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Welcome to you all to the MOOC’s online video course theory of yarn structure. In the last

lecture, we started with module 6 radial migration of fibres in yarns. We have covered about

general fibre path in yarn, how to characterize this. Then, we talked about fibre element, then

we talked about some angles to define fibre path in yarn. Then, we discussed about Treloar’s

ideal fibre migration model.

And at the end we observed that Treloar’s ideal fibre migration model is not able to explain

experimental  results  of  radial  migration  of  fibres  in  yarn.  So we start  from there  in  this

lecture. So the obvious question is that why Treloar’s ideal migration model does not explain

the experimental results of migration. We observed totally different trends.
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So we wish to critically examine the assumptions of Treloar’s ideal migration model. If you

remember, the first assumption was related to definition of radial migration which is no doubt

valid. Second assumption of Treloar’s model was packing density constant at all places inside

the yarn. This assumption although we know it is not experimentally fully correct; however,

this is an idealized situation, so we can to some extent agree to this.



Third assumption was the absolute value of this is same for all fibres present at radius r. This

assumption is idealized and is acceptable. The fourth assumption was nu r is constant, nu r if

you remember, it is the number of fibre segments intersecting cylinder at radius r per fibre per

unit length of yarn. This assumption is probably not correct. Why do we feel so?

We feel so because if we imagine the inside of a cylindrical yarn, then we see that at the core

the volume of yarn is very less because radius is very less, so fibre to fibre contact is very less

there. At the same time, if you think about the surface of the yarn where packing density is

very less.  If  the packing density  is  very less,  then the fibre interaction is  also very less.

Therefore, we feel that this number of fibre segments intersecting a cylinder at any radius r

per fibre per unit length of yarn is probably not constant, it varies.

(Refer Slide Time: 06:27)

Here you see a cylindrical yarn. Near to this region near to the core in this region, the volume

of the cylinder is very less because it is very close to center of the yarn. So its radius is very

small, so fibre intersections must be small here. If you think about a cylindrical region near to

the surface, say this region near to this region as we know packing density of actually yarn is

very less at the surface.

So the packing density is less, so fibre volume is also very less, number of fibre is very less,

as a result interaction among fibres must be less too. Somewhere inside the yarn in between

these two cylindrical surfaces, packing density is significant. So number of fibre intersections

must be very high somewhere near to this cylindrical region because number of fibres is too

high here.



So fibre to fibre interactions, fibre to fibre contact, packing density all are very high in this

region. So therefore it is felt that the packing density in this region is high, fibre to fibre

interaction is very high, as a result it is thought that this nu r number of fibre intersections is

not same at all places inside the yarn, wherever fibre volume is too high it is very high, so

assumption 4 is modified.

So in this  model,  assumption 4 is modified.  What is this assumption 4? Assumption 4 is

modified in this way. Number of intersections, number of fibre to fibre interactions must be

proportional to the fibre volume in a cylindrical region. So what is fibre volume? What is the

volume of the cylinder? 2 pi r*dr*zeta. This is the volume of the cylinder and what is the

fibre volume, multiplied by packing density.

Because as you know, packing density is defined by the ratio of fibre volume to yarn volume.

When the yarn volume is 2 pi r dr times delta zeta*packing density will give you the fibre

volume. So nu r is=Capital C 2 pi dr delta zeta is proportional to 2 pi dr delta zeta*r*mu. If

you look carefully, this quantity within the parenthesis is a constant. This is same for all radii.

So we can write nu r is a constant*r*mu where C is a proportionality constant.

So this way we modify the fourth assumption of Treloar’s model. So we are now discussing a

new theory which is known as model of equidistant radial migration of fibres in yarns. So in

this model assumption 4 is modified in this manner.
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So it is evident that the model path of fibres if we imagine then in this model, model of

equidistant fibre migration model, it starts somewhere here, then it has very less intersections

near to the surface, maximum intersection fibre to fibre intersections happening over here at

the core also is very less; however, if you remember Treloar’s model this fibre intersections

was same was considered to be same at all places.

So in Treloar’s model, the path was assumed to be like this regular fibre path but in this

model  fibre path is  random. So this  is  the basic  difference  between Treloar’s model  and

model of equidistant radial migration.
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Now if you look at what will be the value of period of migration, it is definitely varying in

this model. This period of migration can be written by 2 because you remember nu r was

defined by this so when small n is=1, how many fibres or fibre segments will intersect the

axis in order to get a period p? 2 so is nu r/2 right. So you can write period is here, now

varying, now what was nu r, nu r was capital C r*mu right.

