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Hello in this clip I am going to introduce the fundamentals of a feedback control to you.

If you want to start with the assumption that we do not know too much about feedback

control  and ask ourselves  what  do you mean by feedback control  or more generally

control. One would probably conclude that to control something is to get it to do your

bidding. And that precisely also what the objective of feedback control is. You want a

system to do your bidding. And in this course as I outlined earlier, we are focused with

single input, single output systems.

So, in the context of single input, single output systems, what we mean when we say that

we wanted to do our bidding is that if you provide a certain input waveform, let us call it

reference r of t.
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Then we want the output of the system. So, r of t is some reference wave form that we

want to feed to our system, this could be any physical system that is of interest was it

could be a motor; it could be a car, it could be an aeroplane, it could be a chemical plant,

r of t is something that you want it to track.



So, the output of the system which we shall call x of t should ideally be equal to r of t, if

we have design our control system very well. So, this is the ideal, this is the goal of all

control engineers to get the output of the system to track our reference. Now what is our

system? 

As I said it could be any dynamic system. So, depending on the particular discipline that

we are talking about, the physical appearance of the dynamic system might be different.

But fundamentally  from a mathematical  perspective each a single input single output

system. So, there is a single input u that you can provide to the system.

And in response to u of t, you get an output x of t. And the relationship between u and x

is characterised by a certain input output mapping which we shall represent by means of

this  function  f.  So,  this  function  f  could  possibly  include  derivatives  of  output  with

respect to time and so on and so forth. So, differential operators and double differential

operators and others can also be part of the structure of f. 

So, the reference I want to track is r of t, the input I am providing to my plant is u of t.

And it is response is x of t and ideally I would like x of t to be equal to r of t. How do I

do  that?  Of  course,  this  will  not  happen  on  it  is  own.  I  need  to  introduce  some

mathematical function here, which manipulates the reference in such a way that when we

feed the output of this block to my plant. Then that becomes u of t, then r of t will

become  equal  to  x  of  t.  So,  we should  therefore,  have  some mathematical  function

mapping f 1 between r and u which modifies or distorts my reference r of t such that

when it is pass through my plant I get it back at the other end.

So, what should f 1 of or what should f 1 look like? A moment start would review that

essentially f 1 should be the inverse of f. So, if I want to replace f 1 with the inverse of f,

then you will notice that when I u of then you will notice that u of t is equal to f inverse

of r. And therefore, x of t will be equal to f of u which will be equal to f of f inverse of r

that is therefore, equal to r.

So, in a sense all the controls problems can be reduced to this one simple mathematical

goal of obtaining the inverse of the system that we are trying to control. So, the system

that we are trying to control is called the plant. And the goal of all control engineers is to

get the plant output to be equal to some desired reference r of t. 



And that can be accomplished by insulting an electronic system that inverts the model of

the plant and cascading that with suitable actuators to get x of t to be equal to r of t. 

So, there it is very simple objective, that guides the work of all control engineers both

control engineers who use feedback control as well as those who do not use it and that is

to invert the plant. As simple as this objective looks there is a catch, it is not always

possible to invert the plant and indeed we will see that it  is almost never possible to

perfectly invert the plant.

But apart from that, there are a few other restrictions as well for one thing we need to

have f to be an accurate mathematical model of the plant, f should accurately represent

the plant dynamics. I make this statement to point out that ultimately when we write

down an equation to determine the input output relationship for a physical system. That

equation is written on the basis of some assumptions we make simplifications we ignore

terms that are not very significant and so on and so forth.

Now, it is assumed that we have been careful in doing our simplifications and ignoring

some terms. In that the final output of the mathematical model is almost equal to the

actual output of the physical system. So, that is one prerequisite for us to be able to invert

the dynamics of the plant reasonably well and to get x of t to be equal to r of t.

The second condition is that f inverse should be realizable and this we will discover is a

very big condition. So, as simple as the problem of control appears, these conditions of f

being  able  to  accurately  represent  the  plant  dynamics  and f  inverse  being realizable

become major road blocks, especially in the context of feedback control. And the third

condition is that you should also be realizable, the control effort u just equal to f inverse

of r should be realizable. 

