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Hello in the previous clip we introduced the notion of a Describing Function and talked

about how it will help us to grapple with the issues that are introduced by non-linear

elements that inevitably will be present in any control loop. So, we first catalogued the

different nonlinearities that one generally encounters, we started from the electrical side

of the Control System and looked at the presence of non-linearity such as, saturation and

quantization and subsequently when we come to the electromechanical side, we saw that

we had issues associated with relays and namely on off switching and then nonlinearity

associated  with  relays  itself  in  terms  of  hysteresis,  subsequently  views  a  different

actuator and actuator other than the relay it might have a smooth in, but non-linear input

output relationship.

The plant itself might exhibit nonlinearities, the mechanical elements are transfer power

from the motor to the plant namely elements such as gears and so on, might also have

nonlinearities in terms of backlash and dead zone and things of that kind.

So, therefore, we notice that there are commonly several nonlinearities to be encountered

in a feedback control system, but up to the last clip we had resolutely you know decided

to ignore the effect of these nonlinearities and assumed that there effect was small. In the

last clip we asked ourselves how we could analyze the effect these nonlinearities on the

control system that we have developed, the linear control system that we would have

designed and analyzed and in search of a suitable common tool that can be employed to

analyze a effect of all these desperate nonlinearities, which originate from fairly different

physical you know influences. We came up with this idea of a describing function which

attempted to extend the notion of a transfer function, but to a non-linear system.

So, to characterize a transfer function for instance,  in the case of a linear system we

apply any general input, a broadband input look at the response and take the ratios of the

Laplace transforms of the response and the input and then obtain the transform function.

But we discussed the difficulties associated with do in that in case of non-linear elements



because, the response to 1 input might be substantially different from the response to a

different input.

So,  we  could  not  apply  any  arbitrary  input  and  get  something  similar  to  a  transfer

function for a non-linear element. So, we have to decide on what input we would provide

and since as control engineers we are quite concerned about the stability of the closed

loop system and that is and the effect of these non-linear elements on the stabilities far

more important than there effects on the performance of the system.

We noted that a sinusoidal signal would be an appropriate input to our non-linear element

because, if you have a control system that is on the threshold of instability then any input

to the control system would result in a lot of transient response involving oscillations,

which settle down in longer and longer times if our closed loop system is close to the

threshold of instability.

So, since the sinusoidal signal therefore, is of importance when we have a control system

which is on the threshold of instability, we decided to choose the sinusoidal signal as an

input  to  our non-linear  element.  Then we discussed two other issues associated with

characterizing this non-linear element namely; that the response will not be a sinusoid

unlike in the case of a linear system.

In this case the response will be a distorted sinusoid, some non-linear function, but with a

period that would be identical to the period of the sinusoidal input signal. And the second

issue  we  discussed  was  that,  the  response  of  our  non-linear  element  would  also  be

dependent  on  the  amplitude  of  the  input,  amplitude  of  the  sinusoidal  input  that  we

provide, unlike in the case of a linear system where the response is independent of the

amplitude of the input.

So,  what  we  decided  therefore,  was  that,  you  apply  a  sinusoidal  input,  look  at  the

response of the system at a frequency of a the input signal. So, the response might be a

periodic signal, but this periodic signal can be return out using Fourier series as a sum of

sinusoidal signals of frequencies equal to the frequency of the input signal plus its higher

harmonics.

So, we decided that we will look at only the component of the response at the frequency

that matches the frequency of the input signal and then study the ratio or the relationship



between this component and the input as function of both the frequency of the input as

well as its amplitude. And that is what we called as the describing function of our non-

linear system. 

(Refer Slide Time: 05:20)

So, I have written down here once again the definition that we discussed in the previous

clip,  a  describing  function  is  the  relationship  between  the  response  of  a  non-linear

element  at  the  frequency  of  the  input  to  the  input  sinusoidal  signal  itself.  So,

mathematically  we  wrote  out  the  expression  that  x  of  t  can  be  written  in  terms  of

sinusoidal signals of the same frequency of excitation and its higher harmonics. So, it

can be written out a sigma of a k sin k omega naught t plus b k cos k omega naught t. So,

it is not sin k omega naught here. So, it is cos k omega naught t.

