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Welcome back. In the last class, we analyzed Eigen values for 2 weakly coupled spin system for

which we assumed one condition, a case where j = 0, the weakly coupled spin system with

coupling constant 0, but chemical shifts are well separated because they are weakly coupled. And

what we did, we first defined the wave function which has the product functions for 2 weakly

coupled cases, we know the product functions are alpha alpha, alpha beta, beta alpha and beta

beta and we wrote down the Hamiltonian.

For the Hamiltonian in this case, only we have to consider the Zeeman interaction H0. I defined

it as equal to - nu z i into nu a nu I; nu i in this case of 2 spins, nu a and nu x. I consider there are

only 2 Zeeman interactions, each spin is interacting with the external magnetic field, there are 2

Zeeman interaction terms only I have to write; and the coupling I assume to be 0. So, I do not

have to worry about H1 and used that we solved the secular equation of the determinant;

expressed in the form of matrix, and there are 16 elements. But, we showed that only 4 diagonal

elements are present there, which are non zero, all the off-diagonal elements are 0. And using

these diagonal elements, we could work out what are the frequency of the transitions and we

know that 2 of the frequencies are identical and are overlapping for each spin, A spin has 2

transitions which are overlapped. Similarly, X spin has 2 transitions that are overlapped; and they

are well separated. So, in weakly coupled 2 spins with J coupling is 0, we get only 2 peaks one is

at the chemical shift of X, another at the chemical shift of A; only 2 peaks.

So, now, with that, we will go next and try to understand what happens if we bring in the

coupling? in the previous case, where it was assumed to be 0. It may not be 0, let us say the

coupling is not 0, how does the spectrum reflect? whether all the elements of the Hamiltonian,



are present? or only diagonal elements are only present; what about the off-diagonal elements?

are the present in this case? we work it out.

(Refer Slide Time: 02:44)

So, consider a weakly coupled case, A and X. Now, I am going to put the condition nu 1 ≠ nu 2

and J is not equal to 0, this is my condition.

(Refer Slide Time: 02:51)

And I use that; as I told you, you need to consider both H0 and H1 in this case. Of course, H0

we know already; now we have to consider only H11, for H11 is now we have to consider JAX;

A and X are interacting, and I know the spin angular momentum of I and X, this is the way J is



written, already we have discussed. Now, I consider the first element of the matrix; the diagonal

element, first element of the matrix H11, where I am considering only Zeeman J coupling

interaction. In which case I write like this alpha A, alpha X which operates in JAX IA IX alpha

A alpha X, this is a term I have to evaluate for the J coupling diagonal term. Now, of course, this

has added to the H0 term later. Now, similarly H11 now I am going to write; J I can take it out

because it is a scalar, just a number, it is just a number, I will take it out then I am going to write

alpha A alpha X which is equal to IA IX alpha A alpha X. Now, this I am going to resolve into 3

components. Since both of them are vectors, IA and IX, I can write it as IXA IXX IYA IYX;

IZA IZX operating an alpha A alpha X.

(Refer Slide Time: 04:20)

Now, we are going to do one thing, write each of these terms expanded in a comfortable way,

like we did for the previous case. So, now I will take JAX always outside, we have to write a

square bracket here. Hopefully you are seeing the square bracket. Now alpha A IXA alpha A; I

wrote, because I am not dealing with only A spin here. And then of course, when I do that, now

what will happen? I also have to consider X; as both are coupled here, I have to consider alpha X

operating an IX also with alpha X.

So, each term for each of these IXA IXX. Now, I can resolve into 2 terms, but the product terms

now, unlike in the previous case, both are products. alpha A and alpha X is a product, alpha A

alpha X is a product. So, now I am taking first term, first term is alpha A alpha X, I will take



IXA, IXX alpha alpha AX. So, this I am going to resolve like this, this is the first term alpha A

alpha X IXA; of course, remove this one IX alpha XA and then multiply this by again alpha X.