So,  to give a practical  example,  if  the input u is  so large that your actuators  cannot

generate that kind of that magnitude of control effort, then even though it is possible to

compute  mathematically  f  inverse  of  r,  physically  it  cannot  be  possible  to  realise  f

inverse of r. So, you should be physically, you should be realizable f inverse should be

realizable  and  f  should  accurately  represent  the  plan  dynamics.  These  are  the  basic

prerequisites for us to be able to get x of t to be equal to r of t which is the goal of all of

control engineering. However, as I discussed this requirement that we simply obtain the

model of the plant and invert it is deceptively simple. 



Let us illustrate this by means of an example. Let us consider for instance a first order

system and let us take the example oven of an oven and assume that it is governed by

first order dynamics. And therefore, the relationship between the input apply to the oven

which could be in terms of voltage or current or fuel or whatever to the temperature raise

is governed by a first order differential equation.
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Let us say the differential equation has the following form tau s d capital T by d t plus

capital T is equal to K times v in where v in represents the input voltage. And tau s here

represents the time constant of the oven.

So, if you provide any step voltage input, then it takes some time for the response of the

system to reach its steady state value and that time is characterized by the time constant

tau s. So, the first order response of the system to a step input would look something like

this. So, if this is a step input v in and this is time and the response of this oven might

look something like that. And we say that the response does not really track the reference

and hence, we need to invert the dynamic model that we have here for us to be able to

track this reference perfectly.

Let us attempt to do this in the Laplace domain by first obtaining the transverse function

for the system. So, it is evident from this time domain representation that the transverse

function of this system would be something like this namely, that the Laplace transform



of temperature T divided by the Laplace transform of the input voltage V in is going be

equal to K by tau s times S plus 1.

So, this is the input output relationship for this particular plant. So, I shall write it out

here, the input is v in the output is the temperature T. And the transverse function is of

the form K by tau s S plus 1. The subscript s for the time constant tau is intended to

denote the fact that this is a slow system; most thermal systems such as ovens and coven

are slow. Therefore, if I am going to provide a step input to this oven it takes quite some

time for the temperature to build-up and reach its steady state value.

Hence, we have denote it the time constant tau with a subscript and called it tau s. Now,

if we want this oven to track a certain reference R, so let us draw this reference R here.

And we want the temperature T to be equal to R, what do we need to do? Ideally what

we need to do is to insult a transverse function here that inverts the plant. In other words,

you should have a transverse function of a kind tau s times S plus 1 divided by K.

However, we note that there is a problem in this transverse function namely, that this is a

non causal transverse function. The degree of the denominator polynomial is 0, because

there is no term in the denominator of this open loop controller transfer function and the

degree of the numerator polynomial is 1. And hence, it is not even a proper transverse

function let alone ping a strictly proper transverse function.

So, therefore, we see that even for the most simple case of a first order plant, it is not

possible for us to perfectly invert its dynamics. What can we do? Instead is this the end

of the road for us actually not, we can do a little bit to improve matters and invert the

plants dynamics approximately if not exactly.

In order to do this, let me choose the denominator polynomial of this same controller

which at this present moment cannot be physically realized to be of the tau f times S plus

1. So, let that be the denominator of this controller.

Now, the numerator degree is 1 the denominator degree is 1 and hence the controller

transverse function is a proper transverse function and in principle we can realise this

transverse function. So, if we now look at the relationship between the input and output,

we note that we would have the relationship to be given by T is equal to K by tau s times



S plus 1 times tau s times S plus 1 divided by K times tau f times s plus 1 times the

reference r.

So, what does that tell us? That tells us that tells us that T is equal to 1 by tau f times S

plus 1 times R. Now, if we choose the time constant tau f to be much smaller than tau s,

then  the  time  constant  associated  with  the  temperature  raised  for  the  certain  input

command R of S is going to be much lesser than the time constant associated with the

temperature raised for the original oven without any control.

So, if we want to plot the step response of this new case where we have this controller

cascaded with the original oven, the step response would look something like this. So,

the time constant tau f being much smaller than the time constant tau s, the step response

raises much faster and settles down close to its steady state value much faster than for the

original  oven. Now if  we compare the step input and the response,  we note that  the

response is much closer to the input in it is appearance than the original response was.