We consider this 2/C is a constant because capital C is a constant, we can write as a small c.

So we write small c*r*mu right. So nu r is=2/p and p is=small c/r*mu. So 2 r mu/small c. So

this is the expression for nu r. You see here if r varies nu r will vary because c is a constant

and mu is also assumed to be constant in this model too. So this is how this model is different

from Treloar’s model.



Now we will go back to the fundamental equation of radial fibre migration. We will substitute

nu r there and we would like to see what is the expression comes out and what does that

expression tells to us.
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So if you remember the fundamental equation of radial fibre migration, mu/nu r-1, this was

the fundamental equation of radial fibre migration. Now we substitute nu r this and tangent

beta 2 pi r z. We will make these two substitutions into this expression and we would like to

see what  it  comes  out.  So tan  square  beta  let  us  write  as  tan square beta  here.  We will

substitute in the denominator mu/2 r nu/small c*n s z square tangent beta 2 pi r z square-1.

So what it becomes is 1+tan square beta/mu*2 pi r z*c/2 r mu n s z square-1 right. So we

would like to see what it comes out. Numerator we do not change; denominator you would

like to see what is coming out. These two and these two cancel out. This mu this mu cancel

out.  This z this z cancel out. This r this  r cancel out. So we are left  with a simple form

pi*c/n*s square-1.

Pi is a constant, small c is a constant, n number of fibres in the cross-section of the yarn is

constant, small s is fibre cross-sectional area that is also constant. So pi c/ns is a constant. Let

us assume this is equal to capital Q which is a constant. Then, we write as Q squared-1. This

is  a  very  important  expression.  This  expression  is  known  as  fundamental  equation  of

equidistant migration.



Last expression is known as fundamental equation of equidistant migration. If you like to

know how to find out Q, then we can do one thing.
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So Q is=pi times small  c/n*s. Now what is  ns? Number of fibres in the cross-section of

yarn*cross-sectional  area  of  one  fibre,  so  this  is  the  cross-sectional  area  of  all  fibres,

substance cross-sectional area S0. What is S0? S0 is capital T0/rho is the starting fineness of

parallel fibre bundle which is equal to fineness of the yarn*1-retraction. We discussed this in

helical model of fibres in yarn.

Now we know yarn diameter square take this form, so T/rho is=pi mu capital D square/4. If

we substitute this here, then pi mu D square/4*rho 1-retraction right. Then, if you come back

here in Q, so pi times small c/pi mu D square/4*rho 1-retraction. What we see that this pi and

pi will cancel out, so sorry this rho will not be here. So we can write it further small c/D/2

square mu*1-retraction.

So this is about capital Q okay. Now we would like to derive the expression for fibre path at

different radius, so zeta versus small r. So we go back to our fundamental equation of radial

migration.
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Tan square alpha is=tan square beta+1/Q square-1,  so tan alpha will  be equal  to +-1+tan

square beta/Q square-1. So what is tangent of alpha? dr/d zeta from definition, dr/d zeta=+-

root over 1+tangent of beta is=2 pi r times z square/Q square-1 right. So we can write further

dr/root over 1+2 pi r z square is=+-d times zeta/root over Q square-1 right. So if we integrate

this +-this. So we need to do this integration. Let us think about this part.
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So integration dr/root over 1+2 pi r*z square. How to integrate this? Let us assume 2 pi r*z

is=x so integration by substitution. So 2 pi z dr is=dx so integration dr is dx/2 pi z and this is

your x no s square+1 so 1/2pi z is a constant, it can now come out of the integral. This we

write in a little different manner. Let us multiply by this in the numerator; it must be the same

in the denominator also right.



Now we can further divide this by this quantity. So what we will get is 1+x by into dx. Now

we will consider this quantity as Y.
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So we rewrite the last step for our convenience. This is=1/2 pi z integration 1+ divided by

1+x square+x*dx.  Assume root  over  1+x square+x is=Y. So this  is  2x/this+1 dx=dy. So

1+x/root over 1+x square*dx is=dy, so then we can write 1/2pi z, this is your dy and this is

your Y. So integration dy/Y is logarithmic Y, 2 pi z ln*Y, what is your Y? Y is root over 1+x

square-x, what is your x? x was 2 pi r z 1+2 pi r z square-2 pi r z right.

