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A warm welcome to 17th lecture on the subject of wavelets and multirate digital signal 

processing; we build in this lecture a very important principle. In fact, in some senses the 

principle that lies at the heart of the subject of wavelets and time frequency methods 

namely, the uncertainty principle. Therefore, as you note today, we shall devote the 

whole lecture to a discussion of the uncertainty principle; laying the foundation of what 

uncertainty means first and then proceeding to obtain certain numerical bounds on 

confinement in 2 domains simultaneously. 
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Let me first give an informal or a diffused non formal introduction to the idea of 

containment. Well, we did a little bit of that yesterday, in the previous lecture. But, what 

I intend to do now is to say a little more in terms of formality and then proceed to write 

down the mathematical relationships or definitions. Recall, we said that there is a very 

tight or a very strong kind of a notion of containment that would ask that you have 

compact support in both domains time and frequency. The function must be non-zero 



strictly over a finite interval of the real axis and must be non-zero strictly over a finite 

interval of the real axis in the frequency domain as well. 

So, both in time and in frequency, you demand that the function be non-zero only over a 

finite part of the independent variable or the real axis. This is a very strong demand and 

yesterday we mentioned that it cannot be met ever. In fact, I also hinted at the idea 

behind the proof. It related to the fact that if you noted that the function was finitely 

supported, compactly supported on the real axis, there was certain properties of that 

function specifically the existence of an infinite number of derivatives which made it 

impossible for the function to be compactly supported or non-zero only on a finite 

interval of the independent variable in the natural domain. Natural domain can mean 

time, can mean space, whatever. Anyway, this was what we called the strong version of 

containment and we said that this was not possible. But, we had asked whether a weaker 

notion of containment could be admitted. Namely, we do not insist that the function be 

strictly non-zero over a finite interval but that most of its energy most of its content so to 

speak in some sense be on a finite interval of the independent variable which indexes it. 

Simultaneously, in the transform domain in the frequency domain we insist that most of 

the content be in a finite interval of the frequency axis this seems like a more reasonable 

requirement and to a certain extent this requirement can be met and as I said to give a 

diffused or a non-formal presentation of how it can be met, I shall begin this whole 

discussion by saying that we are finally going to come out with certain bounds on how 

much you can contain in the 2 domain simultaneously. 

So there are several steps to reach this destination. The first step is to put down in a non-

diffused, in a formal way what you mean by containment; what you mean by most of the 

content being in a certain finite range. We are also hinted at the approach we would take 

to do this briefly in the previous lecture. 

We had said that there are 2 ways of looking at it. You could think of the magnitude 

squared of the function and the magnitude squared of the Fourier transform as a 1 

dimensional object and then you could talk about the center of that object, center of mass 

if you like. You could talk about the spread of the object around the center of mass by 

using the notion of radius of gyration or if you prefer to speak in the language of 

probability densities, then you could employ the idea of the density built from the 

squared magnitude of the function and another density built from the squared magnitude 



of the Fourier transform. You could then look at the mean of these densities and the 

variance of these densities. The variances are indicative of the spread; so this was a non-

formal introduction. Now, we need to formalize it and that is what we shall do precisely. 

To begin with, put down formal definition, a formal explanation of the idea of spread. 
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Now, we have to define the domain in which we are going to work. We are going to 

work in L 2 r we had agreed to that. It is always going to be the space of square integral 

functions. In fact, I must mention that sometimes we are actually going to work in the 

intersection of the space of square integrable functions and absolutely integrable 

functions. To be on the safe side, let us put down that requirement right now and let us 

put down the tie test of the requirements; namely, that the function belongs to the 

intersection of these 2. So, the context: consider, a function let say x of t which belongs 

to the intersection of L 2 R and L 1 R which means it is both square integrable and 

absolutely integrable; I think we should note that. 
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Alright, now because the function belongs to L 2 R, we are sure that its Fourier 

transform also belongs to L 2 R. so let us x t have the Fourier transform x cap - capital 

omega and we know that capital x, I mean x cap of capital omega belongs to L 2 R as 

well. So, we first define a density or a 1 dimensional mass if you would like to call it 

that. We know that both x t and x cap omega are square integrable and therefore, if we 

take the magnitude squared of x t and the magnitude squared of x cap omega, they would 

enclose a finite area under. In fact, the 2 areas would be essentially the same but for the 

factor of 2 pi. Again, if we chose to do away with angular frequency and used hertz 



frequency, that 2 pi factor would also go away. Anyway, what we are saying is, mod x t 

squared integrated from minus to plus infinity is finite let us in fact use the standard 

notation for this the norm of x in L 2 R the whole squared and therefore define a density 

P x (Refer Slide Time: 11:10) given by mod x t squared divided by the norm again 

squared. 
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Now, a few remarks and in fact, we should write them down one by one. P x t as we 

defined it namely, mod x t squared by the norm in L 2 R of x the whole squared is a 



probability density. Why do we say this? Well, because of the following reasons: let us 

list them one by one. Number 1: P x t is greater than equal to 0 for all t it is a density in t. 

