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A warm welcome to the 19th lecture, on the subject of Wavelets and Multirate digital 

signal processing. In this lecture we shall go further on the uncertainty product or the 

time bandwidth product, as we called it in the previous lecture to proceed, to evaluate 

and to bound it. To put certain fundamental limits on it and then, to see how close we can 

get to those limits. Therefore, I have titled the lecture today as evaluating and bounding 

sigma t squared, sigma omega squared. 

To put the discussion in perspective, let us recall very briefly what we did in the previous 

lecture. You will recall that, we had talked about these quantities sigma t squared, sigma 

omega squared. We are also noticed that this product, sigma t squared sigma omega 

squared is a very strong invariant. It is invariant to translation, it is invariant to 

modulation both in time, translation in time, modulation in time. It is invariant to 

multiplication of the dependent variable by a constant or scaling the dependent variable 

or in another words multiplying the function by a constant. Most interesting of all is that, 

it is invariant to a scaling of the independent variable that is striking. 

So, you see ultimately what is left is just the shape, the time bandwidth product is the 

direct function of the shape. The shape can then get compressed or expanded, it can get 

scaled in the vertical direction, it can be shifted, it can be modulated by an e raise the 

power j omega t kind of term rotating complex number or a phaser. All these do not 

affect the time bandwidth product, sigma t square, sigma omega square as we called it. 

Now, our objective today is to ask a very important question, which lies at the heart as I 

said of Wavelets and Multirate digital signal processing, namely how small can we make 

this product. 

Let us put down the question first. 
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Essentially, how small can the time bandwidth product be? And once again, we need to 

emphasize a couple of points, why are we talking about the time bandwidth product 

instead of just the time variance or the frequency variance. We must understand that 

making the time variance small or the frequency variance small is not a difficult job at 

all. In fact one can do it by scaling the independent variable. If you compress a function 

in time, the time variance is compressed by the square of that factor. If you compress a 

function in frequency the frequency variance is compressed by the square of that factor. 

So, compressing in time or frequency separately is not a difficult job at all. In fact, the 

problem is that, when you compress in one domain, you are expanding in the other 

domain by the same factor. There is a cancellation effect as far as the time bandwidth 

product goes. So, compressing or expanding a function does not change its time 

bandwidth product, but it definitely changes the time variance and the frequency 

variance individually, this is what we saw in the previous lecture. In that sense physically 

what it means, is that nothing stops you from narrowing down as much as you desire in 

one of the domains. If you desire to focus on a small region of time, you can do it on as 

small region of time as you desire. 

If you focus on certain region of frequency you can make that region of frequency on 

which you focus as small as you desire, there is no problem. So, focusing in one domain 

is not a problem, you can do it as much as you desire. The problem is focusing in both 



the domains together, any tool in that we use, by tool I mean a function used for analysis, 

any tool that we use as a time bandwidth product essentially based on its shape. So, when 

you use the same shape, you are bound by that number no matter how much you squeeze 

or expand. You are not going to be able to focus in both the domain simultaneously in 

fact, by focusing in one domain you are going to compromise on your ability to focus in 

the other. This is the general tussle as we said between time and frequency. 

Now, the next natural question to ask is, how small can we make this tussle? If sigma t 

square or sigma omega squared could have been 0 for example, could have been it will 

be wonderful, nothing need it to be done. You could make any of them as small as you 

desire and the other one as small as you desire too. So, you could focus in two domains 

simultaneously. But as I said, nature does not allow this and it is the fundamental 

property of nature, that is does not allow this. What we are now going to answer is, what 

is the lower bound on this product meaning, to what extent no matter what tools you 

have can you really focus in both the domains together. 

So, what is the ideal towards which we must derive and why is it that, we have a 

fundamental limitation to work with which always forces a challenge before us. Anyway 

to answer that question, let us recall some of the expressions that we had derived in the 

previous lecture. We had looked at an expression for the time bandwidth product based 

on entirely time domain quantities and let us put that expression down clearly once 

again. 