Then as far as describing functions definition is concerned we are interested only in the

coefficients a1 and b1 and the coefficients a1 and b1 are given by the 2 expressions here,

which have be already underlined using red color and a describing function is in general

a  complex  entity  which  is  defined  as  a1  plus  jb1  divided  by  A.  So,  in  general  the

describing function is a function of both the amplitude A as well as the frequency omega.

Then we went on to derive the describing function for a particular nonlinearity that we

considered in the previous clip. And in this clip what we shall do is we shall first look at

the  describing  function  for  some  common  nonlinearities  that  we  come  across  and

subsequently also discuss how a describing function can be put to use in order to analyze



the stability of feedback systems and subsequently go one step further and see how it can

even be used in the process of synthesizing a controller for our feedback system.

So,  how  can  we  incorporate  the  nonlinearity  and  design  a  suitable  controller  that

functions well even in the presence of this nonlinearity. So, that is also what we will see

in this clip.

(Refer Slide Time: 07:04)

So, we shall first start with the saturation nonlinearity and the input output relationship

has been shown here. So, the output is proportional to the input up to some either voltage

or value which in this case has been called as delta. And if you write down the describing

function, we note that sinusoidal signals of amplitude between 0 and delta, we would

have the describing function to be equal to simply the slope of the straight line that

relates the input to the output. 

So, we note that for sinusoidal signals whose amplitude assumes values between 0 and

delta,  the describing function is going to be simply given by the slope of this  linear

characteristic because, it behaves as a simple linear amplifier between this range and if

that slope happens to be m, then the describing function is going to be equal to m for

amplitudes A of the input sinusoid less than delta.

Now, if the amplitude is greater than delta, then we note that the response of this or the

output of this non-linear element would be a clipped sinusoid. And if we write out the



first  harmonic  component  of  the  clip  sinusoid  and take  its  ratio  with  respect  to  the

amplitude of the input sinusoid,  then we get the describing function in this  range of

amplitudes to be given by the second expression here namely, the describing function is

going to be equal to 2 m by pi times sin inverse of delta by a plus delta by a times square

root of 1 minus delta square by A square. 

And you note that if we substitute delta is equal to A, which is known to be a point that is

at the very threshold of this change of the input output characteristics for this non-linear

element, we get the describing function to be equal to m exactly as we expected to be.

So, what is worth noting in this case is that, this is a static non-linearity and hence the

describing function is not a function of frequency, it is only a function of amplitude and

that  function  has  been written  out  here.  Next  we shall  look at  another  a  non-linear

element namely that of a relay, whose output changes between values plus D and minus

D when the input sign changes from a positive sign to a negative sign. 

And for this  case it  can be shown that  the describing function once again would be

dependent only on the amplitude and not the frequency because, this is once again a

static nonlinearity. B y a static nonlinearity I mean that, if you apply an input sinusoid

and you change the frequency of the sinusoid, the nature of the response will not be

dependent on the frequency.

So, we therefore, have in this case that the describing function to be equal to 4D by pi A,

where A is the amplitude of the sinusoid and D represents the magnitude of the positive

value or the negative value that the relays output would assume, when we provide a

certain input to the relay. So, likewise we can also derive the describing function for

backlash. 

So, how does one derive all of these things, all one has to do is to provide a sinusoidal

input to this non-linear element, look at the response it would be a periodic signal, but

with distortion and now take its you know first harmonic or the look at its frequency

content at the frequency of the input sinusoid and obtain the ratio between the 2 or the

complex ratio between the 2.

In the case of backlash, whose input output characteristics has been shown here, I have

not  written  down the mathematical  expression for its  describing function,  but  I  have



depicted it graphically. So, we note that when the input is of magnitude less than b by 2,

which is the gap that needs to be traversed before for instance the output gear tooth can

mesh with the input gear tooth, then we know that the output will be 0 up to the point

that this contact happens.

So, up to an amplitude of b by 2, a sinusoidal signal of amplitude b by 2, the describing

function will be equal to 0 in magnitude, but once the amplitude increases beyond b by 2,

the describing function will gradually increase. And for very large amplitudes this little

gap that one might have that is responsible for backlash especially, in case of gears will

become very small compared to the amplitude of the inputs sinusoid and therefore, the

driven gear will exactly follow the driving gear, at such large amplitudes and hence the

describing function will tend to 1.

