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Hello.  So,  in  the  previous  clip,  we  looked  at  solving  non-homogeneous  linear  time

invariant ordinary differential equations. In other words, equations that look as shown

here. And so, nth derivative of x with respect to t plus a 1 times n minus 1 derivative of x

with respect to t and so on and so forth, is equal to b 1 times mth derivative of u with

respect to t and so on and so forth plus b m times u with the initial conditions x of 0, x

dot of 0, and up to x n minus 1 derivative at time t equal to 0.

We found that the solution looks something like this. So, this part here, i going from 1 to

n, is the solution to the homogenous differential equation. In other words, the response of

the system to the n specified initial conditions. The coefficients c i are dependent on the

n initial  conditions  and the response the input  u  is  given by this  equation  here,  this

integral is called the convolution integral.

And if you have specified u of tau and if you obtain the impulse response g of t, then in

principle, you can work out the response of the system x of t to any specified input u of

T. So, as I emphasized,  the beauty of linear system theory is that starting from very



elementary principles with the combination of intuition and guess work and so on, we

can solve this very fairly complicated case of a differential equation, where input has m

derivatives on the right hand side, and the output has n derivatives on the left hand side,

and you have n initial conditions and so on and so forth.

So, from a mathematical perspective, we are above done. There is nothing much more

that one needs to know in order to solve differential equations of this particular kind. But

often, although a problem might be mathematically solved from an engineer’s point of

view that solution might still have problems. In that for instance, the solution may not be

easy to comprehend. As engineer we seek transparency and simplicity, in being able to

understand the response of systems. And the response that we have obtained, for instance

as it is indicated by this convolution integral has a problem in that, we have to compute

this integral for us to obtain the response x of t.

And  computation  of  a  convolution  integral  is  by  no  means,  an  intuitively  obvious

exercise. So, one has to learn quite a bit do quite a bit of convolution, examples in order

to get comfortable with being able to predict how x of t would look like, if you are given

a certain g of t, and if you are given a certain u of T. So, from a practical perspective,

therefore one obvious problem that exists with this time domain based solution of the

systems response is that, it is not very intuitive, I cannot easily predict how the response

of the system would be for a given u of T, because it is not easy for me to anticipate what

the output of this integral would look like. That is actually an important problem, but by

no means the most important problem.

A more important problem is that our solution here depends on us obtaining the impulse

response g of t of this system. How there is a small problem associated with obtaining

the impulse response, namely that we have to apply an impulse input. And what is the

problem associated with an impulse input, I pointed out that an impulse input is one,

which has a unit area under its curve, so its width is vanishingly small delta tending to 0.

And its height is 1 by delta, so its area is 1 unit, and 1 by delta therefore tends to infinity

so it is a spike. So, to give a practical example an electrical spike would be an impulse

input to an electrical system or if you were to strike a system with a hammer, that would

be an impulse input a mechanic impulse input to the system.



You can imagine from both these examples,  namely that  of striking a system with a

hammer  or  applying a  spike to  your  electrical  circuit,  that  clearly  these are  not safe

inputs to apply to your system; it is very likely that you might cause irreversible damage

to your physical system in the course of applying this input. So, we are therefore in this

paradoxical situation, where we need to apply this impulse input to obtain the impulse

response g of t,  but  the very act  of application of this  impulse input  might  possibly

destroy our system, so how do we go about addressing this dilemma.

Given that g of t is of central importance, the way we would go about is to ask ourselves,

if we can obtain g of t,  namely the impulse response of the system, without actually

applying  an  impulse  input.  So,  can  we  obtain  the  impulse  response  g  of  t  without

applying an impulse input, it looks a little counterintuitive that this is possible, but by the

end of this clip, hopefully you will be convinced that this is indeed possible. And this is

enabled by a new tool, namely that of Fourier transforms.

Now, let us come back to this problem, why did we face this issue of why did we face

this difficulty of obtaining x of t. Partially it is because we chose to represent our input u

of t in terms of impulses, so we wrote u of t as u of tau delta of t minus tau d tau. So, we

represented  our  input  as  a  train  of  impulses  and therefore,  we then  represented  our

response as therefore a set of impulse responses a summation of impulse responses.

