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Fourier transforms (Part 2)

Hello, in the previous clip we defined what the Fourier Transform of a signal is. And we

came up with this definition in our quest to represent signals using functions that are

benign and not functions such as the delta function, which have you know which reach

dangerously high magnitudes and could therefore, potentially destroy our system in our

attempt to obtain the impulse response of that system.

(Refer Slide Time: 00:50)

So, let us once again look at what the Fourier transform expression is. If I have a signal u

of t then its Fourier transform U of j omega is given by u of j omega equal to integral

minus infinity to infinity u of t e power minus j omega t d t. So, the utility of u of j

omega is that it allows me to represent u of t in terms of complex exponential. So, I can

write u of t as 1 by 2 pi integral minus infinity to infinity U of j omega e power j omega t

d omega. 

Now, I want to contrast the representation of u of t in terms of complex exponentials e

power j omega t with what we had earlier, where we try to represent u of t in terms of

delta functions. In that case, we had u of t equal to integral minus infinity to infinity u of



tau delta of t minus tau d tau. So, what you see that we have done here is that, in the

previous case we represented u of t as a sum of impulses. And these impulses how have

magnitude u of tau delta tau or d tau.

And in this case, we have represented it as a sum of complex exponentials e power j

omega t,  and the quantity of each of these terms e power j omega t that we need to

reconstruct  u  of  t  is  given  by U of  j  omega  d  omega.  So,  you see  that,  there  is  a

continuity in terms of our effort to represent the signal using other elementary functions

using elementary functions other than a delta function. And what we have succeeded in

doing,  now  is  that  we  have  succeeded  in  representing  it  in  terms  of  complex

exponentials, which as I pointed out earlier are benign functions. Their magnitude never

tends to infinity, their magnitude is always equal to 1. So, having looked at the utility of

Fourier transforms in enabling us to represent u of t in terms of complex exponentials.

Let us briefly take a look at a Fourier transforms of some common signals. So, the first

signal I consider is the impulse input, which is u of t equal to delta of t. For this case, the

Fourier transform by definition is U of j omega equal to integral minus infinity to infinity

delta of t e power minus j omega t d t, which from the definition of the delta function

will be equal to 1.

Likewise, if I have a decreasing exponential e power minus e a t, and suppose this is

exponential function starts at the time t equal to 0 t greater than or equal to 0 and for u is

equal to e power minus a t when t is greater than or equal to 0 and e equal to 0 for t less

than 0. Then for this function we can show that the Fourier transform u of j omega is

integral 0 to infinity the lower limit becomes 0, because it exists only from time t greater

than or equal to 0 e power minus a t e power minus j omega t d t. And we can show this

to be equal to 1 by a plus j omega. 

Likewise, if you have a step function, in other words u of t is equal to 1 for t greater than

or equal to 0 and 0 for t less than 0. We can write the step function u of t which looks

something like this. So, it is 1 for t greater than 0 greater than or equal to 0 and 0 for t

less than 0. I can write this as a summation of a signal of constant magnitude 0.5 going

from t minus infinity to t plus infinity, so u 1, plus I can write this as this plus a signal

whose magnitude changes from minus 0.5 to 0.5 about time t equal to 0 I can write it this

way.



And, since, the Fourier transform of the sum of two signals there some of the Fourier

transforms of these two signals. I can show that the Fourier transform of a step is equal

to the Fourier transform of this signal, which I can calculate and show it to be equal to pi

times delta of omega and plus the Fourier transform of this waveform and this I can

show to be equal to 1 by j omega. So, the Fourier transform of a step is therefore, given

by this particular expression. 

(Refer Slide Time: 06:05)

You can also derive the Fourier transform of other signals for instance, If you have a

sinusoidal signal, u of t is equal to sin omega naught t, then its Fourier transform U of j

omega can be derived to be equal to 1 by 2 j delta of omega minus omega naught minus

delta of omega plus omega naught. 

So, we will stop reviewing you know Fourier transforms of different signals at this point.

We shall look at a couple of important properties of Fourier transforms. And the second

property would in particular be very helpful to us in our quest which is to get the impulse

response of a system without applying an impulse input, the first property is the effect of

scaling in terms of time.