If you look at the phase of response, we note that at b by 2 the phase is going to be close

to minus 90 degrees.  We cannot  really  define phase for amplitudes  less than b by 2

because,  the  response  is  actually  0,  so assigning a  phase 2  a  complex number  of  0

magnitude does not make much sense, but in the interest of ensuring continuity at the

point b by 2,  we shall  assume that  the phase is  equal to minus 90 degrees even for

amplitudes less than b by 2.

Now, as the input amplitude A increases beyond b by 2, the phase lag reduces and as we

discussed when the input amplitude is very large much larger than the backlash that exist

between the gear teeth for instance, then our output gear the driven gear will exactly

follow, almost exactly follow the driving gear and hence the phase will asymptotically

approach 0 degrees. What I want to underscore in the plot that I have shown here for the

describing function of a backlash is that, the x axis is not frequency. So, this magnitude

and phase is reminiscent of a bode plot. Hence one might be uncritically let to assume

that the x axis is frequency, but in this case, the x axis amplitude.

So, it is not frequency, but it is amplitude and we are plotting the magnitude and the

phase  of  the  describing  function  as  function  of  amplitude  alone.  Why have  we  not

considered frequency? That is because, once again backlash is a static nonlinearity and

the  input  output  characteristics  for  backlash  is  independent  of  the  frequency  of  the

sinusoidal signal that we used to drive this element, that has drive this non-linear element

that has backlash in it.



The next nonlinearity is an interesting nonlinearity. This is not something that is inherent

to most control systems, but something that we might want to intentionally insert into a

control system oven to the benefits that we as control engineers who accrue from it. So,

this nonlinearity is what is known as a Clegg Integrator. So a Clegg Integrator.

(Refer Slide Time: 13:57)

The input output characteristics for a Clegg Integrator are best explained graphically. So,

if we provide a sinusoidal input to a Clegg Integrator; so let us say I have provided a

sinusoidal input. What the Clegg Integrator does is, it integrates the signal up to the point

that a signal crosses 0 either in the positive direction or in the negative direction, but the

moment input signal crosses 0, the integrator resets the output. So, if 1 were to plot, the

output of a Clegg Integrator. So, here the x axis is time, the y axis is the input u, if 1 were

to plot x versus t for the integrator, Clegg Integrator then between the times 0 and t by 2,

where capital T represents a period of this sinusoidal signal.

We have the signal being always greater than 0. So, this integrator therefore, integrates

this signal between 0 and T by 2. Now at T by 2 what happens is that, the signal is

crossing 0. So, the signal is going from a value slightly above 0 to a value slightly below

0. The moment a 0 crossing happens, the Clegg Integrator resets the output, which means

that the output will abruptly come to 0 at T by 2.

Then once again between T by 2 and t the signal always remains negative and hence if

one were to integrate the signal, it will look something like this. And again at capital T



there is a 0 crossing for the input signal and the output of the Clegg Integrator gets reset.

And this waveform repeats for all future time. So, this is the input output characteristic of

a Clegg Integrator.

What is very interesting to note in this non-linear element is that, this non-linear element

satisfies the scaling property, which is one of the test for a non-linear for linearity of a

system, but it does not satisfy superposition property. So, if our to scale the input the

output also gets scaled, but if I take two different sinusoids and add them up the output of

the Clegg Integrator for the sum of the 2 sinusoids would not be equal to the sum of the

outputs of the integrator for each of the 2 sinusoids.

Hence, this is a strange and interesting non-linear element which satisfies scaling, but not

superposition. Now, why is this of interest to us as control engineers, it is of interest to us

as of control engineers because, it has this particular describing function. So, if 1 were to

look at  the first  harmonic of the response and then study it  as function of the input

frequency, one would note that the describing function for a Clegg Integrator is given by

4 by pi omega times 1 minus j pi by 4.

Now, what is so special about this particular describing function, let us just first sketch

the describing function in a bode plot  to see what is  attractive  about  this  describing

function. So, let us first draw the magnitude plot, where we plot log omega versus log of

20 log magnitude of the describing function and what you notice is that, the describing

function has this 1 over omega dependence of gain on frequency. So, the magnitude of

the describing function as frequency are function of frequency omega is  going to be

given by 4 by pi omega times square root of 1 plus pi square by 16.

So, everything here is a constant, so it is on the of the form k by omega. And this is

reminiscent of the magnitude characteristics of a conventional integrator. So, the roll off

will be here minus 20 decibels per decade, exactly as in case of a conventional integrator.

