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Mechanics of Parallel Fiber Bundles

In earlier lectures, we spoke about the terms like yarn count, yarn twist, packing density;

also, we mentioned yarn diameter.
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RELATIONS AMONG
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How is the relation among these often used quantities? It will be theme of today’s

lecture.



(Refer Slide Time: 01:06)
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The relations among count, twist,
and diameter of yam are related
to specific geometrical and me-
chanical properties of yarn, The
basic quantity “"under” these rela-
tions is yam packing density,

The 1 traditional theoretical mo-
del regarding these relations was
introduced by Koechlin in 1828,
He studied the yams produced
from same fibrous material using
same technology for analogical
end-uses, At that time enough
scientific knowledge about the
mechanics of fibrous assembly
and yam geometry was not
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1

THEORETICAL MODEL
LIKE KOECHLIN'S
CONCEPT

Initial assumptions
(problem limitation):

« Same fibrous material

» Same type of technology

» Same kind of use
Koechlin’s 15t assumption:
(Substit. of know. of mech.)
Packing density is a function

known, so it was necessary to
substitute the unknown relations
byithie first categorical assumption
as sldwn here,

MPTEL

of twist intensity ONLY,
= f(K) (k=nDZ )

It is nothing new. 200 years ago, mister Koechlin in one French town Mews, presented
his first model about the relation among these quantities. So, we start a very alternatical
concept, which is roughly 200 years old. This model is usually quoted as a model-like
Koechlin. Let us accept initial assumptions, which limited our program. Let us think that
our yarns are produced from same fibrous material, from same type of technology and
from same kind of use or similar kind of use. | will not repeat these assumptions, but we

automatically will think about this limit of yarns.

The Koechlin’s first assumption substitutes our knowledge of mechanics. We discussed
earlier about the possibility how to calculate the relation between pressure and packing
density. The fibrous material is compressed due to twist; is not it, in the yarn. But, in the
time of mister Koechlin, this relation was not known, so that he must use some
assumption. This assumption is here. Let us assume that packing density is a function of
twist intensity only. Is in reality packing density the function of twist intensity?
Evidently, yes. When | have higher twist, the twist intensity is increasing and the packing
density is increasing too; it is evident. But, the assumption is that the packing density is
the function of intensity of twist only. Later, we will show that packing density more

precisely is the function of intensity of this, but also, it is a function of other quantities.
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Consequences of Koechlin's 1t assumption
Twist coefficients - -
i = -\/r )
- areal Koechlin's type: o, = Z+/5 = :jﬂ o = : q‘}k
...function of « only! . —
e c W f(k)p
- common Koechlin's type: o= 7T = k:/\/@ o= ;f :
...function of « only! = i
Diameter multipliers 5 o ~
- areal multiplier: D=KVS, K;=——, K;=——=x
...function of « only! m VY ()
-.common multiplier: p=xJ7 K=—"—, K= _:
L function of « only! i VI RK)P
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In Koechlin, mu is a function of kappa; where kappa was pi D Z — twist intensity. You
know it from our lesson 1. How are the consequences of Koechlin’s first assumption?
We will use equations known from our lesson 1 based now in the form, which accepts
first assumption of Koechlin. We derived areal Koechlin’s type of twist coefficient; we
called it as alpha s. It was Z times square root of S; yarn twist times substance cross
sectional area of the yarn. And, after arranging in lesson 1, it was also this expression,
where kappa is twist intensity and mu is packing density; is not it? So, generally, alpha is
a function of two variables: kappa and mu. But, first assumption of Koechlin says that
the mu is function of kappa, so that now, alpha is a function of kappa only. Similarly,
this areal Koechlin’s type of twist factor is using the theory.

In textile practice, use some common Koechlin type, which is this here. This expression
was derived in lesson 1 too; more easier rho — specific mass of fibrous material. And
similarly, the alpha is given by such equation. You can see that alpha as well as alpha s
as well as alpha are functions of kappa of intensity of this only; (Refer Slide Time:
06:13) only one variable on the right-hand side of these two equations. And, how it is
these diameter multipliers? Areal diameter multiplier for D was K s; and K s was 2 by
square root of pi mu; back to our lesson 1. Now, because mu is function of intensity of
twist only, K s is a function of kappa only. And similarly, the common multiplier K,

because this is K times square root of T, is after such arranging function of intensity of



twist only. These four quantities are now based on the first assumption; the function of
only one variable — it is kappa; it is intensity of twist.