Of course, see you may think of t as a random variable and this is the density on that the 

integral over all t of P x t is easily seen to be 1 from the definition. Essentially, the 

integral of P x t over all t would in the numerator again have the L 2 norm of the function 

x and of course, the denominator is indeed the L 2 norm of the function x both squared 

the numerator and denominator and therefore, they would cancel out to give 1. 
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Similarly, let us define a density in the Fourier domain in the angular frequency domain. 

There we shall write P x cap as a function of omega to be mod x cap omega squared 

divided by the norm of x cap squared. Here again, we are assured of the denominator 

being finite because of the L 2 R business. 



(Refer Slide Time: 14:08) 

 

(Refer Slide Time: 15:27) 

 

So, again we shall for completeness and formalism, note that this is the probability 

density. P x cap omega is also a probability density. Indeed, P x cap omega is greater 

than equal to 0 for all omega; it is the density in omega. The integral over all omega from 

minus to plus infinity of P x cap is 1. That is also easy to see by very definition. 
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Now, we have taken the probability density perspective but, we could as well take the so 

called 1 dimensional mass perspective and let me also note that. One could also take a 1 

dimensional mass perspective. That is, we could think of P x t as a 1-D mass in t and 

similarly, you could think of P x cap omega as a 1 dimensional mass in omega. So, what 

I am saying is, all of us or all the objects around us are masses in 3 dimensional space so 

here we have a simplified situation you have a mass in 1 dimensional space; that 1 

dimensional space can be the space of t or the space of capital omega. Similarly, as I said 

p x cap omega is a one dimensional mass. 
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Now, once you take the mass perspective then immediately, you have the notion of 

centre of mass, centre of gravity if you like to call it that and when you take a probability 

density perspective you have the notion of mean. Either of them is they are equivalent; 

so let us make a note of that. If we choose the mass perspective, consider the centre of 

mass and spread around the center. Now, incidentally as I said the spread around the 

centre in mechanics is often measured by quantity called the radius of gyration. If we 

happen to take the density perspective, consider the mean and the variance. Now, we 

must assume that these quantities can be calculated and we shall do that. It is possible 

that the variance be infinity; that is a subtle point. So, we are not always guaranteed of 

finite variance and in fact, that is not a contradiction to what we have been saying so far. 

We are trying to find a lower limit to where the quantities go in the 2 domains 

simultaneously. So, if the variance happens to be infinite which it will actually in some 

situations, we shall simply say that is the worst possible case that we can encounter. 
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Anyway, let us consider given this function x t we will prefer to take the probability 

density perspective. So, we will think of P x of t and P x cap of omega as probability 

densities and we will then write down the mean. So, indeed let P x t have the mean t 0, 

what would that mean? t 0 would then be integral t times P x t over all t from minus to 

plus infinity. Simple, the definition of mean; you recognize the same definition, to hold 

good for the centre of mass here. Essentially, you are calculating the moment by 

choosing the fulcrum to be 0 and therefore, getting a different fulcrum or a point at 

which the moments are all balanced. 
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Similarly, let P x cap omega have the mean omega naught, whereupon omega naught 

would be integral from minus to plus infinity omega P x cap omega d omega; again, the 

centre of mass, if you like to look it at that way, in the frequency domain. Now, once we 

have the mean and just as a tongue-in-cheek statement, we assume the means are finite. 

Normally, they should be in some pathological situations we may have a problem we are 

not looking at those pathological situations. So, assuming these means are finite, let us 

look at the variance, so the variance in t would then be given by and we will define it to 

be sigma t squared by definition; this should be t minus t 0 the whole squared times P x t 

integrated over all t. Similarly we could talk about the variance in frequency. So, 

variance in angular frequency; sigma omega squared is integral from minus to plus 

infinity, omega minus omega naught the whole squared P x cap omega d omega. Once 

again, tongue-in-cheek, we are assuming these variances to be finite. In any case, here 

we do not have such a problem even if the variances are infinite we will accept it. We 

will say that it is the extreme. In the worst case, whatever they be, finite or infinite, we 

accept. 
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Now, it is very clear; you see, if you look at a probability density or perhaps, if you to 

choose to think of this as one dimensional masses, it is very clear that the variance is an 

indication of the spread. So, the larger the variance the more the density is set to have 

spread around the mean. The smaller the variance, the more the density on the mass is 

said to be concentrated. Now, we have a formal way to define containment. In fact, we 

shall now make a very simple definition. We will say containment in that particular 