There will be some offset with the x and y axis depending on the particular value of gain

that we have. So, for instance, if the gain is k then at log omega equal to 0 or in other

words omega is equal to 1 the magnitude will be equal to 20 log k. 

So, this is the magnitude characteristic of the Clegg Integrator. And you would notice if

you plug in the numbers that this value of k is actually close to 1. So, the y intercept is

actually quite close to the origin. Now what about the phase characteristics for the Clegg



Integrator, if our to plot the phase as function of frequency, so the angle of the describing

function as function of frequency, we note that if this is the describing function for the

Clegg  Integrator  by  definition  the  angle,  which  is  TAN  inverse  of  the  ratio  of  the

imaginary part to the real part is given by the angle of DF is equal to minus TAN inverse

of pi by 4.

Now, what is numerically the value of pi by 4? We note that pi is approximately 3.14. So,

pi by 4 is 3.14 by 4, which is a little bit it is on the order of 0.75 because, if it was 3 by 4,

it  would be 0.75. So, 3.14 by 4 is the little bit  more than 0.75. So, the angle of the

describing function is going to be equal to minus of tan inverse of pi by 4, which is going

to be on the order of minus of tan inverse of 0.75.

We note that tan inverse of 1 is pi by 4 hence; tan inverse of 0.75 is an angle less than pi

by  4 or  an  angle  less  than  45 degrees.  Therefore,  we would  have  the  angle  of  this

describing function to be an angle that is less than 45 degrees and to be independent of

frequency. So, if the angle minus 90 degrees is here and minus 45 degrees is here then

the angle of describing function which is tan inverse of minus pi by 4 will be somewhere

there.

And  now  you  begin  to  appreciate  the  advantage  of  a  Clegg  Integrator.  It  has  the

magnitude characteristics of a regular integrator. So, therefore, it has the potential to give

you good performance at low frequencies, but the transfer function of a regular integrator

is of course, given by 1 by j omega and the phase associated with the regular integrator is

minus 90 degrees. So, the phase lag is 90 degrees; however, in this case the phase lag is

actually less than 45 degrees.

So, what this means is that, if we were to integrate a Clegg Integrator into a feedback

system, you can reap the benefits at low frequencies as a consequence of the magnitude

characteristics of the Clegg Integrator at low frequencies, but at high frequencies near the

gain crossover frequency for instance,  the phase performance gets improved because,

unlike a regular integrator which supplies a phase lag of 90 degrees, a Clegg Integrator

supplies  a  phase  lag  of  less  than  45  degrees.  And  hence  the  phase  margin  can  be

improved by an amount of 45 degrees or more as a consequence of using the Clegg

Integrator.



So, this is another example of a non-linear element and in this case one might wish to

deliberately introduce this non-linear element into a feedback system and we will see an

example of that in the in a short while. In the interest of improving the performance of a

feedback  system beyond  what  can  be  accomplished  by  using  linear  controllers.  So,

having seen the describing function of several common nonlinearities and the describing

function of one special nonlinearity that we might intentionally wish to have as part of

our  feedback  system,  let  us  now  briefly  see  how  we  can  employ  the  notion  of  a

describing function.

To answer the question of how we can employ the notion of a describing function, let us

first  ask  ourselves  what  a  describing  function  of  a  linear  system is,  can  we  define

something like a describing function for a linear system. In order to do that what do we

need to do, we need to first provide a sinusoidal input to this linear system, look at the

response of the linear system and in steady state we have to look at the first harmonic of

the response. But it so happens that if our system is linear and stable then, if you provide

a sinusoidal input to this linear system, then the response will also be a sinusoidal signal

at in steady state and hence this going to be only 1 component and that is going to be at

the frequency of the input sinusoid.

But the magnitude of this response will be larger than that of the input and there will be a

phase shift between the input sinusoid and the output sinusoid. Therefore, if you look at

the describing function of a linear element, it simply boils down to the transfer function

of  that  element.  Therefore,  this  describing  function  can  be  easily  be  viewed  as  an

extension of the notion of a transfer function, but to a non-linear system. It elegantly

reduces to simply a transfer function of the system when the system is a linear system,

but if the system has nonlinearities then we also need to incorporate the dependence of

the output on the amplitude of the input and hence it becomes a describing function in a

manner that we defined earlier on in this clip.

