Control System Design
Prof. G. R. Jayanth
Department of Instrumentation and Applied Physics
Indian Institute of Science, Bangalore

Lecture — 08
Laplace transforms

In the previous clip, we looked at the structure of the transfer function for a system that

we have been considering so far namely this particular linear time invariant system.
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And we saw that the transfer function has this particular form namely the ratio of 2
polynomials in S. And we also saw that the initial value theorem revealed to us that the
degree of the numerator polynomial has to always be less than the degree of the
denominator polynomial. And under certain conditions we can approximate the degree to

be of the numerator polynomial to be equal to the degree of the denominator polynomial.

Now are there any further simplifications that are possible in the structure of the transfer
function? And one thing that I also want to address in this clip in addition to simplifying
the structure of the transfer function; is to determine what we would do with the initial

conditions that we have been carrying along all this time; let us attend to that first.

So, we know that if we have some n initial conditions; our time domain response x of t

will be having a component that is related to the initial conditions which would be of the



kind c i e to the power P it, where i goes from 1 to n where P 1 to P n are the poles of the
transfer function or in other words poles of G of S or in other words they correspond to
the zeros of the denominator polynomial; zeros of S power n plus a 1, S power n minus 1

etcetera plus a n.

Now what we notice is that if our system is a stable system in other words if all the poles
P i are less than 0, they are on the left half of the complex plane; then what we would
have on the right hand side of this expression are all decaying exponentials some decay
faster than others but they are all of the decaying kind. Now since they are all of the
decaying kind what we can conclude is that if we wait long enough; we would have the

response due to the initial conditions to have gone to 0.

And we can start to look at the response of our system to the applied input only after this
particular or only after the passage of this duration of time. Therefore, we see that in case
of stable systems, initial conditions do not play any significant role because their effect is
erased out after a certain length of time. Likewise, if you take the case of a system that is
unstable what we would have is that for any particular combination of initial conditions;
we would have a non zero coefficient for that pole; let us say the kth pole which is
unstable and that causes the solution to explore. So, tend to infinity as time t tends to

infinity.

So, this will tend to infinity as t tends to infinity when P k is greater than 0. Now you
may argue that there may be a certain combination of initial conditions that would get the
coefficient ¢ k to be exactly equal to 0. Well mathematically that may be possible, but
physically it is impossible to ensure that ¢ k will always be 0, there will always be some
perturbation, some term, some noise input to your system which will get the coefficient ¢
k associated with this exponentially divergent term to be non zero and that will cause

solution to explode.

Therefore, even in case of systems which are unstable we would notice that the initial
conditions are not very useful because regardless of what they are after a certain length
of time the solution of the system would have exploded. Therefore, in either case
whether you are dealing with a stable system or an unstable system; we see that initial

conditions do not play a significant role. So, henceforth we shall not talk too much about



the response of the system to initial conditions. And we shall focus exclusively on the

response of the system to inputs.

In other we will focus exclusively on X of S by U of S which is given by the transfer
function G of S. So, G of S as it appears in this particular slide is still rather complicated
in its appearance; it is it is a ratio of 2 polynomials one of mth degree, the other of nth
degree and clearly it is difficult for us as engineers to build our intuition to deal with

systems that are of such high orders.
So, are there further simplifications possible in the structure of G of S?
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To address this question let us first go back to the time domain where we know that g of t
which is the Laplace inverse of G of S would be of the form sigma A i e power P i t,

where P 11 goes from 1 to n are the n poles of the transfer function.

So, 1 goes from 1 to n; now let us undertake the exercise of arranging these Pi’s in an
ascending order of their magnitude. So, I shall assume that P 1 is the smallest of the lot.
So, the magnitude of P 1 is less than the magnitude of P 2; is less than the magnitude of P
3 and so on and so forth and the largest value is P n. I shall also assume for the moment
that we are dealing with stable systems in which case all of these P i are less than 0. This
is going to be the case especially when we are dealing with closed loop control systems

because we are always going to be targeting stable closed loop systems.



