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Hello in the previous clip we looked at Fourier transforms and how it helps us to obtain

the impulse response of a system without applying an impulse input. But then in the

process we discovered that the mathematics of Fourier transforms allows us to transform

a convolution integral which is what we need to solve in the time domain to obtain the

response of a system to any particular input to a product.

So, the Fourier transform of the response is equal to the product of the Fourier transform

of the input and the Fourier transform of the impulse response. Now since a product

operation is significantly more intuitive compared to a convolution integration operation;

we saw some benefits in not working analyzing systems in the time domain.

But  rather  by  sticking  to  the  frequency  domain  itself  for  our  design  and  analysis

purposes. However, as control engineers we discovered that despite all the benefits of

Fourier transforms in terms of increase of intuitiveness and so on it still has drawbacks in

that there are some signals which are of great relevance to us as control engineers which

do not  possess Fourier  transforms. So, we gave the examples  of a ramp function an

increasing exponential all of these do not possess Fourier transforms and other functions;

such as the step function or sinusoidal input which you know how delta functions in their

Fourier transforms are rather difficult to deal with.

And these once again are signals that are very commonly encountered in the course of

control system design. And that led us to investigate if weighing down such functions

with  decreasing  exponentials  would  allow  for  such  functions  to  possess  Fourier

transforms and while we facilitate down that path, we came upon the definition of the

Laplace transform.



(Refer Slide Time: 02:17)

So, what I have shown here in this slide is the expression for the Laplace transform of a

signal u of t it is given by capital U of S is equal to integral from 0 to infinity u of t e

power minus s t d t; it is assumed that the signal u of t starts at the time t equal to 0.

(Refer Slide Time: 02:37)

In  order  to  highlight  the  unity  in  our  quest  for  representing  signals  using  different

elementary functions; I have shown in this slide our attempt so far. We started off by

representing our signal in terms of impulses; so, that led us to this particular convolution

integral where we represented u of t as a train of impulses delta of t minus tau.



But this we discovered had problems because delta was a spiky function which could

potentially damage our system. So, we tried to represent u of t in terms of other more

benign functions and this was what was accomplished by using Fourier transforms, we

were able to represent u of t once again this time not in terms of delta functions; but in

terms of complex exponentials e power j omega t.

So, just as in the previous case delta of t minus tau had to be taken in the proportion u of

tau times delta tau and added up to get u of t. Here we had to take any specific complex

exponential e power j omega t in the quantity u of j omega times d omega and add it all

up to get u of t. And that quantity or the frequency content of the signal u of t we called

as the frequency spectrum and u of j omega which was also called to Fourier transform

of u of  t  and that  was given by this  particular  expression here.  Now what  we have

managed to do is to represent u of t; not in terms of complex exponentials e power j

omega t, but rather in terms of complex exponentials e power s t.

The reason we had to do this was because there are a few signals of great interest to us

which could not be represented by using the mathematics of Fourier transforms. So, by

replacing j omega by the term sigma plus j omega which we defined as s; we were able

to represent a bigger set of signals including those of that of importance to us by using a

complex exponential e power s t.

And the quantity once again of each of these complex exponentials e power s t that we

need is characterized by the terms U of S times d s. So, therefore, you see that in each

case we have attempted to represent u of t in terms of elementary functions delta function

in the first case complex exponential e power j omega t in the second case and e power s

t in the third case. And what you also see is this interesting similarity between Fourier

transforms and Laplace transforms in that in Laplace transforms, we have s to be equal to

sigma plus j omega.

So, in the case of Fourier transforms we have e to the power j omega t where omega is a

real number, a real frequency whereas, in the case of Laplace transforms I can write e

power s t as e power j times omega minus j times sigma times t. So, what we notice is

that if we replace a real frequency namely e power j omega t a real frequency omega by a

complex frequency omega minus j  sigma; we will  essentially  transition from Fourier

transforms to the Laplace transforms.



So,  having  justified  the  usefulness  of  Laplace  transforms  for  control  engineering

purposes let us now examine some of the important properties of Laplace transforms.