So, for all practical purposes as control engineers we can view a describing function of a

non-linear element as in some sense a quote unquote transfer function of that element. I

am putting the phase transfer function between quotations because, transfer functions can

be defined only for linear systems, but since we have defined a describing function in a

manner  very  analogous  to  the  definition  of  a  transfer  function,  we  shall  choose  to

visualize  the describing  function in  a  manner  similar  to  how we visualize  a  transfer



function. And that immediately clarifies how we can put describing function to use as

control engineers; either in analysis of control systems or in their designs.

(Refer Slide Time: 24:18)

So, for instance, if we have the bode plot of the linear system looking as shown by the

solid curve here. It has a certain magnitude plot and it has a certain phase plot, but there

is also a certain linearity in our open loop system with a certain describing function DF,

which is a function both the amplitude A, as well as the frequency omega. What does this

describing function do to the open loop transfer function? Since a describing function is

a generalization of the notion of transfer function to a non-linear element, this describing

function DF of A comma omega can be viewed as a fancy transfer function. Hence, the

open loop transfer function can be viewed as simply the product of DF of A comma

omega and the existing open loop transfer function which I have called here as G of j

omega.

So, if 1 were to now plot the magnitude and phase characteristics of the overall open

loop system, the if we have a static nonlinearity for instance, this static nonlinearity will

only affect the magnitude characteristics because, it adds no phase lag at any frequency,

the  phase  lag  associated  with  a  static  nonlinearity  such  as  saturation  or  relay  or  a

backlash  element  is  0.  So,  it  only  affects  the  magnitude  plot  and  depending  on the

magnitude of nonlinearity that we might have, the magnitude plot by either get pushed



up or pushed down. And what will the due to the gain crossover frequency; the gain

crossover frequency will correspondingly get pushed either to the right or to the left. 

Now, the describing function if it is meant to characterize a non-linear element, which

shows some non-linear dynamics,  there will  also be a phase lag associated with this

describing  function,  as  function  of  frequency,  just  as  we  saw  in  case  of  the  Clegg

Integrator,  in  which  case  the  describing  function  will  also  modify  the  phase

characteristics of our linear open loop system.

So, if we were to now draw the bode plot of the overall open loop system where in we

have incorporated both the linear dynamics as well as a non-linear dynamics, we would

have the y axis of the bode plot to be 20 log of the magnitude of DF times G and the y

axis of the of the phase plot to be the angle of the phase of DF times G, which is simply

equal to the sum of the phases of the describing function plus the and that of the linear

open loop system. 

Now, we can apply the notions of stability exactly as we did earlier. So, if at the gain

crossover frequency, if the open loop gain is greater than 0 dB, we can conclude that our

closed loop system is going to be unstable.

So, our gain crossover frequency omega GC if we are working with minimum phase

plants should be lesser than our phase crossover frequency omega pc for our overall

system to be stable. So, if we have already designed our control system, ignoring the

non-linear elements, now we can analyze the effect of non-linear elements by including

the  describing  functions  as  part  of  one  of  the  terms  in  our  open  loop  system  and

considering that as another term that multiplies the linear loop gain of our open loop

system.

And then drawing the bode plots for the cascade of the describing function and the linear

loop gain and looking at where the gain crossover frequency and the phase crossover

frequencies are. So, we can repeat this for the range of amplitudes that of response that

we expect from our physical system and look at what is the possible variation in the

magnitude characteristic and the phase characteristic of our open loop system. 

And correspondingly fine tune our controller to ensure that even in the presence of this

uncertainty  in  the  magnitude  characteristic  and  a  phase  characteristic  brought  about



because  of  the  non-linear  element  that  we might  have,  whose response  will  also  be

dependent on the amplitude of the input. We can make sure that we have design such a

controller that we have adequate phase margin regardless of the amplitude of input that

we might have to this non-linear element.

So,  this  is  one  straight  forward  way in  which  we can  use  a  describing  function  for

synthesis of feedback control systems. We just over design our linear controller in such a

manner  that,  when we cascade  the  characteristics  of  the open loop linear  open loop

system  with  that  of  the  describing  function  and  we  take  into  account  the  possible

variation in the magnitude of the describing function and the phase of the describing

function on account of the variation in the amplitude of the input signal to the describing

function,  we  make  sure  that  the  controller  still  gives  us  the  desired  phase  margin;

regardless of all this variations that might be introduced by this non-linear element So,

this  is  one simple  way where by describing  functions  can be used during design of

feedback control systems.