And hence,  we can conclude  that  we have succeeded in approximately  inverting  the

dynamics of the plant. So, we see therefore, that although at the end of the day all control

problems can be boiled down to finding out inverses to the dynamics of the systems that

we are trying to control. Even for the simplest case of a first order plant, we cannot think

of a planted is simpler than this a planted is more simple and this is a simple proportional

plant and that is a trivial case.

So, beyond that the next simple plant is a first order plant and even for the first order

plant it is not possible for us to come up with an exact inverse for the dynamics of the

plant.  We can only come with an approximate inverse and make the response of the

overall system relating the output to the input to track the reference much better than

what the original plant could, but it is not possible to get it to track the reference exactly.

Now, these problems only get exacerbated when we are dealing with plants of higher

order. So, second order, third order and so on. And even worse when we are dealing with

plants, that have nonlinearities or that have parameters that are varying with time.
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So, for instance, if you want to consider another system whose mathematical model that

relates the input and output look something like this, x double dot plus b x dot plus k x

times 1 minus x square is equal to u where u is the input and x is the output. Let us

assume in this  case that we know the coefficient  b and k very well.  Then we know

everything about the differential  equation.  So, we know the input output relationship

very well, but how does one invert this relationship, but is not clear.

So, even though we know, f that relates x and u very well.  We do not know how to

compute f inverse that relates r and u and therefore, we are still stuck with this problem.

So,  in  the  first  example,  we could  obtain  the  inverse,  but  that  inverse  could  not  be

perfect. In this particular example we are able to model the system very well. So, we can

realise f very well, but we are not able to realise f inverse. So, it in this context, that we

shall  explore a slightly different and interesting technique to invert  the model  of the

plant.

So, let us say, we have our plant f which represents the mapping between the input u and

output x. Our goal is to somehow get it to track a reference r of t, somehow we have to

get x of t to be equal to r of t that is our objective. Now we shall approach this problem

in a slightly different way, we shall first make a copy of the plant. So, when I say a copy

of  the  plant,  we  are  coming  up  with  the  mathematical  model  whose  input  output



relationships we are compute, we are computing using an electronic circuit or a computer

or some such method.

So, I shall call the input output relationship of the copy as f cap. Ideally we want f cap to

be equal to f, but if you do not understand the dynamics very well of the actual system.

Then there will be small  differences and to underscore the fact this  is likely to be a

difference between the output of the actual plant and output of its mathematical model I

have called is f cap. And the output of this model is z. So, both of them are given the

same input u and ideally both the outputs should be identical.

Now, in order to get x to be equal to r, what I shall do is compare the output of my copy

with the reference r. So, I shall compare them in other words take the difference between

them, I shall do z of t minus r of t. And in the ideal case, we want an error e between the

two to be zero, because, we want output of the plant to be equal to r of t. But then that is

not going to happen naturally, we have to distort this error in some manner using some

function h.

And what our quest now would be to investigate the general properties of h that will

allow the output of that namely, u to invert the model of the plant. So, what kind of

functions h do we need to choose to get x of t to be equal to r of t. If you look at this

block diagram, it is reminiscent of a feedback block diagram, but this is not a feedback

system yet.  Because  we are  implementing  all  of  this  inside  a  computer  and we are

therefore, not depending on external sensors and other such inputs for us to modify the

input to the plant. And therefore, this is still what we call as a filter problem. 

We are coming up with a suitable electronic circuit or a computer based implementation

that allows us to invert the dynamics of the plant. And the prototype solution that we are

discussing now has it is particular structure. 

Now, from this block diagram, you see that u is equal to h of e. So, h is the mapping, that

relates the error e to the output of that block namely u. And e is the difference between r

and z, and z we know is f cap of u. From this equation we see that r minus f cap of u is

equal to h inverse of u which intern means, but r minus h inverse of u is equal to f cap of

u or equivalently u is equal to f cap inverse of r minus h inverse of u.



Now as control engineers, what do we desire u to be we want u ideally, to be equal to f

inverse of r. That is for we wanted to be, if you choose this as the ideal u, then our x of t

will be equal to r of t. Of course, we cannot do this ideal inversion; we are hoping that

this particular prototype solution will at least help us get an approximate inversion. And

we are investigating what properties it is needs to have for this approximate inversion to

happen.