(Refer Slide Time: 07:21)
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Second assumption tells us how
to twist the yarn. Let us consider
yams of different counts produ-
ced from same material using
same technology for analogical
end-uses, We would like to have
all yamn properties similar in this
case. But, in reality, it is not pos-
sible. Therefore, we must go “one
step back™ what will happen if
we consider only geometrically

Koechlin’s 2" assumption:
(Directed to suitable twist)
The twist intensity of yarns of
different finenesses (counts)
shall be same. « = constant
Consequences of Koech-
lin’s 2" assumption

similar yarns? (Not all values, only Twist coefficients

those that are not related to fiber o.. =const. | o= const
fineness.) Then, the other proper- L

ties may be also more or less si- | Diameter muft,gbﬂbrs

milar. In case of geometrical simi- e .

larity, the cor;‘esponding angles s = const. || K" = const
are-same, So, the angles [, must i P st ac.
FaSme and therere Yl Packing density (from 1+ as
mtegdities « must be same too. sumption) = const

The second Koechlin’s assumption is directed to suitable twist, said that the twist
intensity of yarns of different finenesses, different counts, shall be same; kappa shall be
constant. What is the logical root of this assumption? This logical root based on
geometrical similarity — you know that when we have different geometrical objects,
which are similar means geometrically similar, then corresponding angles are same; is
not it? And, Koechlin thought that the yarn — some course yarn, some fine yarn; both will
have same possibility; for application, we will have some similar properties; especially
mechanical properties, geometrical properties when they are same from point of view of
geometrical similarity are similar. Therefore, if these ideas we accept as logical root,
therefore, also, the angle beta d — the angle of peripheral fiber in our idealized yarn, must

be same in each yarn for the same use and so on.

And, what is the same angle? Tangent of peripheral angle, tangent of beta d is intensity
of twist kappa, so that kappa shall be constant. What is now with these four equations
and the first assumption when we accept that kappa is constant? In these four
expressions, you do not know this function f, but we know that it is a common function

for each equation; by the way, monotone increasing function it must be. So, when we use



kappa is constant, then evidently, alpha is alpha K s (Refer Slide Time: 10:05) as well as

K, must be constant; and, mu is constant too; is not it? Yes.

(Refer Slide Time: 10:15)
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;I'rt;tz_u delrlived ’ gqtueaté(lnns are | Application of results
iionally used in textile praxis. ; it .

The calculation of suitable yarn a) Suitable yarn tWISt_ J

twi;t is o&endn&cesap |for \,.'ar‘nf Z= rf./ﬁ, where « is const.;
production an e calculation o 10 e Mt a2
yam diameter is necessary for e.g. card._co. o =120m ktex
fabric manufacturing. Unfortuna- | b) Yarn diameter :

tely, the resulting values are not D= Kﬁ where & is const.:
enough precise! B g 2 S W
Why? According the experiences, |e.g. card. co. A =0.039%5mmtex ye
the assumption about the geo- .
metrical similarity is acceptable, 1l Simple, but not enough

On the other hand, the twist in- ica I

tensity « is not a function of pac- recise ;.

king density j ONLY. (It depends | — 4 is different for different
. on yarn count too.) So, the first

assumption is not enough precise, groups of yarn count.

porce om ggala rt;;f:ccg;gs of | = Calculated yarn diameter is
o i L not very precise.

Loy

We said that good idea based on Koechlin’s model, Koechlin’s concept, is to have the
same angle — peripheral angle of fiber, because geometrical similarity on each yarn.
Now, this idea we can say to the people in spinning mill, you must measure the angle of
peripheral fiber in your yarns. You can imagine what they can answer to you when you
give this idea to your spinning mill. Nevertheless, it is possible so much for a region,
because we said that the result alpha s, alpha, K s and K must be constant. So, we do not
need to measure the angle; we can say, for example, for practice, in spinning mill, alpha
must be constant. What is alpha? From definition of alpha of twist factor, twist

coefficient, we can say that twist is alpha by square root of yarn count, means finenesses.