We had shown that the time bandwidth products without loss of generality, can be 

written ultimately as follows. It is the L 2 norm of t x t the whole squared times the L 2 

norm of the derivative, again the whole squared divided by the L 2 norm of x squared 

multiplied by the same. So, in other words you could write L 2 norm of x raised the 

power of 4, if you like by combine these two terms. Anyway I am just writing them 

separately to emphasize a, this is associated with this and this with this notionally. 
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Now, I must also again mention the slight abuse of notation here, when we write t times 

x t, we are referring to the whole function as an object and not to a specific value of t, the 

same holds here. Anyway this was just to recall what we did yesterday and remember we 

had done this after doing a little bit of preparation on the function so to speak. Having 

noted the translation in time and in frequency has no effect on the time bandwidth 

product we had said. We could shift the function in time so that, it is centered in time. 

Subsequently, we can shift it in frequency without affecting the time function so that, it 

is centre in frequency. In all this, the time bandwidth product has not changed. 

So, here we have a function which has been assumed to be centered in time and 

frequency and now, we are working with that function and this is without any loss of 

generality. Anyway coming back then to the calculation of these quantities, let us once 

again gives a vectorial interpretation to this. Now, you see look at the numerator, the 

numerator is a product of two squared norms, let us focus our attention on the numerator. 
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So, numerator here is the norm of t x t, the whole squared multiplied by the norm of dx t 

dt the whole squared in L 2 R. Now, let us take recourse to a very fundamental principle 

that we know in vector analysis. Treat t x t and dx t dt as vectors, as we often do 

generalized vectors. 
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So, let us call them v 1 vector and v 2 vector. Now, if we recall a basic principle of inner 

products. The inner product of v 1 with v 2 is essentially of the form, the magnitude of v 

1 times the magnitude of v 2 times the cosine of the angle between v 1 and v 2, theta is 



the angle between v 1 and v 2. And therefore, it is obvious in very low dimensional 

spaces which can be taken to higher dimensional spaces also, that if you consider the 

magnitude squared of the dot product 
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Let me use the dot product notation. It is the product of the magnitude squared of v 1 and 

v 2 multiplied by Cos squared theta and Cos squared theta is always less than 1 in fact, 

between 0 and 1. Here of course, we are talking about theta real and that is the 

interpretation which we always have, even if we are talking about complex functions, the 

angle here is assumed to be real. You see what it means therefore, is that the modulus of 

the dot product squared is always less than or equal to the modulus of v 1 squared times, 

the modulus of v 2 squared. 

This is a very simple, but a very important principle and in fact, this principle can be 

generalized to these generalized vectors that we are talking about, functions viewed as 

vectors. In fact, this is a very important property or a very important theorem in 

functional analysis, it is often call the Cauchy Schwarz inequality. It says and let me 

write that down in formal language, it says the inner product the magnitude squared of 

the inner product of two functions. 
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So, let assume that two functions f 1 and f 2 and L 2 R. The magnitude squared of the dot 

product of f 1 and f 2 is less than equal to the product of the squared norms in L 2 R of f 

1 and f 2. The Cauchy Schwarz inequality, as it is often known. Now this vectorial 

interpretation makes this property obvious, but one can also prove this formally, in 

functional analysis without taking we course to this visualization in the language of 

vectors. 

However, since it is not our objective to review this basic concept from functional 

analysis, I mean to give a detail proof. We shall give it this vectorial interpretation and 

be satisfied. So, we will take the Cauchy Schwarz inequality as true and proceed from 

there. Now, please remember that we are assuming in this process, that these functions 

belong to L 2 R. So let us go back to our uncertainty time bandwidth product. 
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Consider them x t so that, t x t belongs to L 2 R and dx t dt belongs to L 2 R. What if 

they do not for example, we took the very simple case of a rectangular pulse, a while 

ago. 
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We saw that if we consider this function, not true for this function. Because dx t dt does 

not belong to L 2 R here, why so? dx t dt has two impulses. 
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dx t dt would have an appearance like this, an impulse there and a downward impulse at 

the end of the pulse, this is what dx t dt would look like here. And impulses are not 

square integrable, impulses do not have finite energy. I shall just spend a minute in 

justifying this, because we have so far been informally saying it we also proved this 

indirectly by looking at the frequency variance in this case. But we also must understand 

the direct proof here. After all, what is an impulse? 
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An impulse is a limiting case of this, an object which lies on a width of delta with a 

height of 1 by delta. This is delta capital delta t, if you please and an impulse or a unit 

impulse to be more precise is essentially something like a limit, as delta tends to 0 of 

delta delta t. Now, when you take the square of this so, delta delta t squared, it is look 

like this. 
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And now, if you take the integral of delta delta t squared dt overall t, then it diverges 

when you take the limit diverges. In fact, this integral essentially 1 by delta 1 by delta 

squared into delta so, 1 by delta and this is divergent this limit does not exist. Therefore, 

the impulse is not square integral we must make a note of this is an important conclusion. 