So, let us say, I have a signal u of t, and its Fourier transform is U of j omega. Suppose, I

either  speed up the signal  or slow down the signal  in  other  words I  multiplying  the

independent variable with some constant k. Then I can show that the Fourier transform

of u of k times t is 1 by k u of j omega by k. So, let me, just graph this relationship, and



show you what  I  am what  I  mean.  So, suppose u of t  is  some waveform that  looks

something like this as function of time. This has a certain Fourier transform, and, let us

say, I am plotting the magnitude of U of j omega here, and it has some particular shape.

Now suppose we take the signal u of k times t where k is greater than 1 which means that

we are speeding up the signal what happens is u of k times t will be a signal that looks

similar  in  shape  to  u  of  t,  but  would  be  compressed.  So,  it  might  probably  look

something like this.

And what this relationship says is that, the Fourier transform gets spread out. So, the

Fourier transform of u of k times t where k is greater than one will be broader than the

Fourier transform of u of t. So, u of U 1 of j omega, if I want to call it, that is going to

look something like this, but it is going to be similar again in shape in comparison with

U of j omega. So, intuitively what it means is that if you are speeding up the signal, you

are you require many more of complex exponentials of higher frequencies to reconstruct

that  signal.  And therefore,  your  Fourier  transform also  gets  broadened,  because  at  a

particular  frequency  earlier  you  might  not  have  needed  as  much  of  that  complex

exponential to construct u of t. But now because you are dealing with a faster signal you

require much more of complex exponential at that particular frequency to reconstruct the

signal.

So, in other words if you have a signal and you are represented in terms of complex

exponentials,  complex  exponentials  of  higher  frequencies  can  be  used  to  reconstruct

sharper and faster changing features of a signal. While complex exponentials at lower

frequencies can be used to reconstruct parts of the signal that are changing slowly in

terms of time. So, therefore, if I were to slow down the signal in other words, if I were to

choose k to be less than 1, then once again in the time domain the shape of the signal is

going to be very similar to u of t, but it is going to be stretched out in time, so this is how

you going to look. And now, since we have slowed down the signal, we do not need as

much quantity of complex exponentials to reconstruct this new signal as we did in the

first case as we did in this case.

So,  therefore,  what  happens  is  that  the  Fourier  transform  gets  compressed.  So,  the

Fourier transform would have the same shape as u of g omega, but it  would have it

would get compressed in the frequency domain. So, this is magnitude of U of j omega I

will call this U 2 of j omega to represent the Fourier transform of u of k times t, when k



is less than 1, and u 1 magnitude of U 1 of j omega to represent the Fourier transform of

u of k times t when k is greater than 1. So, this helps us imagine what would happen to

the frequency content of a signal when it gets speeded up or slowed down, and also

highlights  the fact  that  faster  signals  require  much more of  faster  changing complex

exponentials  to  for  their  reconstruction,  while  slower  signals  require  much  more  of

slower changing complex exponentials to reconstruct the signal. 
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The second property that, I want to point out to which I said is particularly useful for us

as  engineers,  control  engineers  is  the  property  relating  the  Fourier  transform  of  a

convolution integral to the Fourier transforms of the individual functions. So, if I have x

of t, as integral 0 to t u of tau g of t minus tau d tau. You will immediately recognize this

as the response of my linear time invariant system to a certain input u of t given 0 initial

conditions, what we are looking for is what is the Fourier transform of X let us say, we

call it X of j omega what is it in relation to the Fourier transforms of U which is U of j

omega and a Fourier transform of g, which is G of j omega how are these three terms

related.

So, once again we go by the definition of the Fourier transform. So, X of j omega by

definition is integral minus infinity to infinity x of t e power j omega e power minus j

omega t d t, and that is equal to integral minus infinity to infinity integral 0 to t u of tau g

of t minus tau d tau times e power minus j omega t d t. Now I can change the limits of



integration for the expression u of tau g of t minus tau d tau to integration from minus

infinity to infinity, because I know that u of tau is 0 for time t less than 0 and g of t minus

tau is 0 for time t greater than for time tau greater than t. So, there is no change in the

value  of  this  integral  if  I  were to  replace  t  with  infinity, and 0 with minus  infinity,

because in one limit this term goes to 0 in other limit the other term goes to 0. So, this is

going to be u of tau g of t minus tau d tau times e power minus j omega t d t. 