Now, IX I will consider; IX alpha X very easily you have to write like that. So, this one you have

to do it for all the other terms now, all the terms you have to do.

(Refer Slide Time: 06:00)

So, what we will do is now with all the remaining 2 terms also we will work it out like this, and

see what you are going to get. So, now, second term if you take IYA I have to take, the same way

alpha A IYA alpha A, I will take this one and this one and alpha X IYX alpha X, I will take alpha

A IYX alpha X. Now IZ I will do the same thing; alpha A IZA alpha A alpha X IZX alpha X. All

I did is resolved each of these terms to 3 terms first. And again each of these 3 terms I resolved

into 2 components which are products one corresponds to spin A other corresponds to spin X. A

simple operation, I did nothing great.

Now, we have to find out what is this value? you know that alpha A operating on beta A; first of

all you take out what we are going to do now JAX alpha A operating an alpha is half alpha A, I

am sorry, here dealing with IX now IX operating alpha A gives beta A; from our previous action

of various operators I showed you know.

In which case if alpha IX operating in alpha gives as beta; and this of course, similarly IX

operating on alpha gives beta; IY operating on alpha gives rise to half of I. Again it is beta



similarly, IX so, alpha IX; IX will come here, that will remain same in this case. And now, third

term should come here, alpha A alpha A and then half of IX operating on IZX, write all these

terms, of course, you are write here. Write all these terms; simply what I did is each of these

terms I expanded it in a comfortable way.

So, now, what you are going to see; very simple when IX operating on alpha A gives beta A

similarly, IX operating on alpha gives beta and IY gives as to half 1 over 2i beta; IZ operating

on alpha gives half alpha. Simply substitute these values.

(Refer Slide Time: 08:25)

See what you are going to get. Now, first term becomes 0, second term becomes 0, you can go

back and check. Here because now alpha operating on beta is 0. Similarly, second term alpha

operating on beta is 0. So, this multiply by this does not matter it is 0. So, now 0 multiplied by

this number, here 0 multiplied by this number, it is 0. So, now, we are left with only third term

which is half into half; it turns out to be 1/4 into JAX, JAX was a common factor which I took it

out.

So, if I workout H11 diagonal element, it turns out to be 1/4 JAX. Very simple, all I did is I just

wrote down the Hamiltonian by taking into account the scalar coupling; wrote all the 3 in the

form of IXA into IXX, IYA into IYX, IZA into IZX now alpha alpha operating on IXA IXX into

alpha alpha; you consider. You know IX operating on alpha gives is to half beta, IY operating on



alpha gives rise to 1 over 2i into beta; that are all well known operations. Simply I substitute

those number; only thing when IZ operating an alpha gives to half alpha. Similarly IZ operating

on X alpha gives rise to half and those terms will survive and we are going to add one forth here.

So, finally it turns out to be 1/4 JAX. So, H11 becomes 1/4 JAX. What about H22? you workout

it turns out to –1/4 JAX, then H33 also minus one forth JAX, H 4 again becomes one fourth J

AX. So, all the 4 diagonal elements in a similar manner you can work out, there is nothing great

we have done here. Simply remember this thing here.  is again I will repeat.

(Refer Slide Time: 10:26)

What I did is simply I wrote like this, we expanded everything. See, now, I expanded the first

term, first term alpha IX operating an alpha gives rise to beta; see this is like this. So, now, when

you write like that, this will become 0. Similarly, you can expand this one; then this alpha

operating on this will become alpha beta because IY operating an alpha gives as to 1 over 2i beta

A this will become 0. So, this term will go, this term will go, only if we consider the last term IZ

operating on alpha gives half alpha, IZ operating on alpha gives half alpha, both for A and X we

will get half into half, we are going to get one fourth.