Then, we can say to working people in spinning mill, yes, you must twist each yarns. So,
then, alpha is... | do not know what based on your experience in such spinning mill; for
example, 120 meters to the power minus 1 kilo tex to the power one half. This is
dimension — physical dimension of alpha; this is metrical alpha (Refer Slide Time:
12:05). And, when the people will produce another yarn count, then they use the same
alpha. And, using this equation, they can very easily calculate in spinning mill, which of

twist is necessary for this or that yarn count. This is the first result of Koechlin’s theory.



The second result is, write it to our specialist in weaving technology. In weaving
technology, you know, is necessary to know the yarn diameter, because covering cover
factors, maybe covering can similar quantities, which defined the density of woven
fabrics and so on. How to obtain the yarn? How to obtain the yarn diameter? Koechlin’s
theory said it is easy. Yarn diameter D is parameter K times square root of T and K must
be constant. Diameter multiplier (Refer Slide Time: 13:27) must be constant for given
material, given technology and given type of use of our yarns. Maybe based on our
experiences, we can say, it must be 0.0395 for example. And, people can calculate it;
very easy, very elegant theoretical model, 200 years old, but not too enough precise. It is
very often used, because roughly, it is possible to apply it, but when you want to work
more precisely, then these results are not enough. Why? The practical experiences say
that such alpha must be a little different for different groups of yarn count, so that in
textile hand books, you can read that from count, these two counts, usual use of this
alpha; then, from count these two counts, this interval of counts and a little larger alpha

and so on and so on. It is typical for hand books for spinning practice. This is one way.

(Refer Slide Time: 15:05)
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EMPIRICAL CORREC- —
TIONS OF KOECHLIN'S | Author |Year “l::):: %
THEORY Koechlin | 1828 0.5
a) Suitable yarn twist Staub [ 1900 0.6
Z=afT Johansen | 1902 0.644
where ¢...empirical value 1905 | 0.785 warp
of twist exponent, 05 Laetch  |1905] 0.720 weft
: + 475 1941 0.62-0.75
b) Yarn diameter - 19371 0565
D=0 T" veser | og| 047
where ¢, w, v...empirical Phrix  [1942]  0.666
values of parameters, Neckaf |1971] 0.577,0.6
0y (round w=056) and | salaba i;_\ :::i;‘ “l""_“_l:l
v (round v = -0.22) el L R

Second empirical way is to empirically change the Koechlin’s equations. On the place
square root, it means power to one half. It is possible for yarn twist to use the ratio alpha
by T power to some exponent g; where, g exponent of twist is an empirical value; a little
different from 0.5. Ruther fortress studied a problem in relation to this equation, which of

exponent is the best; Koechlin’s at 0.5; is not it square root? Then, lots of others have



different ideas based on this or that experimental experiences. The yarn diameter can be
empirically generalized to such form, D is some parameter Q alpha times yarn count

power to some exponent times alpha power to another exponent.

An example for these values may be good for carbon coated yarns is here. This exponent
w is usually something around 0.56 in this equation and the exponent by alpha is usually
minus 0.22. But, my experiences may be another (( )) can see another world based on

pipe of cotton beds or pipe of technology; based of lot local influences.

(Refer Slide Time: 17:26)
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The problems with model like A SIMPLE

Koechlin's concept initiated inte- MECHANICAL MODEL

rest for deeper knowledge of in-
ternal yam mechanics and moti-
vated us to think alternative ways

Assumptions - fielical model:
1. All fibers have the helical

for solving the problems. The
concept of radial forces equili-
brium based on the differential
equation (). Hearle et al.) is ge-
neral, but very complicated and
requires knowledge on some not
yet enough known inputs (e.g.
stress-strain tensors relation),

Our present model is “something

shape

2. All helixes have common
axis, which is yarn axis

3. All helixes have the same
sense of rotation

4. Each fiber coil have same

in-between.” It is not so difficult hight )
as the concept of radial forces | Jdleal helical model:

equilibrium and the present know-
ledge about the mechanics of fibr-
g dssemblies may be sufficient
far i

MPTEL

5. Packing density is same in
all places inside the yarn

Why the model of Koechlin is not enough precise? His second assumption is very good,;
and, it is the earlier after Koechlin’s experiences show that the geometrical similarity is
very good idea. What is not too good is the first assumption (Refer Slide Time: 17:55)
that the packing density is a function of twist intensity only. | mentioned it; Koechlin in
1828, had a chance to use some models, which respect the physical relation between
pressure and compression of fibers inside of the twisted yarn. It exists some second way
how to solve it. This way is in my check book, which professor Ishteyak gave; he can

show you, it will be especially interesting for you.