Now, after  some algebraic  manipulation  I  can show that  this  double integral  can be

written as integral minus infinity to infinity u of tau e power minus j omega tau d tau

times integral minus infinity to infinity g of t prime e power minus j omega t prime d t

prime, where t prime is equal to t minus tau. And you will recognize the first term, here

as a Fourier transform of U of t which is U of j omega, and the second term as a Fourier

transform of g of t which is G of j omega therefore, X of j omega is equal to U of j

omega  times  G  of  j  omega.  This  is  a  very  important  relationship  is  an  important

milestone for us,  because we have very nearly come to the end of our quest. So,  to

remind you our quest was to obtain the impulse response of a system without applying an

impulse input, and this particular relationship here shows us the way as to how it can be

done. So, we shall elaborate a little bit more on this particular fact.

(Refer Slide Time: 15:03)

So, we have X of j omega to be equal to U of j omega times G of j omega, where G is the

impulse,  Fourier transform of the impulse response. So, therefore I would get G of j



omega is equal to X of j omega by U of j omega. What does indicates is that, I can get

the Fourier transform of the impulse response by applying any input U, and measuring

the  response to  that  input  X.  And taking the  ratios  of  the Fourier  transforms of  the

response  to  the  Fourier  transform of  the  input,  which  in  turn  implies  that  I  do  not

necessarily have to apply a impulse input itself to obtain the impulse response G of j

omega.

I could choose to apply for instance a step input. I could choose to apply sinusoidal

inputs and sweep the sinusoidal frequency. I can choose to do all these things, and from

the obtained time domain response x of t. If I take the Fourier transform (Refer Time:

16:03)  time domain response,  and divide that  by the Fourier transform of the signal

itself, I can obtain the Fourier transform of the impulse response. So, without having to

apply  impulses,  without  applying  these  dangerous  inputs,  which  could  potentially

destroy our system.

The mathematics of Fourier transforms allows us to extract the impulse response well.

We are not there yet,  because we have managed to get the Fourier transform of the

impulse  response.  The  impulse  response,  of  course  is  simply  the  inverse  Fourier

transform of G of j omega and that is given by integral minus infinity to infinity G of j

omega e power j omega t d omega. So, this is one significant achievement. We started

out by noting the centrality of g of t in our ability to obtain the response x of t for any

specified input u of t. And that was in terms of the convolution integral. So, x of t was

equal to integral 0 to t u of tau g of t minus tau d tau. 

So, we noted two issues with this. One is how can we obtain g of t without applying an

impulse input, and we have addressed that. And interestingly, the mathematics of Fourier

transforms also helps us to address, the second issue that we discussed as far as this

representation is concerned. We noted that in order to obtain the response to any input u

of t, we had to compute this convolution integral. And this convolution integral is not

easy to compute. One has to sit down take a pen and a paper, and actually go through the

motion of solving this integral.

And that is a fairly non-intuitive activity. So, it is not easy as engineers for us to predict,

how the response might be like for a specified u of t, for a given g of t. However, what

the mathematics of Fourier transforms has allowed us to do is to replace the convolution



integral operation, that we see in the time domain by a simple multiplication. So, the

Fourier transform of x of t is simply the product of the Fourier transforms of u and that

of g. And a product operation is a far more intuitive operation.

So, if we can train our intuition on how we can how the signals that appear in the time

domain might appear in the frequency domain,  then that  is a worthwhile  exercise to

undertake. Because, in the frequency domain I just have to multiply the impulse Fourier

transform of the impulse response, which is G of j omega with the Fourier transform of

the input, to know what the Fourier transform of the response is going to be like. And

with this intuition about how x of t might appear, if I know X of j omega, I can roughly

predict how x of t might appear, after performing that multiplication. So, in our attempt

to represent signals using benign functions, such as complex exponentials.

We  have  firstly  found  that  this  mathematics,  namely  the  mathematics  of  Fourier

transforms allows us to obtain g of t. But, having obtained g of t, we also discover that it

is not necessary for us to know go back to the time domain. If we can build our intuition,

on how signals appear in the frequency domain. And if we do that, then we can stick in

the frequency domain, and understand the response of systems to various inputs in a far

more transparent manner.