(Refer Slide Time: 11:25)



Similarly, you wrote for H 22, H 33 and H 44. please remember all the 4 diagonal elements when

you work for a weakly coupled spin system, especially when taking scalar coupling in account

each of these term turns out to be 1 over 4 into JAX in 2 case 22 and 33 were negative and 11

and 44 are positive. All the off-diagonal elements are not zero in this case, remember. In the

earlier case, when J coupling was equal to 0, I showed that H of 23 is 0 or 12 I took and showed

it is 0.

(Refer Slide Time: 12:02)

Whereas in this case, it is not 0 we can work it out. I am taking 23, just one of the off-diagonal

elements you write like this alpha A beta X, IXA IXX, plus IYA IYX plus IZA IZX and beta



alpha. See alpha beta and beta alpha I am considering they are off-diagonal elements. So, if you

consider the matrix alpha alpha, alpha beta, here beta alpha, beta beta it goes like this. So, now I

am considering alpha beta operating on beta alpha, so, this is a term I am considering. So, now, I

consider that, H23 I expand like this very easily; alpha beta IXA IXX beta alpha you consider.

Again resolved into 2 parts here alpha IXA operating on beta, beta IXA operating on alpha X,

IXA operates on alpha X here. Similarly, this term second term we consider. Now consider A, A

X and X ; alpha A operating on IYA and again here I consider beta A, I take beta X IYX. Now,

second term is alpha X, take the third one alpha A first term IZA, first term is B A and second

term B X, he has second term is IZX and second term is alpha X.

Simply I resolved the terms in a comfortable way for analysis. But you can find out here; these

terms turns out to be half, this turns out to be half. Whereas, the second term if I consider here

this term -1 over 2i into 1 over 2i and the last term turns out to be 0. Very easy using those action

of different types of operators how on different wave functions, I showed that they use the table

and simply substitute these values; and you will find out these turns out to be JAX into 1/4 + 1/4

it will become 1 over 2 JAX.

So, off-diagonal elements in this case is not 0, this is not 0. Whereas, in the case when j = 0

off-diagonal term was 0, here it is not when the J coupling is nonzero. This is what is going to

happen, I consider a H23 then it is turn out to be 1 over JAX. But remember I told you matrix is

symmetric. So, H23 it can also be called as H32, so that was another diagonal element you

already know; this is also equal to half JAX, it is clear? So, 2 off-diagonal elements are nonzero

here because one I calculated, and because of symmetry I know the other one.

(Refer Slide Time: 14:59)



Now what about other off-diagonal elements? I do not want to work it out, it is very, very simple.

Go and find out yourself, all the off-diagonal elements are 0. Remember, in this case, very

simple, this thing I did here.

(Refer Slide Time: 15:16)

I explained to you already, see this is a thing which you should remember how we work it out. I

will consider a different thing, so that you will be able to judge it. Now, I resolved into 2 things

alpha A IX beta; beta X IX alpha X, this is the first term, second term, IY term, again alpha beta

IYX alpha beta, IZ term alpha beta, beta alpha; And with the usual action of the operators, we



know that this will become half half, this will become –1 over 2i into 1 over 2i and this I the last

term is 0. And it turns out to be 1 / 4 + 1 / 4 = half JAX, this is what it is.

(Refer Slide Time: 16:06)

And all other off-diagonal elements, I said are 0. Now, you can construct the matrix element

taking into account H0, H0 I did not work out. But remember in the last class I worked out, I am

just simply borrowing that. We knew H11 is half into nuA + nuX in the previous example, with

J = 0, only this is the additional term coming because of scalar coupling. So they are the terms

H11 now, this is H0 term, this is H11 term; both are added. And this is the one of the diagonal

elements H11.

Similarly, H22 the other diagonal element which turns out to be like this. H33 is other diagonal

element, which turns out to be like this. H44, like this. So, now we have got 4 diagonal elements

very clearly. The matrix is now we can divide into 2 1 by 1 matrices and one 2 by 2 matrix here.