So 1/2 pi z logarithmic of root over 1+2 pi r z square+ sorry this must be +2 pi r z. So this

was one integration. What was the second one?
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Second one was simple one, d zeta/this. Now here this is constant d zeta, so root over Q

square-1*zeta okay. So what was our original form of integration? So our original form of

integration  was  this  dr/root  over  1+2  pi  r  z  square  is=+-integration  d  zeta  this.  So  this

integration we found as 1/2 pi z ln root over 1+2 pi r z square+2 pi r z is=+- zeta/root over Q

square-1+say K, K is integral constant right.

So we can rewrite it further 1+2 pi r z square+this is= +-2 pi z/root over Q square-1*zeta+K.

So this expression will give you the fibre path inside the yarn. Now if you put different values

of r, then you will realize that this gives you an almost straight line. So we can say that the

infinitesimally  small  curve  of  a  fibre  follows  almost  a  linear  path  inside  the  yarn.  So

imaginatively inside the yarn it follows this kind of straight line.
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So in the last expression if you put different values of r then you can find out different values

of zeta. If you plot them r versus zeta you will obtain a curve which will be resembling very

similar to this straight line. So this infers that the path of infinitesimally small fibre segments

inside a yarn is very near to a straight line. So 1+2 pi r z square+2 pi r z is=2 pi z root over

zeta+K.

So if you take different values of small r, you will get different values of zeta. If you plot, you

will get such behaviour. Now we said this model as model of equidistant migration of fibres

in yarn why we said so? So why this model is called as equidistant migration of fibres in

yarn? So we would like to talk about it now.
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So name of the model we will discuss now. If you remember, one point of time we derived

this expression. In fact,  this expression we derived at the beginning of this module, dr/dl

is=tan alpha/square root of tan square alpha+tan square beta+1. Now what this model gives?

This model gives us tan square alpha is=tan square beta+1/Q square-1 right. So tan square

beta+1 can be substituted as Q square-1 tan square alpha.

So what we will get, dr/dl is=tan alpha square root of tan square alpha+Q square-1 tan square

alpha. So in the denominator tan square alpha if we take then what we see 1+Q square-1, so

what you will get, we will get tan alpha/Q tan alpha right. So dr/dl is=+-1/Q right. What does

it mean? This means dl is +-Q times dr. Look at this expression, dl is +-Q times dr, dl is the

change in length of fibre segment, dr change in radius, Q is a constant.

So the fibre length increases equidistantly with the steps of radius. That is why this model is

called  as  equidistant  migration  model.  That  is  why  this  model  is  called  as  equidistant

migration. Now we will consider some approximations.
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If you remember in Treloar’s model also we considered two approximations, one was slow

migration, period of migration was very high, so slow migration, so the factor K capital K

there was very high. Second assumption was tan square beta is much <1. In this case, we will

consider the same that is tan square beta is much <1 is valid for all radii r. So what will

become tan square alpha tan square beta+1 Q square-1 right.

Now if tan square beta is very small, then 1+ a very small quantity is approximately 1. So we

can write it as 1/Q square-1. So tangent of alpha will be +-1/root over Q square-1. What is

tangent of alpha? dr/d zeta 1/root over Q square-1. So root over Q square-1 dr will be=d zeta.

So if we integrate this expression what we will get? We will get we will write here, +- root

over Q square-1*r is=zeta-small k, small k is integral constant right.

So zeta is=+-root over Q square-1*r+k, look at this expression, this is an equation of a cone.

That means the fibre path approximately follows conical inside yarn. So how does it look

like?
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Imaginatively, this is how the fibre path will look like. So it starts from somewhere here, it

touches the surface. So this is how it touches, then again it goes inside, again it comes out

touches the surface, goes inside. So this path resembles path of a cone. So in equidistant

radial migration, if we consider the approximation then fibre path follows cone. Otherwise,

we can say the fibre path inside a yarn approximately follows a cone.

So this is all about equidistant migration of fibres in yarn. Now the very important question

arises whether this model is able to explain the experimental results correctly, so this is how

is the comparison between theory and experimental results.
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Comparison, theory versus experiment, what you see there in this graph along the x axis,

tangent beta 2 pi r times z is plotted, along the y axis absolute value of tangent alpha*tangent



beta. So this region is same in the comparison of Treloar’s model, so this is basically the

experimental  region.  All  experimental  data  fall  in  this  region  right.  So  this  is  your

experimental region.

