, which are orthogonal in the nature; cos and sign, and it is this 

beautiful Euler said identity that made all the transforms orthogonal in their nature; that 

was also not enough, and then came the third genius scientist in the story, his name is, of 

course Doctor Fourier, as can be seen from the slide, Doctor Fourier told us how to 

analyze periodic or a periodic functions or signals. The legacy of transforms that we have 

with us, is a contribution of these three great genius scientists. 
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We can summarize and that can be seen from the slide that we have this constant e, 

which creates and Eigen value, Eigen function system, and the Eigen value is nothing 

else, but the Fourier transform, which can be implemented using convolution; which is at 

the heart of any d s p processor. This convolution is possible only if we have linear time 

invariant system, and then we are talking about band limited, a periodic signals, a 

specific class of signals. They should obey sampling theorem and then they will be no 

aliasing in reconstruction, which guaranty is sparse representation, which in a way would 

guaranty inverse Fourier transform, which can then once again be implemented using 

convolution. The phase changes are marked as the directional changes, which is once 

again a property of being in Eigen function of the system; that reduces an Eigen value 

that takes us back to this constant e. So, at the heart of all these transforms we have this 

beautiful constant e, and we have this beautiful legacy of transforms. For periodic 

signals, we have series representation, for a periodic signals or functions, we have 

transforms. So, we if we already have series representations and transforms, then comes 

one important question, and that important question is why at all wavelet transform. 
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Let us go back to the slides and we will realize, that one beautiful feature associated with 

wavelet transforms is, it decomposes signal into two separate series, a single series to 

represent most course version, which leads us to scaling function or which is also very 

popularly called as the father function. And the double series, to represent the details or 

the refined version, that leads us to the wavelet function or wavelet function is also 

popularly known as, the mother wavelet function. And the father and the mother would 

then in a give the whole wavelet family.  

(Refer Slide Time: 24:12) 

 



However, there are two fundamental questions, which as still require to be answered; the 

first is aren’t the conventional methods to represent signals or function good enough, and 

what is strikingly special about wavelet representation. Let us take these questions one at 

a time, and let us very quickly revisit the conventional methods that we have with us. 
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Probably, the most basic way of representing the signals or the functions, is by virtue of 

using the Taylor series expansion, and we probably learn this at the beginning of our 

calculus course. We know that signal representation is known for a long time, and one 

particular example of tailor series expansion at x of 0 is equal to 0, is shown for a 

function e to the power x, and that gives us in finite coefficients for this particular series; 

1 plus x plus x square by 2 and it goes on. Every single coefficient can be looked upon as 

decomposed piece, and we can make use of these decomposed pieces for doing the 

reconstruction back of the original signal or function. If we make use of only some finite 

number of coefficients, let say first three coefficients in the series; 1 x and x square by 2.  
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And using only these three coefficients, if we try and reconstruct the original signal, then 

this is how it is going to look, and it is shown in the diagram on the left hand side. This 

dotted curve essentially represents the reconstruction using only first three coefficients, 

and this line in blue essentially is the original function which is e to the power x. Please 

ignore these discontinuities or here, because the resolution used is lesser, but we can 

always use a high resolution and we can take care of this part. Now, as against this 

instead of using just first three coefficients, if I use first well coefficients, then you can 

clearly see, the representation goes very close to the actual representation.  
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And there comes the question of the cooperation of the series expansion, and what we 

say is in Taylor series this cooperation to build better representation, is rigid. Why this is 

rigid; number one, that is because we do not have freedom, but to add large number of 

terms. I cannot play around with the individual term. I am restricted with the scale and 

the translation parameters of every single term, and I do not have freedom to change this. 

In contrast to this, in wavelet analysis, a beautiful combination of the scaling function 

and its associated wavelet function, makes the entire representation very flexible. I have 

flexibility in terms of selecting the scale, selecting the translation parameter, and then I 

can also bring in the dilation, by virtue of which I can then create the nested subsets. 
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And this is going to lead us to MRA - Multi Resolution Analysis. In wavelet analysis, the 

scale one upon two to the power j is dependent on the analyzer, to what degree we 

require the refinement to be added to the actual representation. And one example could 

be, if we want to determine the spike in the signal, we can think of using a very high 

value of j. And then we can bring in the translation parameter, tau j comma k which is 

equal to k upon 2 to the power j, and this can be used to focus on that specific part in the 

signal. This combination together scale and translation parameter, it is so beautiful that I 

can go and look at any particular part of the signal, I can change and alter the scale and I 

can zoom in or zoom out; and by virtue of making use of a beautiful combination of 

scaling and translation parameter, what we get is the zoom in and the zoom out facility of 

wavelet transform.  
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As can be seen from the slides, someone might argue that Fourier series has a 

noteworthy advancement over Taylor series, and that is all the elements of Taylor series, 

they do not necessarily and always form an orthogonal set; however, when it comes to 

Fourier series, the set 1 cos of n x and sin of n x, n ranging from one to infinity is always 

orthogonal on range minus pi to plus pi, this is absolutely true. However, the 

fundamental query remains the same. I cannot change the scale and the translation 

parameters, associated with the basics function or the kernel function when we are trying 

to represent the information. However, we can derive sub useful information from the 