So, we can write down the matrix because we have off-diagonal element J23 also as 1 over 4

JAX that that I have not ignored. So, only I am writing diagonal elements, what about H 23 = 1 /

2 JAX, I know other is H32 is = 1 / 2 JAX.

So, if you write down the Hamiltonian matrix here, it turns out to be like this, H11, H22, H33

and H44 and then H23, and H32 all other terms are 0. So, this is the matrix. So, now I can



resolve this into sub matrices; 2 1 by 1 matrices, and 1 2 by 2 matrix. This is the way I can

resolve.

(Refer Slide Time: 17:59)

Now what I am going to do is, if I do that, I can get the Eigen value from these 2 1 by 1 matrices

very easily, just straightforward. Now 2 by 2 matrix, I have to diagonalized, again. And I have to

diagnose and get 2 diagonal elements for that. And that will give me 2 energy levels. So that is

what I have to do. If I take 2 1 by 1 matrices and take one 2 by 2 matrix and diagnose it, I am

going to get 4 energy states, 4 diagonal elements, I have to do that.
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So, 2 by 2 matrix is very simple to diagnose, I do not want to work it out very simply you work it

out. And these are the 4 energy levels if you do that. So, I am going to get E1 energy state 1

where ¼ JAX was added second was E2, and this is turned out to be like this with the 1/4 JAX

one case it is negative. It was a negative sign was there and the other one is positive. Now, you

know everything very clearly. So, now work it out very, very clearly, in a weakly coupled

system, nu A - nu X is very much larger than JAX.

That is very well known, I have been telling you, if I consider chemical shift difference, it is

much, much larger than the JAX that is a weakly coupled spin system, in which case what about

this one off-diagonal elements that 23 if I consider, I can simply ignore it. Because in such a

situation, this is such a large value, this is a small value, it is so small, negligible compared to

this chemical shift separation for calculation purposes, I will drop it, so I am going to just drop

this JAX squared.

(Refer Slide Time: 19:36)

Especially in the case of weakly coupled. So, in which case the energy level E2 and E3, which

was obtained by diagonalizing 2 by 2 matrix I can write like this very simple. So, from this, now,

we have 4 energy levels worked out, E1, E2, E3 and E4. E1 and E4 obtained by single 1 by 1

matrix. Now we diagonalize 2 by 2 matrix and got this thing and we ignore ¼ JAX, assuming

that chemical shifts are quite large, so the contribution from JAX was negligible.



So, these are the 4 energy states, again, like in the previous case E1 - E2 and I am sorry this is E3

– E4 this correspond to A transition, this correspond to X transition very easily you can work out

from that.

(Refer Slide Time: 20:21)

So, do that and I am going to write a table like this, these are Eigen states of the weakly coupled

spin system. And now, I have 4 energy states, these are the spin states and the total magnetic

quantum number for each of the state is like this alpha alpha = 1, alpha beta is 0, beta alpha 0,

beta beta is -1. This is because these minus half minus half will become 1, this plus half plus

half have become 1, this is a plus half and minus half these becomes 0. So, for each of the energy

state, I know what is the energy level, we have worked out.

In the first case E1 is minus half A minus half nuX, I have written in an expanded form, plus 1/4

JAX. In the second case, this one, third energy E3 and E4; all the 4 energy states you worked out.

These are the energy levels, whatever I have worked out previously, I have put it in the form of a

table here, that is all.

(Refer Slide Time: 21:18)



Now, let us see diagrammatically how it works. Very easily, now, if I consider a situation like

this, this is the beta beta, this is the alpha alpha state, they are un paired they will have a lower

energy, they are unstable states; as a consequence they are shifted up by J/4; both of them, beta

beta is shifted up and alpha alpha both of them shifted up by J/4. What about alpha beta and beta

alpha? they are all paired states, they are more stable. They are more stable as a consequence,

the shifted down by J/4, by – J/4 these 2 are shifted up by +J / 4 and these 2 are shifted down by

–J/4.  This is exactly what we explained pictorially.