Now two  types  of  curves  are  there,  one  is  original,  second  we  see  approximation.  The

original we have derived tan alpha*tangent beta is=root over 1+tan square beta/root over Q

square-1*tangent beta. So this was original fundamental equation. So this continuous thick

lines black color for different values of Q we obtained. For example, Q is=7 here, so this line.

So this line is obtained from this expression right.

And also you see one approximation line, approximation line is dotted line is this line for Q

is=7. How we obtained this  approximation  line? The approximation  line  we obtained by

tangent alpha*tangent beta is=tangent beta root over Q square-1. So if you substitute Q is=7

for different values of tangent beta, you will obtain this dotted curve. For Q is=10, you will

obtain this dotted curve.

For Q is=3, you obtain this dotted curve 13, for Q is=13 you obtain this dotted curve, for Q

is=16  you  obtain  the  last  one  dotted  curve.  So  what  is  interesting  to  see  here  that  the

equidistant  migration  model  shows  a  very  good  correspondence  between  theory  and

experiment. That means by changing one assumption in Treloar’s model that was assumption

4, nu r is proportional to radius r.

We can see that the derived model explains the experimental results satisfactorily. So this was

about the model of equidistant  migration of radial  fibres in yarn. Now we will  have one

numerical exercise now. So the numerical problem is set in this manner.
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A carded ring spun yarn of 36.8 tex count and 497 meter invers twist was prepared from

viscose fibres of 38 millimeter length and 3.5 decitex fineness. This yarn was characterized

for  the radial  fibre migration  in  this  yarn  by tracer  fibre  technique  and we obtained  the

following results. For different value of small r/1/2 of yarn diameter 0.1, 0.2, 0.3, 0.4, 0.5 we

measured different values of period of migration in millimeter 12, 6, 4, 3, 2.4.

The  values  of  packing  density  and  coefficient  kn  were  found  to  be  0.536  and  0.93

respectively. Find out the fundamental equation of equidistant radial migration of fibres in

this yarn. So this is how is this problem. So let us solve this problem.
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What is given is mu 0.536 and coefficient kn is given 0.93, also given yarn count capital T

36.8 tex, twist is given 497 turns per meter. So you have to first find out yarn diameter. As we



know from yarn diameter module 2, so if you substitute the values here 4*36.8/3.14*0.536

viscose fibre*1510 kg per meter cube is density right. So this value you will obtain 0.2415 in

millimeter.

Let us consider it as 1500. Viscose fibre density 1.5 gram per cc. Then what is given here? In

the table, this value is given 0.1, 0.2, 0.3, 0.4, 0.5; p is given 12, 6, 4, 3, 2.4. From there we

can find out r because we know now D, so r is=so r/D/2 is=say 0.1, so r is=0.1*D/2, D is

given here. So if we do this then we will find out 0.0121. 0.0242, 0.0363, 0.0484, 0.0605.

Roughly, we will find these values.

Now what was small c, r times p times mu in equidistant radial migration we know r, we

know p, we know mu, so if we multiply these three then we will get this value 0.0778. We

will see that this value will be same in all other cases right. So we obtain now this table. We

have to now find out fundamental equation of equidistant migration.
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As we know, the fundamental equation is tan square beta+1*Q square-1, where Q is pi times

c/n*s. The value of c we obtained as 0.0778. We have to obtain values of small n number of

fibres in yarn cross-section and small s that is fibre cross-sectional area. How to find out

small n? Small n is=coefficient kn*yarn fineness/fibre fineness. The value of coefficient kn is

given here 0.93*36.8 tex/0.35 tex.

So this value will be coming to 98, so this is your 98*small s. How to find out small s? Cross-

sectional area we know this relation from module 1, so this was 0.35/1500 so this value will



be equal to this. So if you substitute 2.33*10 to the power -4, this will be coming is equal to

10.70. So the fundamental equation becomes tan square beta+1/10.7 square-1. So this is the

fundamental equation of radial fibre migration in this yarn.

So for different value of beta, we can obtain different value of tan alpha from this example

also. So this completes the numerical problem in this module. Thank you very much for your

attention.