(Refer Slide Time: 29:32)

Another  way to use it  is,  if  we know something about  if  we know exactly  how the

describing function looks like then, we can come up with another non-linear element

whose describing function is  the inverse of the describing function of the non-linear

element that might already be there in our physical system. Now it is other non-linear

element that you come up with is actually going to reside in our computer. It is going to



be  a  controller,  it  is  going  to  be  part  of  the  controller  and  the  non-linear  element

describing  function  would  be  the  inverse  of  the  describing  function  of  a  physical

nonlinearity that already exist and that we have to contained with.

If this can be accomplished, then the overall loop gain from the reference to the output

would have the effect of non-linearities substantially cancelled out. So, we can therefore,

invert the model of the nonlinearity that we might have in our physical system and cancel

its effect if it is possible. By coming up with a non-linear controller, whose describing

function is going to be the inverse of the describing function that already exist in our

feedback system.

So, in this case our controller would be the cascade of our linear controller C of j omega

and this non-linear term which inverts the existing describing functions, so D F inverse

of a comma omega and the cascade of the 2 is what is going to be implemented by us as

control engineers; either in a computer or through some electronic circuitry. And hence,

the cascade of the 2 comprises  a non-linear  controller  because we have a non-linear

element cascaded with our linear controller. So, this is a simplest way where by one can

synthesize  a  non-linear  controller  in  order  to make sure that  our overall  closed loop

system is relatively insensitive to the nonlinearities that exist already as part of the open

loop system.

Now, having discussed the 2 ways in which we can employee the notion of describing

functions and address the problems that are brought about as a consequence of having

nonlinearities in our feedback system, let us now look at how we can actually exploit

them to improve the performance of a feedback system. 



(Refer Slide Time: 31:47)

So, what you see in the block diagram at the top is a conventional linear control system

with the plant being an integrator namely k by s and the controller also being the an

integrator 1 by s. So, we have just 2 integrators as part of our open loop dynamics. Now

if 1 were to plot the root locus for a system which has 2 integrators as part of its open

loop dynamics, when in other word from plotting the real part of s verses the imaginary

part of s, we have 2 open loop poles at the origin. 

And what this implies is that root locus will always be along the imaginary axis. So, the

2 branches of root locus that we would have for this case, we will always coincide with

the imaginary axis and that in turn means that our closed loop system will always be on

the threshold of instability or in other words the closed loop poles of our system will

always be imaginary.

And that in turn implies that if you release the system with some initial condition, then

its  response  will  always  be  oscillatory,  depending  on  the  magnitude  of  the  initial

condition that we provide. Likewise, if we provide some reference, change of reference

that will be a transient associated with it, which will never died on because, this because

of the presence of poles exactly on the imaginary axis and that is what has been shown at

the bottom here. In this case the reference r of t has been set to 0 and the system has been

released  from some initial  condition  and we note that  the output  has this  oscillatory



waveform which will  persists for all  future time.  The frequency of this oscillation is

depend on to the gain k of the plant.

Now, suppose we were to replace the integrator here, the linear integrator that we see

here, with a Clegg Integrator, we note that our Clegg Integrator supplies a phase lag; that

is significantly less than the phase lag of a conventional integrator. The phase lag of a

conventional integrator is 90 degrees whereas,  the phase lag of a Clegg Integrator is

actually less than 45 degrees. So, in principle if our feedback control system was on the

threshold of instability, when we used a regular integrator as part our feedback loop. If

you were to replace the regular integrator with the Clegg Integrator in principle it should

become stable because, the  phase margin has improved by more than 45 degrees as a

consequence of introducing a Clegg Integrator. And that is what has been done in this

next slide.

(Refer Slide Time: 34:15)

So, we have replaced the conventional integrator with the Clegg Integrator and we are

trying to control the same plant k by s. Once again the reference has been set to 0 and the

system has been released from some initial condition. And what we note is that for all

future time after some initial brief transience, the output is going to be exactly equal to 0;

in other words our closed loop system is going to be stable.



So, this is one example where, an intentionally introduced nonlinearity in this case a

Clegg Integrator can be employed to improve the performance of the feedback control

system, beyond what could be accomplished using a linear control system.

Thank you. 