Infinite energy, it contains infinite energy. And that is manifested also in calculating the 

frequency variance for this rectangular parts, anyway that a part. We have now agreed 

that, if that is the case, anyway that lower bound does not arise, where these quantities 

diverge in spite of x belonging to L 2 R. Remember, since x belongs to L 2 R in the 

beginning, we had this denominator. 
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So you had this denominator right in the beginning, norm x 2 x in L 2 R to the power 4 

effectively and this is guaranteed to be finite, because we have confined ourselves to x 2 

into L 2 R. So, if this is an L 2 R, the denominator is finite and positive obviously, 

otherwise it does not make sense I mean, you are not going to take a trivial function. So, 

for a nontrivial function this is strictly positive and finite. And then if anyone of these is 

infinite, there is no question of finding a lower bound, it anywhere you know is the worst 

possible case that you can have. So, it is no harm then that we have in considering finite 

quantities in the numerator. So, with that little remark about our restriction, let us take 

them to be finite and proceed. 

And use the Cauchy Schwarz inequality. So, using Cauchy Schwarz inequality what do 

we have? Now, we use it the other way, what we have in the numerator is the norm 

squared in L 2 R of t x t times the norm squared of dx t dt in L 2 R and from Cauchy 

Schwarz inequality we go further. 
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This must be greater than or equal to the magnitude of the dot product squared. Let us 

write this down, this dot product is essentially the following integral. 

Remember we need not confined ourselves to real functions, we should not because we 

are allowing a modulation in time. So, you must allow complex functions here, we have 

of course, centered the function that is the different issue. We need to center them that 

we have done. Now, let us essentially look at this integral a little more carefully. Now, 



we are talking about this as an entire complex number. This whole thing is the complex 

number from here to here, if you take the magnitude squared of a complex number. 

(Refer Slide Time: 25:35) 

  

So, let that complex number be Z. It is obvious that the modulus squared of Z is greater 

than the modulus or greater than or equal to in general, the modulus squared of the real 

part of z and we use that property here. Of course, a same thing holds good for the 

imaginary part two, but we are interested in the real part here. 
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So, in particular we have the numerator of the time bandwidth product is greater than or 

equal to modulus, real part of this integral. The complex conjugate is above this entire 

thing. So, this is what we have here. Now, a remark about this part this complex 

conjugate, we are taking the derivative of a possibly complex function x of t with respect 

to the real variable t. So, the complex conjugate of dx t dt is also the derivative of the 

complex conjugate of x t, what I am saying in effect is that. Because t is a real variable 

dx t dt bar is also dx bar t dt and I should employ that in this expression first. 
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So, this quantity now is equal to. The modulus of the real part of the following the real 

part operates on the whole integral. And now we again, look at the real part. You see the 

real part is operating on an integral with respect to t, t is a real variable. So, the element 

of integration is real this is a real function this is possibly a complex function. So, the 

real part can be taken right inside the integral and brought to operate on this only, a rest 

of it does not require you to say real part explicit. 
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So, this expression is equal to integral from minus to plus infinity t times, the real part of 

x t dx bar t dt dt the whole squared. And now, we take note of this, how do we calculate 

the real part of a complex function, complex number in general. By adding the complex 

number and its conjugate and dividing by 2. So, essentially what we are saying is real 

part of x t dx bar t dt is half x t dx bar t dt plus the complex conjugate of this. And what 

is that complex conjugate, it is x bar t dx t dt simple. And now we can see a product rule 

has been employed here, essentially what we have here is the derivative of x t into x bar t 

that is an important observation. 
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So, here this is equal to half d dt of x t x bar t and x t x bar t is in did the modulus of x t 

the whole squared, a very beautiful observation. And now, we will put back that 

observation into the time bandwidth product. 
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So Therefore, the numerator of the time bandwidth product is thus greater than or equal 

to modulus, half integral from minus to plus infinity t times d dt mod x t squared d t and 

this the whole squared. Let us take a minute to reflect on this, how do we evaluate this 

integral? Well that is easy. We can evaluate this integral by parts and to evaluate by parts 

we must first make the integral indefinite. 