When I explained with the energy level diagram in one of the classes, when 2 get weakly

coupled spin system are there, these are 2 transitions for A and 2 transitions for X like this. But

since the coupling is present, they are like this; for A there will be 2 transitions. For the X there

will be 2 transitions. And this is the chemical shift of A at the centre, this is a chemical shift of

A, this is separated by J/4, this is separated by J/4. So, this is what is going to happen. So, that

means the total separation of this doublet if you consider this is JAX and the centre of this

doublet correspond to chemical shift of A, similarly for the X also tbe centre of this correspond

to chemical shift of A, this is JAX and then from centre, this is separated by 1/4 JAX and half

JAX, this is separated by JAX this is what is going to happen.

(Refer Slide Time: 23:09)



So, if 2 weakly coupled spin system are there, you are going to get 4 energy levels, you can work

it out. Now, this is the energy difference between the states 1 and 2. If you consider this what

you are going to get nu X + half J AX. And this is a difference in the eigen states between 1 and

2. Now, you are going to get this one. Sorry this is 1 and 2, this must be different. We are

considering, go back from the table and we will find out what is this. So, 1 turns out to be half

but this is not 1 / 2;  if this is 1 / 2, this would be 3 / 4.

So, this is what you are going to get. In one case nu X, but finally, why find out whether these

correspond to X transition, this also should be X transition. Find out what is the X transition and

take the energy difference between these 2; maybe there is a typographical mistake, you do not

worry; and in one case, you are going to get nuX + half JAX other case nu X - half JAX. Exactly

that is what I said. This is a doublet and this is nu X, the chemical shift.

Now, in one case nu X + half J AX and another case nu X - half J AX, so 2 lines from the centre

of the chemical shift are separated out by half J AX. And this separation gives rise to J.

Identically you are going to get for other one.

(Refer Slide Time: 24:35)



This for this is for X transition; and identically you are going to get for A transitions; nu A + half

JAX and nu A - half JAX. So, JAX you can measure from both the doublets. A will one doublet

and X will give one doublet, this will give JAX this will also give JAX. So there is the

redundancy of the information, but the chemical shift is centre of this, chemical shift will be the

centre of this. And each line of the doublet separated by half JAX from the centre; this is plus

half JAX, this is minus of JAX same way here also.

So, these are the 4 transitions; you can work out depending upon the 4 energy levels, depending

upon which are the transitions correspond to A, which are the transitions corresponding to X.

Take these energy states find out the difference and you can find out the frequencies.
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So, from this what you understand proton A will give 2 peaks, one peak is shifted by delta A + J

/ 2 other is shifted by delta A – J / 2. Similarly, proton X, we will give 2 peaks one shifted by

delta X + J / 2 other is shifted by delta X – J / 2. This is what is important which I wanted to tell

you. So, 2 coupled spin system can give maximum of 4 lines, it cannot give anything beyond

that, 2 for A and 2 for X; these are the transitions you are going to get. So, quantum

mechanically we can work out and find out the frequencies and everything.

(Refer Slide Time: 26:00)

And you can assign for each peak correspond to the particular spin, because we know what is the

selection rule, take the difference in the energy states, you find out which frequency servives



whether nu A servive or nu X servive and that is the corresponding to the spin A or spin X,

easily you can identify transitions corresponding to each of these, we can assign to a particular

spin.

(Refer Slide Time: 26:20)

So, the transition frequencies have been calculated like this, for each of them and intensity also,

we can work it out very in detailed way. But remember, in this weakly coupled case, already I

showed you they are all of equal intensities, 1 is to 1 is to 1 is to 1. All the 4 peaks are of equal

intensity. And these are the 4 frequencies you obtain, the intensities are same and 4 frequencies

are obtained.
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So, this is a simple example, for a weakly coupled we worked out quantum mechanically, the

energy states, ofcourse we can also work out the stationary state wave functions and everything

in detail, but I am not going into that because that is not much of interest. As of now, our interest

is to get the frequency of the transitions.