Fourier series, and that is why the always say wavelet transform in a way stands on the 

shoulders of Fourier series and Fourier transform. From the slides, we can clearly see, 

that a very special relationship actually exists, between the sign and cosine parts of 

Fourier series. A similar special relationship also exists between the scaling function and 

the wavelet function, when it comes to wavelet series. This relationship is quite trivial, 

but very interesting, and the interested viewers can dig further into this. 
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So, in a way we have answered the first question, in a way we have also answered the 

second question, but will take the second question further, in order to really bring out 

what is strikingly special about wavelet representation.  
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The scaling and the translation parameters are indeed the hallmarks of wavelet transform, 

and when we add up the dilation parameter, in totality they would lead us to the 

multiresolution analysis framework, which is popularly also known as MRA. The central 

theme of MRA is at shown in the slide.  
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We are talking about the piecewise constant approximations on unit intervals. However, 

wavelet transform is not just about finding out the piecewise constant approximations, 

otherwise there would not have been any difference in wavelet transform and a simple 

process of quantization. Once we carry out the successive approximation, then comes the 

very interesting part and that is filling in the details. So, the piecewise constant 

approximation will be given by the scaling equation phi of t, and then the details will be 

added with the help, coming from the wavelet equation which is psi of t. The filling in of 

the details can then called as the zoom in feature. Losing out in details can be called as 

the zoom out feature. Increasing the resolution, would lead us to zoom in and decreasing 

the resolution, would lead us to zoom out. The very concept of zooming in and zooming 

out has become a well-known phenomenon these days, and that is because we live an 

era, where we make use of digital cameras.  

In fact, most of the scanners and most of the sensors they have gone digital. And by 

virtue of using digital camera we often capture digital images and then zoom on to a 

particular portion in that image to really understand what kind of activity is going on 

there. Correspondingly, we can also zoom out, by losing out on details, if we want to get 

a generic field about that particular picture. So, we understand what is zoom in and zoom 

out. However, when it comes to signal analysis, many of the times it is a requirement, 

that we should have a frame work by virtue of which, we should be able to zoom on to a 

specific part in the signal, so as to understand what is really going on there. Consider a 



case of ECG signal, maybe we have large recording of one hour, and in that large 

recording of one hour, if there are only few samples which shows some abnormality, 

then as a signal analyzer we should be able to focus only on that part from the large 

recording that we have with us. So, this beautiful property of zooming in and zooming 

out, is of great importance great significance.  

From the slide we will understand, that the whole point in doing this exercise, is and 

ability of the analyzer of going a bit really close to the original signal, and infect n a 

book return by Stephen Mallette on this beautiful subject of wavelets, he has used one 

beautiful word. He says one should be able to go tantalizingly close to the original signal, 

beautiful, how to achieve this; that sport we are going to uncovered in the remainder of 

this particular lecture. So, in a way the introductory part is over, and now will begin our 

journey towards understanding, how we can achieve the zoom in and zoom out features. 

We have understood the requirement. We have also understood why at all it is essential, 

and now it’s actually time to dirty our hands, to actually see the frame work, and then to 

be able to understand, how we can carry out this task, how we can actually do this zoom 

in zoom out using the frame work, that we are going to lay down.  
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From the slide let us define linear space, and let say its linear space that we have named 

as V of 0, and then this would contain the functions which are square integrable; that is 

the functions which in a way obey the L 2 R norm, so to say. And the piecewise constant 



approximation will be done on an open interval from n 2 n plus 1, where n is n integer. 

What is really interesting is the size of this interval. If we are in a linear space we of 0, 

the size of this interval and we can call this as the analysis window. This analysis 

window will be two to the power 0. From V of 0 we can move on to V of 1,  

(Refer Slide Time: 37:56) 

 

And if we are in linear subspace V of 1, then correspondingly the size of the interval will 

be two to the power minus 1; that is half, and we can continue doing this activity, and we 

can generalize this notion.  
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And we can say we are talking about linear space V of m, where the size of interval is 2 

to the power minus m.  
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And that leads us to very special relationship, and this relationship in general is called as 

the nested subsets. And we have already seen in the lectures by Doctor Gadre; that if we 

are looking at this ladder of subspaces, which are the nested subspaces, then we can think 

of either moving up the ladder or moving down the ladder. If we move up the ladder, the 

analysis window will becomes smaller and smaller and smaller, and will go on adding of 

the details, and eventually we should be able to achieve the L 2 R norm.  
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As against that, if we move down the ladder then; obviously, we are talking about the 

resolution getting coarser and coarser, and eventually that is going to lead us to trivial 

subspace, and we will probably lose out all the details. 
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We can convey this mathematically, using this formula and the phenomenon of moving 

up the ladder with closure, as was given by Doctor Ingrid Daubechies, is captured in this 

mathematical formula.  
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And what is really striking about the wavelets, is you could be talking about a particular 

function and its corresponding projection in any space, any subspace; that can be very 

neatly and nicely constructed using just one single function, and that is psi of t, and how 

to do that, we have already seen this. We can do this, using hallmarks of wavelet 