So, to address this  question of whether we can extract the impulse response without

applying an impulse input, we shall start our investigation by asking ourselves. If we can

represent the signal u of t in itself, not in terms of impulses, which are clearly dangerous

signals to apply to your system. 

But,  rather  in  terms  of  other  more  benign  functions,  which  do  not  have  the  spiky

behavior and amplitude magnitudes going to infinity, and which are therefore likely to

damage our system. So, we shall first see if we can first if we can represent u of t in

terms of such benign functions, and subsequently see if those benign functions under

associated mathematics will allow us to obtain g of t without applying an impulse input.

So, this is the strategy that we would adopt.

Now, to  start  with let  us  ask ourselves,  if  we are already  familiar  with  representing

functions in terms of other fundamental building blocks. And here is where I assume that

you have already come across the notion of Fourier series, so Fourier series allows you



to represent any periodic signal in terms of sinusoidal signals of the same period and its

higher harmonics.
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So,  for  instance,  I  shall  graph  here  a  periodic  signals  some u  of  t,  so  it  may  look

something  like  this;  it  has  a  time  period  T.  So,  after  this  time  period  T,  the  same

waveform repeats itself between T and 2 T and so on and so forth, between T and 2 T and

so on and so forth.

So, you know that for Fourier series allows you to represent u of t in terms of sinusoidal

functions of the same period capital T and its higher harmonics. So, in other words, I can

write u of t as a 0 plus a 1 1 cos 2 pi by T times small t plus a 1 2 sin 2 pi by T times

small t plus a 2 1 cos 4 pi by T times t plus a 2 2 sin 4 pi by T times t plus and so on and

so forth. And in general, the kth term will be a k 1 cos k times 2 pi by T times t plus a k 2

sin k times 2 pi by T times t and so on and so forth. You might have infinite terms or a

finite number of terms depending on the specific appearance of this waveform u of t.

Now, what are the coefficients, a k 1 and a k 2. In general, a k 1 is given by 2 by T

integral minus T by 2 to T by 2 u of t cos k times 2 pi by T dt; a k 2 is equal to 2 by T

integral minus T by 2 to T by 2 u of t sin k times 2 pi by T dt. So, this is something that I

assume, you have already come across in the course of your undergraduate education.

Now, the same expression for u of t can be written in a slightly more compact manner, if



we express  cos  2  pi  by  T times  t  and  sin  2  pi  by  T times  t  in  terms  of  complex

exponentials. So, let us do that next.

(Refer Slide Time: 11:03)

I shall first define 2 pi by T capital T as the frequency omega naught. And we notice that

I can write a 1 1 cos 2 pi by T times t plus a 1 2 sin 2 pi by T times t as a 1 1 minus j a 1

2 by 2 cos omega naught t plus j sin omega naught t plus a 1 1 plus j a 1 2 by 2 times cos

omega naught t minus j sin omega naught t. This is just an algebraic manipulation that I

have done. I did this manipulation in order to write the long expression in a slightly more

compact form.

What you notice is that cos omega naught t plus j sin omega naught t is e to the power j

omega naught t, likewise cos omega naught t minus j sin omega t is minus e to the power

minus j omega naught t. Therefore, I can write this expression of a 1 1 cos omega naught

t plus a 1 2 sin omega naught t as, a 1 1 cos omega naught t plus a 1 2 sin omega naught t

is equal to a 1 e power j omega naught t plus a minus 1 e power minus j omega naught t.

Now, I can do this for the other terms also, for higher harmonics of a omega naught. And

in general therefore, I can write u of t as sigma k going from minus infinity to infinity a k

e power k times j omega naught t, where the coefficient a k is given by a k 1 minus j a k

2 by 2. And that you can easily verify is equal to 1 by T integral minus T by 2 to T by 2 u

of t e power minus j k omega naught t d t. So, this therefore, allows us to represent a



periodic signal u of t in terms of other functions, in this case complex exponentials e

power k times j omega naught t.