The second way is go out from some differential equation of equilibrium of radial forces
inside of the yarn body. And, based on tools of continue mechanics solve this problem
for you as a problem of continue mechanic. | proved it earlier, lot years ago. But, there is
a problem here. To this time, we do not know the relation between the stress tensor and



the strain tensor. Stress tensor and strain tensor are some structures very popular to say;
to these days, we do not understand enough general the relation between stress and strain
in multidimensional, three dimensional case especially for fibrous assembly. Therefore,
we can calculate, we can derive the differential equation, but, we have not enough well
input to this equation. We must make some assumptions, some simplifications and so on.
All these are very difficult from point of view of mathematical tools; you must solve

some differential equation and so on.

Nice theme — it was lot years ago; the theme of my PhD thesis. But, to these days, this
way is not... and the position to be practical tool for application. Therefore, we derived
something in between, which is very easy, but not too precise theory of Koechlin. And
physically, the best version differential equation of radial equilibrium solving of this one;
something in between, which is easier, not so precise from point of view of Physics, but
better than Koechlin’s type. Let us assume the non-assumptions from ideal helical
model. All fibers have the helical shape; all helixes have common axis, which is yarn
axis; all helixes have the same sense of rotation; each fiber coil have same height. We
mentioned these assumptions when we analyzed the helical model. And, fifth — packing

density is same in each place in the yarn.

(Refer Slide Time: 21:59)
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Our model is based on the helical | Fiber geometry — one coil:
geometry of fibers inside the Gen I D
yarn. A fiber coil (general) lying M £ &
on the imaginary cylinder of ra- |fiber ? *
1
|

dius r, is shown on the figure. We .
unwind the surface of this cy- an Vle'

linder and obtain the triangle, tgpp =
whose geometry determines the

8 .
fiber slope angle . = i
It is known from analytical geo- 1/2 i
metry, that the curvature of the - i1/
helix is given by the equation on tgP = J
the left-hand side. Obviously, the — 27| -
radius of curvature (radius of the — L4

so<called osculating circle) is the | First cur-  [©
reciprocal value of the curvature, T T
These equations help to derive | Vature (flection): k =sinp/r

the-gentripetal force per unit volu- | Radius of curvature:
g0k fiber as follows, 7
. = lf‘fq . h= i",/h'lll' U k

MPTEL

Then, it is more repetition for a helical model. Let us imagine some general fiber inside
the yarn body; yarn body is this. Here schematically, the cylinder having diameter D.



And, inside on some general radius r. This thick black cylinder is like one fiber — red
fiber on the general radius r helix shape. After unwind of this cylinder, we obtain such
triangle, which is possible to the tangent beta, which is 2 pi r Z; tangent betais 2 pir Z is
known for you from our earlier lecture. When you open some hand book about the
mathematic and when you find some properties of different curves, also for 3D curves,
space curves, you can read also what is so-called first curvature — also, means flection is
used. This first curvature of three dimensional curves in the space in the case of helix is
constant, independent to body to points on which you measure it. And, it is k 1 — sine of

beta by r; you can read it in each hand book.

Reciprocal value of first curvature — it is radius of curvature; it is the radius of some
rings, which can approximate our curve in a very theoretically infinitesimal path. You
know what this radius of curvature is, so that the radius of curvature of such helix is r by

sine square beta; is not it?