transform; that is scaling, translation and also dilation. We will talk about it more, once 

space starts putting down the framework. well this is all true when it comes to psi of t; 

that is the wavelet functions, and we can very well span the w subspaces, but who will 

span v subspaces, where has to be a function who would do that task for us, and that 

function is phi of t, which is also known to us as the scaling function. Now, who gives us 

scaling function, how we can go about finding out the coefficients of the scaling 

function; that is one interesting question, and probably down the line in this series, we 

are going to also try and uncover this part. 
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The whole point of having the scaling function, as can be seen from the slide is to be able 

to span that particular subspace V of m. And this in a way guaranties the generation of 

ladder of sub spaces, and we are saying this term again and again, because this ladder of 

subspace is eventually going to lead us to M R A; that is multiresolution analysis. 
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Let us quickly run through the axioms of M R A, because the framework that we are 

going to see in this particular lecture, in a way depends on these axioms. So, once we 

understand, how the ladder of subspaces are formed, then the first axiom, is obliviously 



moving up the ladder. The second axiom is; obviously, moving down the ladder. The 

third axiom, guaranties the existence of us scaling function; that will help us span all 

though V subspaces.  
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Correspondingly, we have to ensure, that phi of t innovate generates the orthogonal set of 

series, and then that will lead us to axiom number 5 and 6. The axiom number 5 and 6, 

we are going to see the direct implication of these two axioms, in the frame work that we 

are going to go through.  
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And based on this axioms we have the MRA theorem. They tells us given these axioms 

there exists a wavelet function, psi, which is once again a square integrable function, and 

using this function, I can span those w subspaces, and bring out the details in the 

underlying signal or function.  
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One typical way of implementing this MRA philosophy, is using a two band filter bank 

structure. And if we have some input; let say p of n. Then I can very well go about doing 

the analysis, by first of all passing this through the analysis low pass filter, followed by 

down sampler. Analysis high pass filter which is shown by G 0 of z, followed by down 

sampler. And if I want to reconstruct back the original signal, then I can run the synthesis 

phase, where I can have and up sampler, followed by the synthesis low pass filter, which 

is shown as H 1 of z, and the synthesis high pass filter which is G 1 of z, and by virtue of 

doing the orthogonal summation, we can very well reconstruct back the original signal, 

as the two filters are complements or duals of each other. With this introduction, now let 

us try to understand, how we can go about building the framework.  
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One series drawback of this two band filter bank is as follows; as can be seeing from the 

slide, if we focus only on the analysis part, and let say input to our system is some signal 

p of n. It is a digital signal of finite duration, and let say this signal belongs to some sub 

space V 1. The moment you run the signal through analysis low pass filter, followed by a 

down sampler by factor of two, and analysis high pass filter and a down sampler by 

factor of two, you in a way end up with signal p 0 of n; that would belong to V 0, and q 0 

of n that would belong to a subspace W 0. So, in this process, let us really try and 

understand what exactly is happening. 
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Let us say, you have some signal x of n, and you are passing this signal through the two 

band filter structure, and this will be followed up with down sampler by factor of two. 

What we are saying is, if this signal x of n belongs to some subspace say V of j, then by 

virtue of doing this kind of an arrangement, we end up with x j minus 1 n, which would 

obviously, then belong to V of j minus 1. And let us say y of j minus 1 n, which belongs 

to w of j minus 1, and if we try and understand what is happening over here, and if we 

see the nested sub sets; that we have already seen and so on. And let us say this V of j is 

V of 0; that means, we are starting over here. Then by virtue of doing these operations, 

we start moving in the leftward direction, and that is because if I am starting in V of 0 I 

will generate projections in V of minus 1 and w of minus 1. So, in a way we start moving 

towards the left direction, we start moving down the ladder, not always it is desirable to 

move in the downward direction.  

In fact, for many of the applications, it is required to actually move up the ladder, and 

only by virtue of moving up the ladder, we can go on adding up the details; from V of 0, 

we can move on to V of 1, from V of 1 we can think of moving to V of 2, and we can go 

on adding up the details, and then we can think of going tantalizingly close to the actual 

signal and its corresponding representation. This is one interesting journey, and we will 

have to build the whole framework, in order to be able to achieve this.  

What we have seen in this particular lecture, is how we can interpret the well-known two 

band filter bank structure, and understand it from the point of view of nested subsets, and 

how typically we end up only moving down the ladder. And for many of the applications 

it is required, it is desired to move actually up the ladder. And if we want to move up the 

ladder, we will have to design the framework, and that we are going to cover in the next 

class. However, we will write down one important mathematical formula, which is going 

to be at the heart of what, the kind of framework that we are going to build in the next 

class; and that formula is, by looking at the two band Haar structure.  
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We can very well write down that V of j is equal to V of j minus 1, orthogonally added 

with W of j minus 1. This is the formula, which is of great importance, which is of great 

significance, and the whole multiresolution analysis structure is in a way based on this 

formula. We will stop here, and we will continue building the framework by virtue of 

which, we can possibly think of moving up the ladder, add the details and really think of 

going tantalizingly close to the signal or function under analysis. Thank you  

 