Now you want to notice that, we have made some small progress here. Earlier we had

represented our input in terms of delta functions. Here we are representing our input u of

t in terms of complex exponentials. And the improvement accrues on account of the fact

that, the magnitude of this complex exponential  e power k times j omega naught t is

always equal to 1. So, unlike a delta function, which goes tends to infinity for a brief

period of time, but no point in time are these complex exponentials of infinite magnitude,

they are always finite under magnitude is always equal to 1.

So, we have partially therefore, succeeded in our attempt to represent a signal in terms of

benign elementary signals. But, the problem with this entire analysis is that it is limited

to periodic signals, and not to a periodic signals. Before we understand, how this can be

extended to a periodic signals. Let us take a couple of numerical examples to illustrate

the principles behind Fourier series.

(Refer Slide Time: 15:00)

So, suppose I have the signal u of t to be cos t times cos 2 t, then I can easily show that

this signal can be written as half of cos 3 t plus cos t. And if I were to represent this in

terms of complex exponentials a k e power j k omega naught t, where k goes from minus

infinity to infinity. What I will discover is that all the a k are 0; for k not equal to 1 or 3;

and a of for magnitude of k not equal to 1 or 3; and a of 1 is equal to a of minus 1 equal



to 1 by 4; a of 3 equal to a of minus 3 equal to 1 by 4. I can easily verify this by

evaluating the coefficients a k, using the expression that I gave a few minutes back.

Likewise, if we consider another signal u of t, which is a pulse; so, u of t is of value plus

1 from 0 to plus T by 2, and assumes value minus 1 between minus T by 2 to 0. Then, we

firstly notice that this function is a discontinuous function, and is also an odd function of

time.  So,  therefore,  when we  write  it  out  in  terms  of  sinusoidal  signals  and  cosine

signals, what we will what we expect to see is that, we would have only sin components

and not the cosine components,  because cosine omega t is an even function of time,

whereas sin omega t is an odd function of time. What we have as the actual signal is an

odd  function  of  time.  Therefore,  when  we  represent  it  in  terms  of  its  elementary

functions, we cannot have even functions of time in the representation. So, we would

have only sin terms.

And we can show that for this particular case a k is 0, when k is even; and is equal to 2

by j times pi times k, when k is odd. So, if I were to represent the values of a k, so (Refer

Time:  17:43)  when  k  is  equal  to  0,  its  magnitude  is  0;  when  k  is  equal  to  1,  the

magnitude we would represent the magnitude of a k. When k is equal to 1, the magnitude

is 2 by pi that is the magnitude; this will be 2 by pi. And k equal to 2, it is again 0; k

equal to 3, it is 2 by 3 pi a little bit lesser. And k is equal to 4, it is again 0; and k is equal

to 5, it is 2 by 5 pi, which is even lesser. So, if I were to connect all these non-zero of

points by a dotted line, it will resemble a rectangular hyperbola. So, this is how it will

look for positive values of k and you will have exactly the similar shape also for negative

values of k.
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So, what we have done, if we go back to the representation, is that we are represented the

signal u of t in terms of basic building blocks e power j k omega t omega naught t, where

k goes from minus infinity to infinity. And the quantity of each of these blocks that you

require is in some sense represented by a k. And therefore, these coefficients a k are also

called the frequency content or the frequency spectrum of u of t. 

Because, there if you want to think of this in terms of construction of some building, so u

of t can be imagined to be the building you are trying to construct. And the basic building

blocks are the terms t power j times k omega naught t, where or in other words e power

omega j omega naught t e power 2 j omega naught t and so on and so forth. And the

quantity of each of these that you need to construct u of t is specified by a of k.

So, for instance, if we take the case of a step like wave form, which is which assumes

value minus 1 between 0 minus T by 2 and 0 and plus 1 between values 0 between time 0

to T by 2, and this waveform repeats in time. We saw that, we have the odd coefficients

being non-zero, and the even coefficients all being 0.