(Refer Slide Time: 24:33)
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Centripetal force per unit volume of fiber
UV...fiber element
F...axial fiber force
dep...elementary angle
Centripetal force of TV ||

dP = 2F sin(dgp/2)=
JFLIF FLl(p
Volume of TV

s...fiber cross- sect.l area
dI'=r dps=rdes/sm’p
Centripetal force per
unit volume of fiber :
f,&@wr':mqu rdps/sin’ ), B =Fsm®B/(rs) (tgh=2mZ)

Let us think now about a fiber lying in yarn body on a hypothetical cylinder of harass. It
is not from metal; it is only imagination. On a radius r, this is the red fiber. Let us think
about the elemental part of this fiber — part UV. This is the radius of curvature, r k. On
the angle here is differentially small; it is angle D phi. In the fiber, let us be some axial
force — capital F — axial fiber force. So, when we make the picture of this part especially
here, that you can see UV — our elemental part of infinitesimal small part of fiber on



which is tangential force F — axial force in fiber. This is the angle phi, one half; it is no
wider the straight line is not to see here. This is so-called angle d phi; and, this is one half

and this is second half of angle d phi; so, d phi by 2 and d phi by 2.

The projection of force F to the vertical direction is F times sine of d phi by 2. And, we
have two forces; then, the resulting radial force is two times F sine of d phi by 2. If angle
is very small, we can write that value of sine is same that the angle in radial in each
theoretical work, we shall calculate or think about the angles with radials. So, the sine of
d phi by 2 is d phi by 2, because it is elementally small. Then, we obtain F times d phi.
Volume of such differentially small part of the fiber is which of fiber cross section is s.
So, the volume of this d V is length of the fiber times cross section; length of the fiber is
a part of ring on the radius r; it is radius r k; is not it? And, angle is d phi. So, r k times d
phi is length of fiber times fiber cross section; it is this. This is on the r k, we use r by
sine square. Once more — length of part UV of fiber is which? Radius times angle.
Radius is r k; angle is d phi. So, r k times d phi is the length UV. Now, it is clear. This is
the length; length times r k times D phi; length times fiber cross section is volume of the
red fiber segment or elemental segment. It is easy; is not it? And, use now on the place of

r k; our earlier expression we obtained is here; | think now it is clear.

Let us calculate centripetal force per unit volume of fiber. ((')) is dP here by the volume
of fiber. So, dP by dv. Using our equations after rearranging, we obtain this force; P 1 is
given by F times sine square beta by r s; beta is given by equation tangent beta is 2 pi r
Z. Back to this picture (Refer Slide Time: 30:10) — Theoretically, each fiber each fiber
compressed the material or can bring some (()) compression, but really, it cannot be too
real. They are fibers around yarn surface. In reality, the packing density in vicinity of
yarn surface is in reality small. The fiber to fiber contacts are not so intensive; different
silly pitch fiber is possible, so that the friction is not fully used; so that the radial force
from such fibers is not too high; you can imagine. Second — the fibers around yarn axis —
there is lot of fibers. They have good normal forces for friction, but they are need to
straight line; the angle beta is very small; the radius of curvature is very high. Therefore,
the radial component from such fiber is extremely small. Result — these fibers also do not
influence significantly for compression of fibrous material inside the yarn. So, this is the

simplification.



(Refer Slide Time: 31:58)
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Our model is based on the idea of
compressing zone. Around the
amn surface, the interaction of fi-
Is is not very intensive, becau-
se no fiber in this layer is com-
pressing from outside, Therefore,
number of contacts, frictional for-
ces, packing density, and fiber
axial forces 7 are very small. So,
specific centripetal force 7, must
be very small too. Around the
yarn axis, the slope angle  is ve-
ry small. This means the curva-
ture of these fibers is also very
small, hence the radius of curva-
ture is very high and so, the spe-
cific centripetal force 7, must be

Compressing zone

Imaginations.

1. Around the yarn surface,
packing density, number of
contacts, frictional forces, the
value of ¥ = P, are very small
2. Around the yarn axis, the
angle p and the curvature k,
= P, is very small
Assumption (simplified):
Significant centripetal force is
present only in the (ge&en)

compressing zone in-between
the layers mentioned before,

very_small too, Only the compre-
ingd Jone in-between both of the-
5 |a¥ers can produce a significant
EiEipetal force £

Significance centripetal force is present only in the green compressing zone in-between
the layers mentioned before. So, now, whole material, but only the material in some
(Refer Slide Time: 32:13) schematically green layer has significant influence to

compression of fibrous material.