(Refer Slide Time: 06:13)

Now,  the  first  couple  of  properties  that  I  want  to  talk  about  or  whether  Laplace

transforms exist for all signals u and for those signals for which it exists does it exist for

all values of s.

So, to answer the first question Laplace transforms actually do not exist for all signals u.

For Laplace transform to exist in other words we should be able to get a finite value for

this integral; integral 0 to infinity u of tau e power minus s t u of t e power minus s t d t.

This happens if only the signals u of t are of exponential order; what we mean by this, is

that  we should be able  to  find a  time t  naught  beyond which the magnitude  of  this

function u of t can be bounded by a term of the kind k e power c times t, where k is a

constant and c is a constant; if a function u of t can be bounded by a function of the of

the kind k e k e power c times t.

Where k and c are constants beyond the time t e greater than or equal to t naught, then

such functions are said to be of exponential order. And it is easily verifiable that not all

functions are of exponential order. So, if you take for instance a ramp input u of t equal

to t; for t greater than or equal to 0 and 0 for t less than or equal to 0 less than 0 t less

than 0.



Then you can easily show that the value of c here can be arbitrarily close to 0 and yet I

will be able to bound u of t by using such a value of c. Likewise if I have a complex if

likewise if I have u of t equal to e power a t ; then I can bound this function by choosing

a  c  that  is  greater  than  a.  So,  even increasing  exponentials  or  of  exponential  order;

however, there are other functions that are not of exponential order. For example, if I

take a signal of the kind u of t is equal to t to the power t or u of t is equal to e to the

power t square.

These  are  all  signals  that  are  not  of  exponential  order  and  for  which  the  Laplace

transform  integral  will  not  exist;  in  other  words  it  explodes.  So,  we  cannot  define

Laplace transform for signals of this kind, but fortunately for us, signals of this particular

form are not commonly encountered in control system design and practice. And hence it

is not of great concern to us that we cannot define Laplace transforms for these signals.

The second question is does the Laplace transform exists for all values of s?.

(Refer Slide Time: 09:35)

In fact, you can show that if you take the simple example of u of t equal to e to the power

a t; then U of S is equal to integral 0 to infinity e power a t, e power minus s t d t; you

can clearly see by inspection that if the real part of s is less than a ; then you would have

an increasing exponential on as the integrand. And therefore, U of S cannot be defined

therefore, the real part of s has to always be greater than a; for its integral to exist and

this can be observed even in case of other functions.



So, there are only certain values of s for which U of S results for which the integral

converges and this set of values of s is called the region of convergence. So, it is only

within the region of convergence that the Laplace transform of the signal is defined, but

not  outside  it.  Having  looked  at  the  fact  that  Laplace  transforms;  firstly,  cannot  be

defined for all signals u of t and secondly, does not exist for all for any possible value of

s; we shall now look at the Laplace transforms of some common signals. 

(Refer Slide Time: 11:09)

So, let us first take u of t is equal to delta of t; computing the Laplace transforms is a

straightforward activity, where we simply evaluate the integral U of S is equal to integral

0 to infinity u of t e power minus s t d t. And if you do it for the case of u of t equal to

delta of t you get U of S to be equal to 1.

So, this is the first signal one other common signal is u of t equal to 1 for t greater than or

equal to 0 and equal to 0 for t less than 0; this is called as a step input. It is also often

called as a Heaviside step and it is given a unique symbol, it is called 1 of t. So, what is

the Laplace transform of 1 of t? You can show that the Laplace transform of 1 of t is

given by 1 by s by simply computing this particular integral.

Third is  a sinusoidal  signal sine omega t;  sine omega t  times 1 of t  because we are

looking at signals that are starting only at time t equal to 0. And for this we can show that

U of S is equal to omega by s square plus omega square. Likewise if you have cos omega

t; times 1 of t U of S will be can be shown to be equal to S by S square plus omega



square how about exponential functions? So, if I have e to the power a t times 1 of t; I

can show that U of S is equal to 1 by S minus a.