Now it may happen that, we may not be able to properly reproduce the coefficients a k,

when our k is very large. So, physically what we mean is that, you have these complex

exponentials e power j times k omega naught t, which are changing very rapidly in time,

and physically you can imagine that a system cannot track such inputs very well. So, one



can imagine therefore, that when you apply this kind of an input to your physical system,

it will not end up tracking the components a k for very large values of k.

And  what  that  means  is  that,  when  I  reconstruct  the  response  of  the  system,  those

components which are at a very high frequencies contribute to the sharp features of this

signal  u  of t.  And the component  that  are  at  low frequencies  contribute  to  the slow

varying  features  of  u  of  t.  So,  if  my system is  not  able  to  track  these  fast  varying

components very well, in other words it cannot reconstruct the signal at high frequencies,

then I  will  not  be able  to  represent  this  signal  accurately  at  the  locations,  where its

changes are very fast. So, if I were to therefore represent this signal with only a finite

number of terms, where k is not going to infinity, my response might look something like

this.

So, therefore, inevitably what we will have to do as control engineers is to accept the fact

that the physical systems out of which we build our controllers and so on and so forth,

will not be able to track you know signals that are changing very fast in time. Therefore,

what we should accept as control engineers is that, our system cannot reconstruct fast

changing complex exponentials in time, and therefore our response also cannot track fast

changing references  in  reference  commands that  we might  choose to  provide to  our

plant. 

Thus far, we have looked at how we could represent a signal in terms of benign signals,

in this case complex exponentials. But, as I said, the limitation of this of the theory of

Fourier series is that it is applicable only to periodic signals. How do we extend these

notions to a periodic signals, signals that do not repeat in time.
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There is one nice trick; we can employ in order to extend these concepts to a periodic

signals. And it is by assuming that these a periodic signals are actually periodic signals,

but their periodicity, is their time period is so large, that they do not repeat themselves

within the time scale of interest to us. In other words, the time period t of our periodic

signals, we shall tend them to infinity.

In other words, I shall write out u of t as sigma a k e power j k omega naught t, where k

goes from minus infinity to infinity. And I shall now explicitly expand a k. So, we know

that our time period T is tended to infinity, so this will look like this, k going from minus

infinity to infinity 1 by T integral minus T by 2 to T by 2 u of t e power minus j k omega

naught t dt.  So, this is my coefficient a k. And this gets multiplied with e power j k

omega naught t. So, this is going to be my signal ok.

Now, I have tended my T to infinity to capture the fact that the signal is not is actually a

periodic signal, but it is not repeating in a time scale, that is of importance to me, as an

engineer. So, I can if T is tended to infinity, then 1 by T tends to 0. So, I can write 1 by T

as some delta omega by 2 pi. So, I can now write u of t as u of t equal to limit, T tends to

infinity, sigma k going from minus infinity to infinity 1 over t, which I shall replace with

delta omega by 2 pi integral minus T by 2 to T by 2 u of t e power minus j k omega

naught t dt. And this gets multiplied with e power j k omega naught t.



Now, in the when k varies from minus infinity to infinity k times omega naught, which is

equal to k times 2 pi by T, would be some frequency omega on the frequency axis. And

once again, when k varies from minus infinity to infinity and delta omega tends to 0, I

can replace this summation here by an integral.

And I can write u of t as integral minus infinity to infinity d omega by 2 pi; and the term

within the bracket can be written as integral minus infinity to infinity, because in T tends

to infinity, the limits of this go to infinity and minus infinity. So, integral minus infinity

to infinity u of t e power minus j k omega naught (Refer Time: 26:43) some frequency

omega t d t. 

And this  multiplies  e power j.  Once again,  k omega naught  here is  some frequency

omega, for j omega t. I shall call this term within the bracket as u of j omega. And write u

of t as 1 by 2 pi integral minus infinity to infinity u of j omega e power j omega t d

omega. And u of j omega is called the Fourier Transform of u of t.