(Refer Slide Time: 32:35)
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Pressure developed in the compressing zone (thick.«)
Cross-sectional area of compressing zone:

m(r+af2) —=n(r-af2) = It[rz +ra+a f4-1 +ra 7¢13/4:| =2mra
Total volume of compressing zone: I, = 2nral =

Fiber volume in comp. zone: I, =I"_ .= 2mralp
Total centripetal force in compressing zone:
P=RV = [F.sm3 [5/( s }} 2mralp=Fsin® P 2naly/s
Assumption (simplified): The centripetal
force P acts on the cylinder at radius »
(We centralize all partial forces at the radius r)
Surface area of cylinder with radius »: 4= 2nr/

sregsure developedin = P Fuin’p 2nalp/s  Fsin®p
ompressing zone: ” = |~ A =

hapTEL

The thickness of this green zone go under the symbol a. This a — middle radius of this
green layer is called r, so that the radii of this green layer are going from r minus a by 2

to r plus a by 2. The area of this green annulus is shown here is 2 pi r a evidently. Total



volume of compressing zone is green zone. It is V ¢, a — 2 pi r a times |; volume area
times r. Fiber volume in compressing zone is (( )) volume times mu from definition of
packing density. So, 2 pi r a | times mu. And, the total centripetal force in compressing
zone, P is P 1 times... P 1 we know; we know P 1 times V a. Using this equation after

more rearranging, we obtain such equation.

Our assumption for simplification is the centripetal force P acts on the cylinder at radius
r. They are fibrous like on the smaller radii in our green zone as well as some other
fibers, which are lying on higher radius than r — the average layer of our zone. But, we
make it easier and we all affects concentrate to some average radius, our radius r. Do
understand this assumption. Then, how is the surface area of the cylinder on the radius r,
that is, 2 pi r times... And, how is the pressure, which creates our yarn, which
compressed our yarn. The pressure is force by A. We calculate this A on the average
radius of our green zone; yes, using our equations for P and for A — this is for P; this is
for A — (Refer Slide Time: 35:39) we obtain this after small rearranging. The pressure is

given by such equation; this yellow equation.

(Refer Slide Time: 35:52)
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F, = F cosf...axial component of B

F,...tangential component of 7 F.h 2 F

5" = s/cos p...fiber sectional area
Normal stress:
= i = [foonp = Ecosz B, F= rn
s sfcosp s cos”
Rearrangement of pressure (compres. zone)

yarm
- AXI8

drec-
tion

s |~.u1 ‘B o= cap e 15) _gap ., rZ ) =

cos’B) rs r
___Zoap ('J'EJEH 2r ‘J _ Zoap | 2oap | 2r ‘
CEEREAR
: y | .

You see here is some part of some fiber. In such fiber, the axial for F exist. The axial
component of this data — the force F — the direction of fiber axis; the component of this
force in direction to yarn axis is a component F a; is not it? Axial means the direction to

yarn axis. It is evident that F a is F times cosine of beta. By the way, it exists also such



tangential force, which from all fibers together give some thousand moments in yarn,
but, it is other (()). The green section area of the fiber s star is — we mentioned it lot of
times earlier — it is s by cosine of beta, so that the normal stress on the green area — it is
normal force to green area F a by area s star; F a by s star. F times cosine of beta by s by
cosine of beta when we use expressions derived earlier. So, it is F by s times cosine

square beta. So, F therefore, is sigma s by cosine square beta. That is rearrangement.

Now, our formula for pressure — using this expression, p is possible to write also the
black symbols here; identical is our earlier equation (Refer Slide Time: 38:29). When |
multiply and divide by s, | obtain this expression (Refer Slide Time: 38:37). And, in
brackets, — what is it in brackets? Now, this is the normal stress sigma, so that from this
equation, we can say that this is sigma s by cosine square beta; and, this is force F. We
can write this equation — tangents beta — it is 2 pi r Z; use 2 pi r Z on the place of
tangents beta. Now, we black symbols are the same expressions as here. Here we
multiply and divide by blue D, yarn diameter; we also multiply and divide by green D,
yarn diameter; then, pi D z is kappa intensity of twist. So, we can write this expression
(Refer Slide Time: 39:52). And, D yarn diameter here is D s by square root of mu. D s
was in our lecture 1 — substance diameter — diameter of hypothetic yarn, which has not
added inside of body. Yes. So, for pressure, we obtain now this expression after such

rearrangement.