So, if you compare, what we have got as an expression for u with what we desire as a

expression  for  u.  You  notice  that  the  actual  u  will  approach  the  ideal  u  under  two

conditions. Firstly, we should have f cap to be equal to f. So, in other words our copy

should be a very good replica of the mathematical model of the plant itself that is one

prerequisite.

So, that I can replace f cap inverse here by the term f inverse and the second thing is that

if you look at the expression u equal to f cap inverse of r minus h inverse of u. This

would be approximately equal to f inverse of r minus h inverse of u when this particular

condition is valid. And if you compare this expression with what we desire, We see that

we are very close to what we desire. With the exceptional we have this extra term as one

of the independent variables for the function f inverse. 

Now, therefore, if h inverse of u is a very small quantity, in other words if h inverse of u

is much less than r. Then what you see is that f inverse of r minus h inverse of you would

approximately be equal to f inverse of r itself. And if this is so, we know that this guy is

going to be equal to u and so approximately therefore, we end up we succeed in inverting

the plant.

So, the necessary condition for this prototype block diagram to help us in approximately

inverting the plant is to get this to happen, h inverse of u should be much smaller than r.

What this indicates about a general nature of the function h or the mapping h is that the

input output relationship for the function h inverse should be such that the output of the

function should be much smaller than the input. 

Equivalently what this indicates about the function h itself is that the function h should

be a high gain function. In other words if h inverse is a function which whose output is

going to be a very attenuated version of it is input. Then the mapping h should be one

where the output of h should be highly amplified version of the input to that function.



So, in other words h should be a high gain function; what is very interesting about this

prototype solution where we have h as the high gain function is that, h need not in any

way be related to the plant f which was trying to invert. So, you can choose any high

gain function and in principle we able to invert the plant dynamics. However, there is a

small catch. So, we have a certain dynamics for this copy here and this dynamics can

potentially be unstable and the concern of instability is exacerbated when you are having

a high gain function in the forward path.

So, assuming that the dynamics of this copy model that we have in our computer is

stable, then our problem of obtaining an approximate inverse to f is done. So, what is

interesting about this is that it allows you to obtain the approximate inverse even for

plants such as this for which you cannot directly compute f inverse. But the application

of this is even more general.

So, suppose we had the differential equation to be of the kind x double dot plus b of t

times x dot plus k of t time x times 1 minus x square is equal to u. Even for such a

situation we can employee, this particular prototype solution to obtain the inverse and get

the plant to follow the reference r of t.

But there are accessions when these coefficients b and k are not known very well. And it

is in that scenario that this prototype solution, this prototype approach takes now. And

that is because; in order for this entire strategy to work, we need to have an accurate

copy of the plant dynamics.

Now, when our plant  model  changes in time and in a manner  that  we cannot  easily

predict then, we do not have a good enough of copy at all times t for the plant model.

This is one circumstance under which this breaks stop. There is one other circumstance

namely, when we have uncertainty associated with the environment in which the plant

operates. Mathematically what that means, is that my plant is afflicted by a disturbance d

of t. And if I can measure d of t I can incorporate that measurement also in my copy and

eliminate it is effect.

So, this can be x, this can be z, I can eliminate it is effect using the same technique.

However, if I cannot measure d of t; so, if this cannot be measured then, this particular

approach will not allow me to compensate for it is effect. So, it is in this context that as



good as this prototype solution is we cannot invert the plant the way you would like it to

be inverted.

So, the solution to this problem is to replace the copy of the plant by the actual plant

itself and the copy of the disturbance by the actual disturbance itself. And for that to

happen we have to invest in the sensor. So, that instead of measuring z or instead of

looking at the variable z, we directly look at the variable x itself.

So, if you invest in the sensor and measure x and implement the same prototype solution,

then you will be able to invert plants, whose parameters might change with time in a

manner that we do not understand and which might be afflicted by disturbances that we

cannot measure. And this approach to inverting the plant is called feedback control. And

this we shall look at in greater detail in the next clip.