Now, we will go to another case AB; again 2 spin coupled but what is the condition here,

chemical shift A is not equal to chemical shift B and delta delta chemical shift separation is

approximately equal to J coupling.

Delta delta is approximately JAB and JAB is nonzero; it is not 0. It is present. And it is a

strongly coupled system example I am taking. You understood earlier case that delta A was very

much larger than delta X and delta delta was very much larger; delta A and delta X or not same

and JAX was not 0. The same condition only thing is delta delta is approximately equal to JAB

here, compared to the previous case where delta delta is sufficiently larger compared to coupling

constant.
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This is the situation for AB coupled spin system. Now, the question is when do you expect this

type of strongly coupled spins? this is called strongly coupled spin system, as I told you I am

represented by 2 letters which are next to each other in the alphabet Roman alphabet, because it

chemical shift separation is smaller. So, when do you expect this type of strongly coupled case,

you can expect only in the homonuclear case, heteronuclear AB spin system is impossible.

The reason is heteronuclear the chemical shift is megahertz away chemical shift in the

heteronuclear case you consider the resonating frequency the resonating frequency if consider

that is a proton and fluorine. Proton in 500 megahertz will come at let us say 500 megahertz,

fluorine comes at 470 megahertz; the 30 megahertz away. Huge chemical shift separation. you

can never have the very strongly coupled case, AB in the heteronuclear case , it is always

possible only in the homonuclear case.
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So, we can consider that and the important condition which I told you in the earlier case, the

spectra of strongly coupled spins are not amenable to analysis using first order like in the case of

AX, I know AX doublet A doublet X doublet, I go to the centre of the doublet of A, get the

chemical shift of A, I go to the centre the doublet of X get the chemical shift of X, I measure the

separation I get J, I can measure the separation and get J very easy, straightforward analysis.

Whereas in the strongly coupled case the straight forward analysis is not possible. And another

interesting thing will happen. In the strongly coupled case you get more lines than what is

expected generally. Of course not in the case of 2 spin, but if you go to more than 2 spins, I will

show you when required for that.
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And so analysis is not pretty straightforward. Now only thing is we already worked out E1, E2,

E3 and E4 very simple, same. Only thing is AX I have written as AB here; that is all. Then what

is the idea now, remember earlier when I consider J squared into J AX squared. What did I say,

in that case both E2 and E3 energy states J squared AX, we can ignore I said, because delta A -

delta X was very much larger than JAX. So, I said those 2 terms I can ignore, but not now,

because delta A - delta B is now approximately equal to J.

So, I cannot ignore this term, I have to consider this term for working out in detail. So, that is

why the strongly coupled case is difficult. So, we cannot drop this like we did in the AX case.
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Now work out the transition frequencies, same, everything we know, E1 - E2, E3 – E4 all those

things we worked out corresponded to 2 transitions. Same, whatever given here, I use these

things and wrote down these differences here; that is all, no extra magic. Simple, I am

substituting, very simple arithmetic you do that. Now, you find out there are 4 transitions here,

which is symmetrically placed at the average chemical shift of A and B, you always consider the

chemical shift of average A and B. You can find out, work out the difference here.

(Refer Slide Time: 31:26)

See, in which case I am going to get like this, what I am going to do is I will simplify this

equations by putting a condition C, I substituting C which is equal to half into nu A – nu B whole



squared + J AB squared to the root of half. This is what I am going to substitute for C in the

above equations, I consider this nu A - nu B squared + half into J AB squared to the power of

half here. You know here this one, I consider this as C just for making my analysis simpler.

So, for convenience, I will drop the subscript AB, so, the instead of every time writing JAB

squared, I can write J squared, very easy. So, this is for easy analysis, but you cannot drop it.

Just to show that analysis becomes simpler I am writing that otherwise, every time I have to

write JAB square etcetera. So, C will be like this nu A – nu B whole squared plus J squared to

the power of half. Now, the difference between the frequency of the transitions 1 and 2 you can

consider write down these things.