Now if we can arrange this in this manner then we know that our response x of t in the
time domain is given by integral O to t; u of tau g of t minus tau d tau. And that is going
to be equal to from the expression here 0 to t, u of tau sigma A i e to the power P it
minus tau d tau; where I goes from 1 to n. Now I can write this in turn as sigma i goes

from 1 to n; A i integral 0 to t; u of tau, e to the power P i; t minus tau d tau.

So, it is a summation the response x of t therefore, is a summation of n integrals which
are given by these specific terms. Now let us graph these particular terms let us take for
instance the case of P being equal P i; 1 being let us for example, take the case of 1 being
equal to 1 in which case integral 0 to t, u of tau, e to the power P 1 tau P 1 t minus tau; d
tau would be the integral how would this graphically appear? u of tau could be some

input which varies in a certain manner up to tau equal to t.

So, this may be u of tau and e to the power P 1; P minus tau would be an exponential
function which would decay starting from the time tau equal to t in this particular
manner, this is decaying because we know that P 1 is less than 0. So, u of tau times e to
the power P 1 t minus tau is essentially the product of these 2 functions, this is e to the
power P 1 t minus tau. And integral of u of tau times P 1 of t minus tau is the area under

the product of these 2 functions.

Now if you look at the next term which is integral 0 to t, u of tau e to the power P 2 t
minus tau d tau what you would have is therefore, that this integral is equal to the area
under the curve which is a product of u of tau. And e to the power P 2 times t minus tau

how does e to the power P 2 times t minus tau look?

Since we have arranged P 1 P 2 and so on in this particular manner; P 2 times t minus tau
would be an exponential function that is decaying much faster than e to the power P 1
times t minus tau. Therefore, you agree with me that if u of tau looks something like this
then in general u of tau times P 2 of t minus tau will have much lesser area under that

curve compared to u of tau times e to the power P 1 times t minus tau.
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Now you can go on like this and you can show that if you have arranged the poles in an
ascending order in terms of their magnitude then all the higher integrals integral 0 to t, u
of tau, e to the power P i t minus tau d tau is generally less than the first integral 0 to t; u
of tau e to the power t 1 t minus tau d tau. And what is our response equal to? Our
response is equal to x of t equal to sigma i going from 1 to n; a i integral 0 to t, u of tau e

to the power P i t minus tau d tau.

Now, if we are lucky with the problem in that these terms A i are also comparable to one
another. So, A 1 is comparable to A 2 is comparable to A 3 and so on and so forth; then x
of t can be approximated by noticing the fact that the other integrals for PP 2 P 3 P 4 and
so on. The area under the curve for those integrals is much less than that for P 1. This can
be approximated as a one times integral 0 to t; u of tau e to the power P 1 t minus tau d

tau.

In other words, despite the high degree of the numerator polynomial and the denominator
polynomial of my transfer function; if it so happens that the impulse response g of t
which we have wrote in written it down as A i; e to the power P it is such that all these
coefficients A 1 are comparable to one another. And we can arrange the poles P 1 to Pn in
an ascending order in the manner that we did, then the slowest pole is the one that
contributes the most to the response of the system; that dominates the response of the

system hence P 1 is called the dominant pole.



Now, this arrangement that we did of poles in ascending order magnitude of P 1 less than
magnitude of P 2 and so on and so forth; it is possible provided the pole P 1 is a real pole.
So, the simplest dynamic system that approximates the response of our high degree
transfer function G of S is a first order system, if its slowest pole; if its dominant pole is
a real pole. However, it is also possible that the pole P 1 is at complex pole in which case

the upper they appear in complex conjugate pairs.

So, we would have them magnitude of P 1 to be equal to magnitude of P 2. So, we would
have 2 poles which appear as complex conjugate pairs and therefore, they have to be
considered together and their magnitudes would be identical. So, when we arrange the
other poles also then we would have P 1 is equal to P 2 which would be less than or equal

to which would be less than P 3 and so on and so forth; up to P n.