(Refer Slide Time: 32:54) 

  

So, let us simply consider the indefinite integral corresponding to this. Clearly this is, 

this term minus this term. And now we can substitute the limits. So, we can put back the 



limits of minus to plus infinity here and put this from minus to plus infinity first, and 

then this from minus to plus infinity as well. Now, let us focus our attention on each of 

these terms individually. Let us take the first term, t times mod x t the whole squared, 

evaluated at plus infinity and then from it subtract evaluated at minus infinity. 
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So, let us focus our attention on t mod x t. The whole squared evaluated at the two limits 

and subtracted. Now, we have agreed that t squared mod x t squared dt from minus to 

plus infinity is finite, we have agreed on that. We said, if that is not true anyway we have 

an infinite bound, there is no question of lower bounding them, it is a worst case that we 

can deal with. So, if this is finite obviously, you see if the integral must be finite the 

function must decay towards 0 at the ends. If the function does not decayed to 0 as in 

tactically as you go toward plus infinity and as you go towards minus infinity, you can 

see that there is going to be an infinite range over which the function has a finite positive 

value, which would make the integral diverge. So, in order that is integral converge t 

squared mod x t squared dt, the function t squared mod x t squared must decay as t tends 

to plus infinity and minus infinity let us make that observation. 
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In order that this integral converge. t squared mod x t squared tends to 0, as t tends to 

plus infinity and t tends to minus infinity. Now, it is also true that for t greater than 1 and 

of course, as t tends to infinity t is definitely going to be greater than 1. 

(Refer Slide Time: 36:25) 

  

So, for t greater than 1 and certainly so and I am talking about t squared actually, or mod 

t. Certainly, so as mod t tend to infinity t tends to plus infinity or minus infinity. You 

must have t squared greater than t, what this means is that. 
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t squared mod x t squared tending to 0, as t tends to plus or minus infinity guarantees t 

mod x t squared tending to 0 as t tends to plus or minus infinity and therefore, that first 

term has vanished. 
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So, we are left only with the second term and the second term is very familiar to us. In 

fact this is minus the norm of x in L 2 R the whole squared so simple. And therefore, we 

have a very beautiful conclusion here. 
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We are saying the numerator is always greater than or equal to modulus half into minus 

the norm of x in L 2 R the whole squared, the whole squared, which is one-fourth times 

this, times this. 
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And therefore, overall the time bandwidth product is greater than equal to one-fourth 

norm x in L 2 R to the power 4 divided by norm x in L 2 R to the power 4, which is one-

fourth a very fundamental conclusion. The time bandwidth product can never be less 

than one-fourth 0.25. So, 0.25 is the very lowest value of the time bandwidth product that 



you can get. And what we concluded here has nothing to do with the tools available at a 

particular time, with the technology available at a particular time or with the machines 

and the political situation whatever, it is fundamental to signal processing. 

In fact, so fundamental is this result that we have derived that, in different manifestations 

it is seen in different subjects. What we call the uncertainty limit in physics is just 

another version of this. People talk about the inability to locate position and momentum 

simultaneously. Actually, it is just another version of this. I shall just give a small hint as 

to how you might connect this idea of time bandwidth product to the concept of position 

momentum uncertainty. And to do that actually, we will go back to the expression for the 

time bandwidth product that we had derived. 
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You see you noticed that, we will show that essentially the time bandwidth product 

relates to a time variance. You know the time variance relating to the norm of t x t the 

whole squared. And you are assuming the object is centered. Now, think of x t as 

descriptive of an object, remember that we are talked about a one dimensional mass. 

Now, here we talking about x t then as the kind of mass distribution of the object or other 

if not mod it is if not x t is really mod x t squared, which is like a mass distribution of 

that object. 

So division the denominator part is essentially a normalization make the object unit mass 

if you like. But here, in the time variance the numerator is indicative of the uncertainty in 



position. What is the variance of the object as far as it is spread around the center is 

concerned, that is what the time variance tells you. Now, if you look at the other term 

there the frequency variance. So, time variance involves this, frequency variance 

involves this. And you know involving this, the derivative of x t with respect to t now, x t 

or mod x t squared as I said is indicative of in some sense the presence of that mass or 

that body on t. So, d x t d t is indicative of the moment of that body, the change with 

respect to time. 