And then this turns out to be JAB. I have simply substituted these things and you can find out

what is going to happen; these chemical shift terms, these things will go. The transition if I

consider 1 and 2. There are four transitions here, transition 1 and 2, if I consider the chemical

shift gets cancelled out and you get only JAB.
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Similarly, difference between 3 and 4 we calculate; again chemical shift term gets cancelled out

and you get only JAB. So, difference between 1 and 2; and 3 and 4 provides me J coupling. So,

the separation between two outer lines of the 4 lines always gives me J coupling. Irrespective of

the coupling strength ,outer lines gives me only J coupling. But how do you get the chemical



shift? you do not get chemical shift A and B individually here unlike in the weakly coupled case,

I know what chemical shift of A and what is the chemical shift of X.

Here you do not know, you get only difference of the chemical shift here. And that you can

obtain from this equation which I wrote, C is equal to root of nu A – nu B whole squared + J

square, square root of that. So, I now do the simple arithmetic, then it will turn out to be, if I take

this, since there was a square, multiply this.
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And do the simple arithmetic, nu A – nu B whole squared, I will solve this equation rearrange

them. And then it turns out up nu A – nu B equal to this one. And which is nothing but nu 2 - nu

3 into nu 1 - nu 4 to the power of half. So, analysis of this will give me only chemical shift

difference and not the individual chemical shifts, you understand? What I did is, you go back to

this equation, this is simple equation, you rearrange them that is all I have done, nothing as

simple arithmetic.

And you will find out nu A – nu B = nu 2 – nu 3 into nu 1 – nu 4 to the power of half, nu 2 - nu 3

the chemical shift difference between the 2 central peaks, and nu 1 - nu 4 the chemical shift

difference between outer peaks. So, this frequency difference and this frequency difference you

take, multiply these 2 and take the square root of that you are going to get chemical shift

difference. So, in AB coupled case, very easy, take the difference of this and this and this and



this, this difference and this difference multiply and take a square root to get delta AB. So,

analysis gives you only difference in the chemical shift.
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Of course, we can also calculate the stationary state wave functions, and intensities of peaks, but

I will not worry about it. So, I will say that for the energy levels 1 and 4 the wave functions are

the product functions, only for 2 and 3, we have to bring in the mixture of the energy states in

one case sin alpha beta + sin beta alpha, I am sorry cos alpha beta + sine beta alpha. In the other

case - sin alpha beta + cos beta alpha, for the state 3. And these are the stationary state wave

functions which are different compared to weakly coupled case. We can work it out, let us not

worry because we are interested only in knowing how we get the spectrum and energy levels.
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And this is the type of spectrum.

The the time is up. We will discuss about the spectrum later. Right now I am going to stop here.

What I wanted to tell you is for the AB coupled case, in the previous we worked out AX, and in

the AB coupled case, we wrote down the Hamiltonian; well worked out and showed that

off-diagonal element you have to consider because unlike in the AX case, we cannot ignore JAB

squared we cannot ignore, we cannot neglect that because chemical shift separation is

comparable to J.

And then the energy levels we wrote down explicitly for all the 4 energy states and took the

difference between the different energy states that correspond to different transitions. And we

found outer 2 lines of the 4 line pattern in the AB case we use it to determine J coupling. For the

chemical shift take the frequency separation of the outer 2 lines and the frequency separation

between the 2 central lines, take multiply them, and take the square root of that you are going to

get chemical shift difference. I said in the strongly coupled case, you cannot find out chemical

shift individually A and B; you get only chemical shift difference. And we did not work out the

stationary wave functions, I said stationary wave function for the energy state 2 and 3 are very

easy for energy state 2 is cos alpha beta + sine beta alpha in the other case, cos beta alpha - sin

alpha beta. This what I discussed we will discuss about the intensity pattern everything and then

go to A2 in the next class. So thank you very much, I will stop here.