(Refer Slide Time: 40:25)
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Let us continue our work with rearranging. This is repetition from last slide. We can
graphically calculate; write it also — these black symbols. And, we multiply and divide
by 4 times pi. And, we do it. Then, this expression when you compare it with equation
for alpha s in our lecture 1, you can see if alpha square... So, we can write it in such
form. Last, multiply and divide blue diameter of fiber; we divide by fiber diameter here;
and, divide it in denominator; it mean multiply; so, we can, but here it is square root of
Tau of relative count, relative finenesses of the yarn — also, from lecture 1. So, we obtain

for pressure, this equation (Refer Slide Time: 41:38) — this expression for pressure.

We can call on the symbol C - this part (Refer Slide Time: 41:53). And so, we obtain
what is here; we obtain the formula P is C times square root of mu times alpha s square
by square root of Tau. What is this symbol? Here sigma is the normal pressure and on
fiber area in yarn cross section; a is the thickness of the green zone or compressing zone;
d is fiber diameter; r is average radius of the green zone; and, D is yarn diameter. So, we
obtain this equation.

(Refer Slide Time: 42:37)
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The value C depends on the 3 2 : (@) 2r

quantities: 2D, &, and a/d. Quantity C' =8na| — || — |

The position of the compressing d/\D

zones may be relatively the same
in regard to yam surface cylinder
and so 2r/D is perhaps constant.
The axial stress o, acting on the
yamn substance cross-section is
determined by the centrifugal for-
ces and tensioning of fibers du-
ring twisting. This stress is per-
haps constant too.

It is very difficult to comment on
the relative thickness of the com-
pressing zone a/d. We have not
yet enough clear physical imagi-
nations about this, but from the
peactical experiences this value
@y e considered as a constant
t00 £ This is an open problem for
itEe. )

Assumptions:

1. Ratio 2//D is constant (geo-
metrically similar position of
compressing zones)

2. Axial stress o in yarn cross-
section is constant (centrifugal
force due to spinning is per-
haps the same, etc.)

3. Relative thickness of com-
pressing zone a/d is Konstant
(from experiences, not yet
enough physically clear)

Let us discuss the quantity C; 2 r by D — it is said the position of the green zone — more
precisely, average radius in the ring of yarn cross section. We can assume that this
position is ratio, because the geometric similarity is a constant for yarn of given
technological material and so on. Axial stress sigma in yarn cross-section — we assume is

constant too, for example, centrifugal force due to spinning is perhaps the same.



Now, the centrifugal force — this stress from the centrifugal effect, so that we can
imagine that also the sigma is constant. Relative thickness of compressing zone is the
ratio a by d. It is difficult to explain. All experiments say that the least ratio shall be also
constant value in the yarn. Why? We have some semi hypothesis for this, but often say
the assumption that this ratio is constant, is not fully theoretically analyzed and based at
most on the experimental results. Nevertheless, we will use it. We will assume that a by

d is constant too. Then, hold this parameter C, is some characteristic constant in the yarn.

(Refer Slide Time: 45:07)
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From previous ideas we can as-
sume, that the quantity C is a

parameter that depends on the
fibrous materal and spinning
technology used.

The derived equation expresses
pressure p, as a result of yamn
geometry. Simultaneously we
know the other equation of pres-
sure p as the function of packing
density (compression of fibrous
assembly). The equivalency of the
right-hand sides of both equations
gives the expression as shown.
Now packing density is expressed
as a specific function of yarn geo-
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And, we can write p is C times square root of mu times alpha s square by square root of

Tau, where C is some constant.

Our hour is out. Thank you for your attention. In next lecture, we will show how to apply
(()) derived pressure. This pressure is derived from geometrical relations inside of the
yarn structure for the yarn structure. In next lecture, we will use also our known equation
for pressure from our lecture about the compressibility of fibrous material. Thank you for

your attention.