So, in this case the simplest system that approximates a response of our more
complicated transfer function G of S is going to be a second order system. So, in other
words if the dominant pole is a real pole then the simplest approximation to the response
of G of S would be the response of a first order system. If on the other hand, the slowest
poles in our G of S are complex poles are in that case; the simplest system that
approximates the response of our G of S would be a second order system. Hence first
order systems and second order systems occupy a special place in our study of the linear

dynamic systems.
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So, let us briefly visit first order and second order system responses especially 2 step
inputs before we conclude this clip. So, I shall consider a first order system to be 1 that

has a transfer function of the kind K by tau S plus 1; of course you can also have a 0.

But that would make this is that will make the system a proper transfer function, but not
a strictly proper transfer function and hence we shall not discuss it at this point. Now if |
were to apply a step input to this system in other words if I were to apply U of S is equal
to 1 by S; then the response would be given by X of S is equal to 1 by S times K by tau S
plus 1.

If I take the Laplace inverse of this I would get x of t and t hat would be equal to k times
1 minus e power minus t by tau. So, the response of a first order system therefore, would
look something like this its steady state value namely the valued assumes when t tends to
infinity is equal to k. So, this is k assuming that its initial conditions are 0 we have
discussed in the past that we do not need to consider initial conditions in our analysis of

systems and their control.

So, we shall assume that all initial conditions are 0 henceforth; then the response would
look something like this; the speed with which the time scale in which it raises to its
steady state value of k is characterized by this term tau and therefore, tau is called the

time constant of the system. Now let us take the case of a second order system.

(Refer Slide Time: 16:45)
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So, a second order system I shall in this example I shall consider a second order system
that has a transfer function that looks something like this K times omega n square by S

square plus 2 zeta omega n S plus omega n square.

Now this typically represents a mass spring damper system or an LCR circuit and if |
were to apply a step input to this system, the response of the system prove of course, be 1
over S times k times omega n square by S square plus 2 zeta omega n S plus omega n
square. Now, if zeta is greater than 1; I would have 2 distinct real roots in which case |
can think of my second order system as a cascade of 2 first order systems. And therefore,
the output of the first order system would be the input to the second first order first order

system; it is therefore, not a very interesting example to consider.

So, it is only when zeta is less than 1 that we have a pair of complex conjugate poles for
this system; namely the locations the poles P 1 comma P 2 would be minus zeta omega n
plus minus j times omega n square root of 1 minus zeta square; these would be the 2
poles of our transfer function. So, for this case the step response which we obtain by
taking the inverse Laplace transform of X of S would look something like this.The
steady state value would be obtained by applying the final value theorem and we find

that it is equal to k.

Now, when we apply a step input then the response overshoots and oscillates back and
forth and dices down gradually with time before reaching its final steady state value of k.
The frequency of this oscillation is called the natural frequency of oscillation of the
system and it is given by omega is equal to omega n square root of 1 minus zeta square;

this is the natural frequency of G of S.

More specifically the mathematical expression for x of t would be x of t is equal to 1
minus € power minus zeta omega n t, which represents this exponential decay in the
amplitude of this oscillations as the system settles down to its steady state value times
cos omega t plus zeta by square root of 1 minus zeta square sine omega t; where omega

is a natural frequency given by this term here.

So, we took special look at first order and second order systems because despite the
complexity of G of S; some of its poles will be slower than others. And generally one
will expect G of S to have either one slowest pole or two slowest poles; one slowest pole

if that pole is real and two slowest poles if that pole is complex; in which case in most



circumstances we can approximate G of S by either a first order system in one case or a
second order system in another case. And hence the centrality of first order and second
order systems responses to standard inputs as far as our analysis of control systems are

concerned with this; we conclude this clip.

Thank you.