As useful as the mathematics of Fourier transforms is there are some certain, still certain

very  important  drawbacks  associated  with  it.  As  far  as  our  requirements  as  control

engineers  is  concerned.  So,  for  instance  if  you  look  at  the  Fourier  transform  of  a

sinusoidal signal or a d c input, you see that you have delta functions. So, for example

the Fourier transform of sine omega naught t had a delta function at plus omega naught

and minus omega naught, delta omega plus omega naught delta omega minus omega

naught, and 1 by 2 j of this was the Fourier transform of sin omega t.

Similarly, the Fourier transform of a step was 1 by j omega plus pi times delta of omega.

So, once again you had delta functions. And delta  functions by their  very nature are

difficult  to  deal  with,  because  they  have  magnitude  tending  to  infinity  over  a  time

duration that is tending to 0. So, they are difficult to imagine, difficult to sketch, and

therefore are difficult to work with. So, this is one problem but, a bigger problem is that

there are many signals of interest to us as control engineers for which you cannot define

a Fourier transform at all.



So, for instance if you have u of t is equal to t, so this is a ramp input. Let us say for t

greater than or equal to 0, it is equal to t and is equal to 0 for t less than 0. You can show

that you cannot define a Fourier transform for the signal, because when you compute that

integral  U  of  j  omega  that  integral  diverges,  it  explodes.  And  similarly,  a  rising

exponential e to the power a t, where a is greater than 0.

Similarly, also does not have a Fourier transform, because that expression the integral for

U of j omega, once again explodes. But, all these signals a ramp signal an increasing

exponential, and even sinusoidal signals, and step signals and so on, are signals that we

very commonly encounter, during our you know work as control  engineers.  So, it  is

therefore  a  big  handicap  that  we  cannot  apply  Fourier  transforms  for  these  specific

signals.  So,  how do we salvage the situation,  we salvage the situation by wondering

whether we can obtain the Fourier transform of these signals by suitably weighing them

down.

(Refer Slide Time: 22:29)

So, if I want to multiply, the signal for which we cannot define a Fourier transform. So,

let  us  a  step input  or a  increase in  exponential  or  some other  such function,  with a

decreasing exponential e power minus sigma t, where sigma is greater than 0, in which

case these signals are not really tending to infinity, as time t tends to infinity ok. Is it

possible, then that this signal could have a Fourier transform. It is quite likely that it

would have a Fourier transform, because such a signal might then be square integrable.



So, if that is so then I can write out the Fourier transform of I can write down this signal

e power minus sigma t u of t as 1 by 2 pi integral minus infinity to infinity e to the power

j omega t d omega times the Fourier transform of this signal, which is given by integral

minus infinity to infinity e to the power minus sigma t u of t e to the power minus j

omega t d t.

Now, I shall shift e power minus sigma t to the right, so I would have u of t to be equal to

1 by 2 pi integral minus infinity to infinity, since this function is not a function of omega.

I can take it within this integral, and write this a e power j omega t plus sigma t times d

omega integral e power minus infinity to infinity e power minus sigma t u of t e power

minus j omega t d t.

Now, firstly we shall note that the lower limit of this integral can is not minus infinity,

because my time my signal u of t  assumed to start  at  time t  equal  to  0.  So,  I  shall

therefore replace the lower limit of this integral with 0. And I shall now write this as 1 by

2 pi integral minus infinity to infinity e power sigma plus j omega times t d omega, times

integral 0 to infinity e power minus of sigma plus j omega times t u of t d t. And I shall

define sigma plus j omega as some complex number as in which case I can write u of t as

1 by 2 pi. The limits of this integration will now change, it will be if s is defined as sigma

plus j omega and omega is going from minus infinity to infinity, then s will go from

sigma minus j infinity to sigma plus j infinity e power s t d s times integral 0 to infinity e

power minus s t u of t d t.

Now, I shall call e power minus s t u of t d t as U of s, and write u of t capital U of s, and

I shall write u of t s 1 by 2 pi sorry there is a j here. So, I shall write this as 1 by 2 pi j

integral sigma minus j infinity sigma plus j infinity e power s t d s U of s. And U of s is

called the Laplace transform of u of t. You see therefore that there is a real valid reason

for  us  to  introduce  Laplace  transforms,  when  we  are  dealing  with  control  systems,

because  we  are  having  to  deal  with  signals  for  which  you  cannot  define  Fourier

transforms. Even though the language of Fourier transforms is very intuitive, and easy to

apply. We shall look at other properties of Laplace transforms in the next video clip.