So, here in some sense the change, the it is indicative of a change. So, in a broad sense 

you can see the connection between position and momentum, uncertainty in where it is 

in, uncertainty in how it changes. Let me not tell too much further on this, to interpret 

precisely how this is the uncertainty principle in physics, I think we should leave it to a 

physicist a person who specializes in that. But this is what have just given you is an 

intuitive indication that is all. However, is just to bring out the various meanings that this 

time bandwidth product or this uncertainty limit has. It has meanings in different 

subjects. 

Anyway coming back to a subject with which, we are deal this is the whole basis on the 

subject of wavelets often that matters a time frequency methods, what it tells us is that no 

matter what we do. We are not going to get any function which has finite energy and 

which can be confined beyond the certain point in the two domains time and frequency 

simultaneously, that is bad news. What was worse is that, if looked at the Haar case, it is 

not confined at all the time bandwidth product was infinity. So, now we naturally ask the 

next question is there a function which gives us this 0.25 or is it something that we 

should never seek, that is not very difficult to answer. In fact that can be answered again 

by using a vectorial interpretation, when does the numerator become equal in the Cauchy 

Schwarz inequality to the expression that we derived. 
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So, the optimal function in the sense of time bandwidth product means. 
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The Cauchy Schwarz inequality becomes an equality. Now, where would that become an 

equality, it would become an equality if the Cos squared theta term is 1, that is the cos 

squared theta term is 1. And what you mean by the Cos squared theta term been 1, what 

really is theta? Theta is an angle between these two so called vectors, t x t and dx t dt. If 

you want the angle to be such that, Cos squared is 1, these two vectors must be collinear, 

they must be along the same line so to speak. 
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So therefore, in the language of functions we need the vectors, so called vectors t x t and 

dx t dt to be collinear one dimensional. What you mean by them been collinear, they 

must be linearly dependent. And what you mean by them been linearly dependent, any of 

them must be a multiple of the other. 
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In other words dx t dt is some constant, let us call that constant gamma 0 times t x t. The 

solution of this equation would give us, the so called optimal function, so we solve this. 



How do we solve it? By a simple change of the or this the redistribution of the 

derivative. 
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So, essentially what we are saying is dx by x is equal to gamma not t dt and if I integrate. 
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We get gamma 0 t squared by two all log natural x well we must have a constant here, a 

constant of integration and this is of course, log natural x. So, in other words we have log 

natural x is of the form gamma 0 t squared by 2 plus c 0. Let us raise both sides using the 



natural base e. So, e raise the power l n x, is e raise the power this. And therefore, we 

have e raise the power l n x is thus x. 
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So, x of t is some constant, e raise the power c 0, this is the constant. Let us call this 

constant c 0 tilde times e raise the power gamma 0 t squared by 2. 
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So, let us write down again and let us make a remark on gamma 0. x t is of the form c 0 

tilde times e raise the power gamma 0 t squared by 2. Now, you want x t to belong to L 2 

R. 
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And therefore, you want mod x t squared, which is essentially mod c 0 tilde squared 

times mod e raise the power gamma 0 t squared by 2 to be is integrable. 
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Now, this is possible only if gamma 0 has a negative real part. If gamma 0 has a positive 

real part, this is going to be a Gaussian, so called Gaussian that grows in time, is not 

going to be square integrable. And therefore, we must choose gamma 0 with the negative 

real part and we can choose any one example of that. 
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So, in other words one function, which reaches the lower bound which is optimal in this 

sense, is with gamma 0 equal to minus 1. And there we have we can also choose c 0 tilde 

to be 1, because it does not matter, you scale a function a time bandwidth product is an 

effective. 
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And therefore, one optimal function in the sense of time bandwidth product, that is with 

time bandwidth product equal to 0.25 is the Gaussian. 
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A very interesting conclusion, the Gaussian is optimal. The Gaussian seems to arise in 

many situations it has a reason in this having noted this. We shall conclude today’s 

lecture and proceed in the next lecture to dwell further into this is you of how close we 

can get to the optimal with other functions. Thank you. 