But once again all these Laplace transforms have to be qualified by stating that these are

the values of the Laplace transforms within the region of convergence for these particular

signals. So, what is the region of convergence for a step input? You can show that the

real part of s should be greater than 0. And which represents in the complex plane the

entire of the right half of the complex plane.

So, this is the region of convergence for a step input; likewise also for sinusoidal input

you can show that the region of convergence is real part of S is greater than 0. For an

increasing exponential; however, you can show that the condition is that the real part of s

should be greater than a. Likewise if  you have a decrease in exponential  so e to the

power minus a t 1 of t, where a is greater than 0. You can show that U of S is equal to 1

by S plus a, but once again within the region of convergence real part of S greater than

minus a.

So, these are the Laplace transforms of some of the commonly encountered signals; let

us now look at some of the general properties of Laplace transforms that are applicable

to all functions for which we can define Laplace transforms.

(Refer Slide Time: 14:27)



One is the property of differentiation of the signal; how is the Laplace transform of the

time derivative of a signal namely d u by d t, how is a Laplace transform of d u by d t

related to the Laplace transform of u of t? So, how are these 2 related?

So, you can show that the laplace if the Laplace transform of u of t is equal to U of S,

then the Laplace transform of d u by d t is equal to S times U of S minus small u of 0;

small u of 0 is a value of the signal time domain signal u of t at the time t equal to 0. So,

likewise you can generalize this further if you have d square u by d t square, the Laplace

transform of d square u by d s d t square; I will represent L of d u by d t as a Laplace

transform of d u by d t.

So, like likewise a Laplace transform of d square u by d t square is equal to S square U of

S minus s times u of 0 minus u dot of 0. So, this is something that you can show as well

and so on and so forth. Likewise if I have any signal u of t can we derive the Laplace

transform of integral of u of t in terms of the Laplace transform of u of t; it is indeed

possible to do this.

So, we do this by computing the Laplace transform of integral u of t d t as integral 0 to

infinity; integral u of tau d tau, the upper limit of integration being t; e power minus s t d

t and you can show by integration by parts that; this is going to be equal to U of S by S

minus u inverse of 0 by S; where u inverse of 0 represents the anti derivative of u at time

t equals u. Or in other words it is integral up to time t equal to 0 u of tau d tau; this is

equal to 2 inverse of c next is the convolution. So, if x of t is equal to integral 0 to t, u of

tau, G of t minus tau d tau.

What is the Laplace transform X of S in terms of U of S and G of S; in terms of the

Laplace  transforms  of  the  input  and  the  impulse  response.  You  can  show  using

mathematics very similar to what was employed in case of Fourier transforms that X of S

will be equal to U of S times G of S or in other words G of S that is a Laplace transform

of  the  impulse  response  is  a  ratio  of  the  Laplace  transform of  any response  of  the

response to any input X of S divided by the Laplace transform of the input itself namely

U of S.

So, this  term G of S which is a Laplace transform of the impulse response plays as

important  a  role  in  frequency  domain  and  Laplace  domain  analysis;  as  the  impulse



response itself plays in the time domain. So, there is a special name for G of S, it is

called the transfer function of a system.

(Refer Slide Time: 18:41)

Having defined the transfer function let  us look to look at  how the transfer function

appears for a system that is of interest to us.

So, to remind you the system that is of interest to us is the a system with the 1 by n th

order differential equation relating the output to the input. So, d nth derivative of x with

respect to time plus a 1 times n minus 1 th derivative of x with respect to time and. So,

on and. So, forth plus a n x is equal to b 1 times m th derivative of u with respect to time

and so on and so forth plus b m u with n initial conditions x of 0 x dot of 0 and so on and

so forth; up to x n minus 1 of 0.

So, we are interested to obtain the transfer function for the system. So, to; so we are

therefore, exclusively interested in focusing on the input output relationship; so, for the

sake of simplicity at this point we shall not consider the effect of the initial conditions

and we shall set all these initial conditions to be equal to 0. So, what we do not have to

carry them over in our calculations and in our quest to obtain appearance of the transfer

function for the system.