domain refers to the variance or if you like the square root of the variance, positive 

square root. So, let us put down this statement formally. We will say containment in a 

given domain refers to the variance in that domain. So, containment in time is essentially 

the sigma t squared quantity and containment in the angular frequency is essentially the 

sigma omega squared quantity. Now, we ask ourselves how small can we make any one 

of these quantities for a function, for a valid function. In a few minutes we will be 

convinced there is really there is no limit. In fact, let us take the haar scaling function as 

an example; let us calculate the variance. 
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You see the haar scaling function phi of t is 1 between 0 and 1 and 0 else and then of 

course, it is very easy to write down the density here. It is very easy to see that the 

squared norm in L 2 P of phi is 1. It is essentially the integral phi t mod squared dt over 

all t; easily seem to be 1 and therefore, very luckily P phi t looks very much like phi t. 

This is how P phi t looks. Our job is easy; let us find the mean. In fact, even before I 

formally set out to find the mean I can estimate the mean graphically. The mean is going 

to be in the centre at half; that is obvious. But, let us do it formally. So, t 0 would be 

integral t P phi t dt over all t and this essentially mounts to integral t dt from 0 to 1 so I 



have replaced P phi t by 1 and I have replaced the limits by 0 to 1. This is obviously t 

squared by 2 evaluated from 0 to 1 which indeed is nothing but half, as we expected; so 

the mean is indeed half. 
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Now, we need to calculate the variance that is little more work but, not too much 

variance. Indeed, the variance would be given as t minus half the whole squared times P 

phi t dt over all t. Once again, noting that P phi t is 1 only between 0 and 1 and 0 else, we 

can rewrite this to get t minus half the whole squared dt and if I care just to replace t 

minus half by another variable lambda, I would get this to be well when t is 0 lambda 

would take the value minus half; when t is 1 lambda would take the value half. This 

would be lambda squared t lambda to be integrated and then we have an easy expression. 

So, let us half cubed by 3 minus of minus half cubed by 3 and therefore, you have 2 



times half cubed by 3 which is 2 by 3 into 1 by 8 or 1 by 12. So, this is the variance now 

sigma t squared is 1 by 12 and therefore, you may take sigma t to be square root the 

positive square root of 1 by 12 which is 1 by 2 square root 3; as you can see it sigma t is 

less than half. 
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So, in a certain sense we do not really use the number half to denote the spread of phi t 

around its mean. The variance does not say it whole all the way to half; it says the spread 

is a number slightly less than half. Most of the energy is contained in that region around 



the mean captured by the variance. In fact, if you wish to be very specific the fraction of 

the energy contained here would be, it is essentially, would be the integral of the density 

between t 0 minus sigma t to t 0 plus sigma t. So, that would essentially be now… I do 

not really intend to calculate this quantity for this case; it is a very simple calculation of 

course integrated with respect to t but, what I am trying to emphasize is, we are asking 

for 100 percent. 
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We are saying, tell me the region over which 100 percent of the energy lies that region 

could very well be the whole real axis. We are saying well, at least a significant part of it. 

Now, in this particular case may be it is a good idea to actually calculate it, how much is 

this really. So, it is actually and this is essentially so; it is t evaluated from half minus, so 

this is easily seen to be, 2 times 1 by 2 under root 3 which is 1 by square root of 3. Now, 

certainly not a very large fraction like 90 percent; what is about 1 by 1 point 7 more than 

50 percent anyway. Incidentally, this fraction is not going to be the same for the different 

function. It depends on the density but, what we are trying to say is that the variance is 

one accepted measure of spread and very often the variance actually tells us where most 

of the function is concentrated. Even in the case of this function, if you look at it 

carefully, what we are saying is quite a bit of the function is contained between half 

minus 1 by 2 square root 3 and half plus 1 by 2 square root 3. So, it is not an 

unreasonable range that we choose. 
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Now, we ask about the variance in frequency of the same function and there we are 

going to have a very pleasant or unpleasant surprise. So, let us look at phi cap omega. In 

fact, we are so interested in phi cap omega; we are interested in phi cap omega mod 

squared and that has the form. Essentially, sin omega by 2 by omega by 2 the whole 

squared mod and you could integrate this you know, indeed as you know the integral of 

phi cap omega mod squared d omega divided by 2 pi would essentially, be the norm of 

phi L 2 R norm of phi the whole squared, which is easily seems to be 1. Therefore, 

integral phi cap omega the whole squared d omega over all omega is essentially 2 pi. 