So, with all initial conditions equal to 0; I shall now apply Laplace transform both to the

left hand side as well as the right hand side of this equation. So, I apply the Laplace



transform of this and that should be equal to the Laplace transform of that. The Laplace

transform of n th derivative of x with respect to time when the initial conditions are 0 is

simply equal to S power n times the Laplace transform of X.

Similarly for any other index Laplace transform of n minus kth derivative of x with

respect to time can be shown to be simply equal to S power n minus k times the Laplace

transform of X. So, utilizing this fact we can write out the Laplace transform of the terms

on the left hand side to be S power n times X of S plus a 1 times S to power n minus 1

times X of S plus and so on and so forth plus n times X of S to be equal to b times S

power m times capital U of S, where capital of U of S represents the Laplace transform

of u of t plus so on and so forth up to b m times U of S.

So, if I were to simplify this expression I can take out X of S from this from the left hand

side and write this out as a polynomial in S. So, S power n plus a 1, S power n minus 1

and so on times X of S will be equal to b 1 S power m plus and so on and so forth up to b

m times U of S. So, what we would get is therefore, that X of S by U of S is equal to b 1

S power m and so on and so forth up to b m divided by S power n plus a 1; S power n

minus 1 and so on and so forth up to a n.

And from our previous slide we have shown that X of S by U of S is nothing, but G of S

which is the Laplace transform of the impulse response. And therefore, by comparing

these 2 equations we conclude that G of S is essentially equal to this expression. b 1 is

power m and so on and so forth up to b m plus S power n plus a 1; S power n minus 1

and so on and so forth up to a n.

So, what we see therefore, is that for the kind of systems that we are interested in this

course; the Laplace transform of the system is going to be a ratio of 2 polynomials in S.

So, a certain numerator polynomial and a certain denominator polynomial;  now what

more can we tell about the appearance of the transfer function for systems of this kind;

linear time invariant systems.

Before we uncover the other properties of the transfer functions; let me just define the

notion of poles and zeros which emerge from this particular equation. Since I have the

ratio of 2 polynomials as a transfer function, I can factorize these 2 polynomials and I

can essentially write my G of S as some constant k times S minus Z 1, times S minus Z 2



and so on and so forth; up to S minus Z m divided by S minus P 1, times S minus P 2 and

so on and so forth up to S minus P n.

Where P 1, P 2, P n and so on are the roots of the denominator polynomial, Z 1, Z 2 and

up to Z m are the roots of the numerator polynomial. Now there is a special name for

these roots. Z 1, Z 2 etcetera up to Z m are called the zeros of G of S for a very simple

reason because at these particular values; if you if I were to compute G of Z i, where i

goes from 1 to m; I would get G of Z i to be equal to 0 likewise P 1, P 2; P 1, P 2 and so

on up to P n are called the poles of G of S.

Because at these particular locations; in order to compute G of P i going from one to n I

would get infinity. So, at these particular locations G of S blows up; so these are Z 1 to Z

m are called zeros and P 1 to P n are called the poles of the transfer function. Now is

there anything more that we can say about the structure of the transfer function for linear

time invariant systems?

(Refer Slide Time: 24:44)

It is possible to do so but to uncover these additional properties; we have to appeal to a

couple of theorems that relate the time domain response to the transfer function of the

system. The first theorem is called as the initial value theorem; I state the theorem here

without proof because you are expected to have come across this theorem in one of your

preliminary courses on control systems.



If you have not come across this theorem the proof has been provided in the notes and is

also indicated and is also available in the textbooks to which we have referred in the

notes. So, the initial value theorem states that if I have a signal u of t; then in the vicinity

of time t equal to 0 u of 0 plus, I have this relation that the value of the signal at the time

u of at a time t equal to 0 plus is equal to limit; S tends to infinity S times capital U of S.

So, when capital U of S is the Laplace transform of the signal u of t; likewise there is one

more  theorem that  allows  us  to  predict  the  final  value  of  a  signal  from its  Laplace

transform U of S, without actually having to obtain the inverse Laplace transform and

that is called the final value theorem. I state this theorem also without proof; so, u of

infinity which essentially means that limit t tends to infinity u of t is equal to limit S

tends to 0; S times U of S where U of S once again is the Laplace transform of u of t.

However, the final value theorem needs to be taken with a pinch of salt because this

theorem is valid only for those signals u of t for which the origin s equal to 0 is within

the region of convergence of that signal. In other words the point S equal to 0 should be a

point at which the integral the Laplace integral has a finite value; is within the region of

convergence for u of t. Hence it is not applicable for signals such as sine t or for signals

such as u of t is equal to t or e power a t and so on and so forth.

If you were to apply it you get paradoxical results which do not make sense because

these signals either blow up or in other words tend to infinity as time t tends to infinity or

they are undefined as in the case of sinusoidal signals. But the reason we are not we get

such contradictory and counterintuitive results for these cases is because these signals do

not include the origin as part of their region of convergence.

Now let us focus on the initial value theorem and look at its consequences as far as the

structure of the transfer function is concerned. The initial value theorem sheds important

light on the structure of the transfer function G of S.
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So, if you let us say assume you that you apply a step input to your system in other

words U of S is equal to 1 over S; then the response of your system is going to be given

by X of S is equal to 1 over S times G of S, where G of S is the transfer function of your

system.

So, if you apply initial value theorem to this response X of S; then we would have that x

of 0 plus would be equal to limit its tends to infinity S times X of S. And if I were to

write it out in terms of G of S; I would have limit S tends to infinity, S times 1 over S

times G of S which is equal to limit s tends to infinity G of S.

Now we know that G of S has this particular form; G of S is equal to some con some b

one s power m plus so on and so forth up to b m divided by S power n plus a 1, S power

n minus 1 so on so forth up to a n; this is a structure of our G of S. Now when we apply

the limit S tends to infinity for this function G of S; we have 3 possible cases.

So, we would have x of 0 plus which is the value of the output S at a at a time t which is

just a little bit after the application of the step input to be equal to; in the case when m is

greater than n when m is greater than n you can show that in the limit S tends to infinity

G of S would also tend to infinity. So, x of 0 plus would be equal to infinity if m is

greater than n; however, if m is equal to n; in other words the degree of the numerator

polynomial is equal to the degree of the denominator polynomial, then we would have,

but G of S would be equal to b 1.



And in the third case when m is less than n we would have G of S to be equal to 0. Now

what this tells us is that if we apply a step input to this physical system; if m is greater

than n the output of the physical system an instant after application of the step input is

equal to infinity; when m is greater than n is equal to b 1, when m is equal to n and is

equal to 0 when m is less than n. Now it remains for us to judge which of these 3 cases is

a practically reasonable case.

I am sure you would agree with me that just after application of a step input the response

of a system which is initially at rest has to be close to 0. This is because all systems have

inertia  and it  takes some time before any system can track sudden changes in input.

Therefore, all physical systems have to satisfy this condition that m should be less than

or equal less than n. However, there are occasions in which the timescale in which we

expect our system to respond is much larger than the actual time that the system takes to

respond.

In which case we can model such a system approximately as one where m is equal to m;

in other words the response system is almost instantaneous in comparison with the time

scale in which we expected to respond. So, transfer functions where m is equal to n or

called proper transfer functions and transfer functions where m is less than n are called

strictly  proper  transfer  functions.  Since  we  are  dealing  with  physical  systems  for

controlling physical systems, using electrical circuitry which is again physical systems

and so on all such systems have a transfer function G of S where m is strictly less than n.

So, all our transfer functions are going to be strictly proper; however, as I said in the

course of analysis sometimes we can get away by approximating the transfer function to

be one where m is equal to n. Or in other words a transfer function is a proper transfer

function, but this is only an approximation of the physical system which might be valid

for the frequency range within which the system operates.

Therefore, the initial value theorem has shed an important light on the structure of the

transfer function namely that the degree of the numerator polynomial m has to be less

than  or  equal  to  the  degree  of  the  denominator  polynomial.  Having  looked  at  the

structure of G of S; thus far in the next clip we shall see what further simplifications are

possible in the appearance of G of S.