Therefore, we essentially look at the quantity mod phi cap p phi cap rather which is 

essentially of the form phi cap omega the whole squared divided by 2 pi. Let me sketch 

this; in fact, we are familiar with it, would have an appearance like this is 0, this is 2 pi, 4 

pi and so on. So far, we know this; we have been doing this more than once. 
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Now, it is very easy to see what the mean of this function is. The function is symmetric 

around omega equal to 0 and therefore, the mean is 0. By the way, this is not a surprise 

for many real functions. We would find the mean for all real functions; the mean of the 

density on the frequency axis is going to be 0. The Fourier transform for real function is 

magnitude symmetric and therefore, it is not surprising that for a real function the mean 

as understood in this sense, is always going to be 0 on the frequency axis. Let us make a 

note of that; it is a very important conclusion. For real functions, x cap omega is 

magnitude symmetric; therefore, the mean is 0. Now, comes the variance and here we 



have a very unpleasant surprise waiting for us. I say unpleasant because, maybe we 

should have something better. So, the variance of phi cap would be calculated as follows: 

integral over all omega minus omega naught the whole squared P phi cap omega d 

omega and if we make the required substitutions we have this is essentially omega 

squared times sin omega by 2 divided by omega by 2 the whole squared divided by 2 pi 

here d omega and here we are in serious trouble this is integral minus to plus infinity 1 

by 2 pi sin squared omega by 2 times 4 so 4 goes up there d omega. This is not 

important, just a constant; but, this is trouble, we are in serious trouble here. In fact, let 

me sketch what we are trying to integrate. This function, a periodic function with a 

period of 2 pi sin squared omega by 2 serious trouble as I said. 
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We are trying to integrate a periodic function from minus to plus infinity and obviously, 

that integrate is going to diverge. So, the fear that we had when we started with 

discussion with variance comes out to be true, right in the very simplest case of a scaling 

function that we know. The variance of phi cap is infinite; in other words, phi t is not at 

all confined in the frequency domain, at least in this sense. Now, all this… why in our 

discussion when we talked about time and frequency together and so on? The previous 

lecture we had been worried about the side lobes, as we call them. We said well, it is 

alright to look at the main lobe and talk about presence in the main lobe. But, then we 



have the side lobes and the side lobes are falling off only by the factor 1 by omega in 

magnitude. As you can see, the side lobes have created a problem after multiplication by 

omega squared in the calculation of variance. The side lobes create a periodic function to 

be integrated; a periodic non negative function and we are in trouble. So, this tells us 

again why we have to go much beyond the haar. We have been asking again and again, 

why we cannot be content with the haar multi resolution analysis. Now, we have one 

more formal answer. If we look at the scaling function for the haar multi resolution 

analysis, it is variance. In the frequency domain is infinite it is not at all confined in the 

frequency domain in the sense. 
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Now, it is a natural question to ask what is it that made this variance infinite? Why did 

we have a divergent variance here? In fact, we can answer that question if you only care 

to make a slight adjustment of the expression of variance. The variance of phi cap is 

finally, as you can see, given by omega squared P phi cap omega d omega and this can 

be written as omega squared times phi cap omega mod squared d omega divided by the 

norm of phi cap in L 2 R the whole squared. Now, this norm is a number; it can be 

brought out of the integral. So, I can rewrite this as 1 by norm of phi cap squared integral 

and I also do a little bit of rearrangement in the integral. I will write the integral as j 

omega phi cap omega the mod whole squared d omega. Notice, that if I take the modulus 

of j omega phi cap omega, it is essentially modulus omega squared times modulus phi 

cap omega squared. Modulus omega squared and omega squared are the same for the 

omega real, but then when we write it like this has a meaning. It is essentially the Fourier 

transform of d phi t dt, Fourier transform of the derivative of phi. So, essentially what we 

are saying is this variance is actually the energy in the derivative. 



(Refer Slide Time: 50:24) 

 

(Refer Slide Time: 50:57) 

 

Remember, you would have a factor of 2 pi there because, this is the energy in the 

derivative. But, for a factor of 2 pi… So, this would be 2 pi times the energy in the 

derivative divided by 2 pi times the energy in the function. Please note that this inference 

that we have made is independent of what function we consider as long as the function is 

real. The variance in frequency is going to be this ratio: the energy in the derivative 

divided by the energy in the function. Let us make that remark for real functions, for real 

x t; the frequency variance omega variance or sigma x cap squared is essentially energy 

in dx t dt divided by the energy in x or the L 2 norm squared of the derivative of x 



divided by the L 2 norm of x. Now, we have the answer: why we ran into a problem for 

phi t? As you can see phi t is discontinuous so, when its derivative is considered, there 

are impulses in the derivative and impulse is not square integrable. Therefore, the 

numerator of this quantity diverges off. You look at it from that perspective; the moment 

we have a discontinuous function, we have an infinite frequency variance and there we 

are with this note, then we realize that if we want to get some meaningful uncertainty, 

some meaning bound, we must at least consider continuous function and we shall 

proceed to build on this concept further in the next lecture. 

Thank you 


